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Obesity is a public health crisis in North America. While lifestyle interventions for weight
loss (WL) remain popular, the rate of success is highly variable. Clearly, self-regulation
of eating behavior is a challenge and patterns of activity across the brain may be an
important determinant of success. The current study prospectively examined whether
integration across the Hot-State Brain Network of Appetite (HBN-A) predicts WL after
6-months of treatment in older adults. Our metric for network integration was global
efficiency (GE). The present work is a sub-study (n = 56) of an ongoing randomized
clinical trial involving WL. Imaging involved a baseline food-cue visualization functional
MRI (fMRI) scan following an overnight fast. Using graph theory to build functional
brain networks, we demonstrated that regions of the HBN-A (insula, anterior cingulate
cortex (ACC), superior temporal pole (STP), amygdala and the parahippocampal gyrus)
were highly integrated as evidenced by the results of a principal component analysis
(PCA). After accounting for known correlates of WL (baseline weight, age, sex, and
self-regulatory efficacy) and treatment condition, which together contributed 36.9%
of the variance in WL, greater GE in the HBN-A was associated with an additional
19% of the variance. The ACC of the HBN-A was the primary driver of this effect,
accounting for 14.5% of the variance in WL when entered in a stepwise regression
following the covariates, p = 0.0001. The HBN-A is comprised of limbic regions
important in the processing of emotions and visceral sensations and the ACC is key
for translating such processing into behavioral consequences. The improved integration
of these regions may enhance awareness of body and emotional states leading to more
successful self-regulation and to greater WL. This is the first study among older adults
to prospectively demonstrate that, following an overnight fast, GE of the HBN-A during
a food visualization task is predictive of WL.

Keywords: weight loss, brain networks, graph theory, global efficiency, older adults, self regulation, anterior
cingulate cortex (ACC)

Introduction

Obesity has become a public health crisis in North America, not sparing a quickly
expanding population of older adults (Mathus-Vliegen et al., 2012; Ogden et al., 2014).
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Although lifestyle interventions remain the most popular
treatment, there is considerable variability in weight loss (WL)
during the intensive phase of treatment and, unfortunately,
weight regain is common (Kramer et al., 1989; Wing and Hill,
2001; Rejeski et al., 2011). In the current study, we sought
to examine whether functional brain network integration, as
measured by global efficiency (GE) within five regions formerly
described as the hot-state brain network of appetite (HBN-A;
Paolini et al., 2014), was predictive of WL during the intensive
phase of active treatment.

Recent reviews have noted that the primary cause
of obesity—the overconsumption of food—is complex.
Overconsumption is often due to both homeostatic dysregulation
(bottom-up) and to dysfunctional central processing (top-down),
the latter being referred to as the hedonic etiology of obesity
(Lowe and Butryn, 2007; Stice et al., 2013). In line with the
concept of homeostatic dysregulation, Loewenstein (2005)
has proposed that individuals move into and out of ‘‘hot
states’’ dynamically over the course of a day as a function of
changes in affect or visceral cues making them vulnerable to
dysfunctional health behaviors such as overeating. Recently,
we demonstrated that resting-state brain networks are highly
vulnerable to the ‘‘hot-state’’ of short term food restriction
(Paolini et al., 2014). Specifically, fourteen older, overweight or
obese adults visited our laboratory on two different occasions.
On the first visit, they were fed a controlled breakfast, were
not allowed to eat for 2.5 h, and then consumed a liquid meal
replacement to create a cold state (low hunger). On a randomly
assigned second visit, they consumed water after the 2.5 h
of food restriction to create a hot state (increased feelings
of hunger). All participants underwent resting functional
MRI (fMRI) scans from which functional brain networks
were constructed. The results of this study revealed that
there was greater connectivity in a highly integrated network
during the hot than cold state—the HBN-A. This network
included five hubs: the insula, the anterior cingulate cortex
(ACC), the superior temporal pole (STP), the amygdala and
the hippocampus. In Figure 1, we use a cartoon to illustrate
the greater number of statistically significant connections
observed between the hubs of the HBN-A during a hot- vs. a
cold-state (p < 0.05) (Paolini et al., 2014); the numbers reflect
effect sizes.

After examining research which has shown that greater
activity in reward centers of the brain is conducive to weight-
regulation (Stice et al., 2010; Hege et al., 2013; Gearhardt
et al., 2014; Wang et al., 2014), we hypothesized that it was
the brain’s ability to integrate reward information globally
that would be predictive of intentional WL. Within network
theory, this makes GE a particularly relevant metric because it
captures the potential for distributed processing or integration
within and across a network (Latora and Marchiori, 2001;
Rubinov and Sporns, 2010). Thus, in the current study,
we examined whether GE of the HBN-A, following an
overnight period of fasting, was related to WL during the first
6-months of intensive treatment among obese, older adults with
cardiometabolic dysfunction. Our primary hypothesis was that
after controlling for treatment conditions, baseline weight, sex,

FIGURE 1 | Connections among the Hubs of the Hot-State Brain
Network of Appetite in a Hot- vs. a Cold-State: Values in the Paths
Represent Effect Sizes for Direct Connections.

age, and change in self-regulatory efficacy (a measure of top-
down control related to eating in high-risk contexts), higher
baseline levels of GE across the HBN-A during the active
visualization of food-cues would be significantly associated with
6-month WL.

Methods

The present study involves ancillary imaging that is part of an
ongoing randomized clinical trial involvingWL, the Cooperative
Lifestyle Intervention Program-II (CLIP-II) trial (Marsh et al.,
2013). In short, CLIP-II randomized 252 obese, older adults
with cardiovascular disease (CVD) or metabolic syndrome
(MetS) into a WL only treatment, aerobic exercise training
(AT) + WL, or resistance exercise training (RT) + WL for
18 months (Marsh et al., 2013). Since our focus was WL
during the intensive phase of the interventions, we restricted
our analysis to the first 6-months of therapy and statistically
controlled for treatment in the linear model; we also cannot
reveal treatment assignment prior to completion of the main
study.

Participants
Sixty-six participants who were enrolled during the first year
of the CLIP-II study participated in this ancillary imaging
project. The cohort and methods for this study have been well
characterized (Marsh et al., 2013). Briefly, participants were
either overweight or obese (BMI ≥ 28 kg/m2 but < 42 kg/m2)
community dwelling men and women between the ages of
60 and 79 years with a documented history of CVD or
an ATP III diagnosis of MetS. CVD included myocardial
infarction (MI), percutaneous transluminal coronary angioplasty
(PTCA), chronic stable angina, or cardiovascular surgery.
Participants also had low levels of physical activity (<60 min
of moderate intensity physical activity per week) and self-
reported disability. The Weight Efficacy Lifestyle Questionnaire
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(WEL) was administered at both the baseline visit and the
6 month follow-up visit for the parent study (Clark et al.,
1991).

After the participants had completed screening and baseline
testing for the parent study, they were contacted via phone to
discuss participation in and screening for the ancillary study.
In addition to the inclusion/exclusion criteria for the parent
study, participants were excluded for (1) visual acuity less
than approximately 20/40 (corrected); (2) severe hearing loss;
(3) claustrophobia; (4) MR-incompatibility (implant or other
incompatible foreign object in the body); (5) depression treated
by antidepressants unless on a stable regimen for more than
2months; and (6) serious CNS trauma as defined by the history of
acquired sub or epidural hematomas or loss of consciousness for
greater than 5min. Following successful completion of the phone
screen, participants completed one 2.5 h experimental session at
Wake Forest School of Medicine receiving $50 to compensate for
their time. Informed consent was obtained on all participants and
the study protocol was approved by the Wake Forest University
School of Medicine Institutional Review Board.

Of the original 66 participants that agreed to participation,
2 participants withdrew during the MRI scan due to
claustrophobia, 2 ended up being ineligible for the parent
study, and 3 withdrew from the parent study during the first
6-months of treatment leaving a final n of 56.

Measure of Self-Regulatory Efficacy
Weight Efficiency Life-Style Questionnaire (WEL): The WEL, a
20-item measure developed by Clark et al. (1991), was employed
to assess self-regulatory efficacy related to eating behavior. The
measure has five subscales (negative emotions, food availability,
social pressure, physical discomfort, and positive activities) but
can be scored as a single measure as was done in the current
study. Participants rated their confidence to resist the desire to
eat using a 10-point scale ranging from 0 (not confident) to 9
(very confident). A total score was calculated by summing all
items; therefore, scores range from 20 to 180.

Experimental Protocol for the Scanning Visits
Once participants expressed interest in being involved in the
imaging study and passed the telephone screening, an MRI
appointment was arranged. They then completed a 2.5 h visit
beginning in the early morning either around 7:15 a.m. or 9:15
a.m. and were asked to arrive in a fasting state, having not eaten
breakfast or consumed anything other than water. Upon arrival,
participants were led to a quiet, private room where informed
consent was obtained by the study staff. The research staff then
administered the MRI safety form and led the participant in a
practice session of the tasks to be completed during the fMRI.

Two functional trials were completed during the MRI. The
first trial was a 5-min resting state scan during which individuals
relaxedwith their eyes open viewing a cross on the rear projection
screen. The second task was a 5-min food visualization task where
participants viewed their four favorite food words on an MR-
compatible rear projection screen; each word was presented for
30 s. Participants were instructed to visualize the food with all
five senses for the entire time the food word was on the screen.

Scanning Protocol
MRI data were obtained on a Siemens MEGNETOM SKYRA 3T
scanner using a 32-channel head coil with a gradient strength
equal to 45 mT/m at 200 T/m/s. The scanning protocol included
anatomical imaging, one resting state fMRI and a food-cue fMRI
task scan. Functional images for the network analyses measured
the T2∗-relaxation rate that is sensitive to blood oxygenation
level dependent (BOLD) changes (Ogawa et al., 1990). As brain
activity changes, the oxygen content of the blood in the same
area also changes. Thus, the T2∗ signal is an indirect measure of
changes in neural activity. All fMRI data was used to create brain
networks for each individual in native space. High-resolution (1.0
× 1.0 × 1.0 mm) T1-weighted structural scans were acquired in
the sagittal plane using a single-shot 3D MPRAGE GRAPPA2
sequence (Scan time = 5 min and 30 s, TR = 2.3 s, TE = 2.9 ms, TI
= 900ms, flip angle = 9◦). Functional imaging or BOLD-weighted
images (3.5 × 3.5 × 5.0 mm) were acquired using a single-shot
echo-planar imaging sequence (Scan time = 5 min and 20 s, TR
= 2.0 s, TE = 25 ms, flip angle = 75◦). The scanning planes were
oriented parallel to the anterior–posterior commissure line and
extended from the superior extent of motor cortex to the base of
the cerebellum.

Imaging Processing and Network Analyses
Functional and structural data were preprocessed using SMP8.1

The first 20 s of the scan were discarded to allow for signal
equilibration. Functional images were then realigned, slice-time
corrected and co-registered to a skull-stripped version of the
accompanying structural data. During image acquisition, the pre-
scan normalize function was turned off for all 60 baseline scans.
Pre-scan normalize is used to correct for the inherent bias in
tissue signal based on location (i.e., tissue closer to the head coil
has higher signal values than deeper brain structures). The built-
in inhomogeneity correction function in SPM8 was utilized to
remove this bias in the first volume of the functional data series.
The parameters used on the first volume were then applied to the
remainder of the functional data volumes images in the series.

Images were smoothed using a 2 voxel (8 × 8 × 8 mm)
smoothing kernel, band-pass filtered (0.009–0.08 Hz) to limit
physiological noise and low-frequency drift, and globally
normalized to the image mean. Confounding signals were
regressed out of the functional data and included 6 rigid-body
transformation parameters generated during the realignment
process and 3 mean signals (whole-brain, white matter, and
cerebrospinal fluid (CSF)). The mean signals for the three tissue
types were determined by masking the functional data with
masks of the individual segmented tissue images generated with
the unified segmentation in SPM8. Also, the functional data
were motion corrected using a protocol designed to eliminate
scan volumes with both excessive frame-wise displacement and
BOLD signal change (Power et al., 2012). Networks were created
and analyzed in native space to limit further data manipulation
providing greater confidence in the time series signal.

For each individual, a correlation matrix was then created by
computing Pearson correlations between all possible voxel pairs.

1www.fil.ion.ucl.ac.uk/spm/
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Symmetrical matrices resulted, where each cell (ij) represented
the correlation coefficient between nodes i and j. A threshold
was then applied to the correlation matrix, and all cells that
surpassed this threshold were assigned a value of 1 while
remaining cells were assigned a value of zero. The size of
each network ranged from 19,526 and 23,618 nodes based on
the subject’s head size. The threshold was defined so that the
relationship between the number of nodes and average number
of connections at each node was consistent across subjects. This
thresholding approach ensured comparable connection densities
regardless of the number of network nodes. Specifically, the
relationship S = log (N)/log(K) was the same across subjects, with
N = number of nodes and K = average degree (Hayasaka and
Laurienti, 2010). The threshold S = 2.5 was used for this paper.
This resulted in connection densities meeting expected values
based on network size (Laurienti et al., 2011). All remaining
analyses were completed using the binary symmetrical adjacency
matrixes.

GE (Latora and Marchiori, 2001) was used to assess the
integrative capacity of the network and was calculated for each
study participant at the nodal level. GE is the inverse of the
average shortest path-length of the node and is defined as
GE = N∑

i L
where L = shortest path-length from node (i) to every

other network node and N = number of nodes in the network.
Consequently, this metric ranges from 0 to 1. A node that is
directly connected to all nodes in the network would have a GE
of 1 whereas a disconnected node would have a GE of 0. Since
GE incorporates the number of nodes in the network (N), the GE
metric is readily comparable across networks of different sizes.

Region-of-Interest (ROI) Analysis
To quantify GE for various ROIs, we warped the Automated
Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002)
to each subject’s native-space structural brain image. First, the
structural brain image was warped to standard space using the
unified segmentation function in SPM8. The inverse warping
parameters from the SPM were then applied to the AAL atlas for
each participant. A nearest neighbor interpolation was used to
ensure the boundaries of the atlas regions were respected (i.e., no
voxel was included in more than one atlas region).

For our analysis, the following ROIs were used: insula,
amygdala, STP, ACC, and parahippocampal gyrus, all defined by
the AAL atlas. For each ROI both the left and right corresponding
regions were included. The choice of these ROIs was based on our
prior work with the HBN-A (Paolini et al., 2014); however, there
were two exceptions. First, we used the entire ACC as defined by
the AAL atlas for the present analysis; whereas, we used a sphere
with radius of 10 mm previously. Second, we accessed the AAL’s
region of the parahippocampal gyrus because this regionmapped
more closely onto the region of interest from our former work
compared to the hippocampus (Tzourio-Mazoyer et al., 2002;
Maldjian et al., 2003; Paolini et al., 2014). For each participant,
the average GE was calculated for all the network nodes that fell
within each of the 5 ROIs.

For the secondary analysis, ROIs were created for the default
mode network (DMN). These ROIs were centered on coordinates
previously defined in the literature (Shirer et al., 2012). The

precuneus was a 12mm sphere centered at 0,−50, 32 coordinates
in MNI space. The left and right parietal regions were 16 mm
spheres centered at −48, −60, 37 and 49, −64, 38 coordinates in
MNI space, respectively. Finally, themedial prefrontal region was
created by a 20 mm sphere centered at 0, 54, 4 in MNI space.

Statistical Analyses
Means and standard deviations or medians and the 25th and
75th percentiles were used as measures of central tendency and
variability. A principal components analysis (PCA) was applied
to the GE data from the 5 regions of the HBN-A during the food
visualization task to evaluate the integrity of this network. The
primary data analytic technique was linear regression, regressing
baseline weight, treatment assignment, age, sex, baseline adjusted
change in self-regulatory efficacy across 6-months, and various
measures of GE on 6-month WL. The variable inflation factor
(VIF) was utilized to check for co-linearity. All analyses were
conducted using SPSS version 22. Preliminary analyses were
conducted to determine whether we should focus our attention
on data from either the resting state scan or the food visualization
task, and whether to consider using a factor score from the PCA
of the 5 hubs of the HBN-A or the raw GE data from the 5
individual hubs.

Results

The study sample consisted of 14 men and 42 women with 20
African Americans and 36 non-Hispanic Whites. Participants
had a mean (SD) age of 67.55 (5.06) years with a Body Mass
Index of 34.38 (3.69) kg/m2. The average Montreal Cognitive
Assessment (MOCA) was 25.96 (2.39). The mean (SD) GE
scores for the 5 regions of the HBN-A during the food
visualization task were as follows: insula 0.135 (0.020), ACC
0.139 (0.020), amygdala 0.139 (0.024), STP 0.106 (0.019), and
the parahippocampal gyrus 0.128 (0.024). These GE metrics for
the 5 hubs of the HBN-A were highly integrated and constituted
a single underlying dimension of function as evidenced by
examination of the scree plot from a Principal Component
Analysis (PCA). The eigenvalue for this single dimension was
3.82, accounting for 76.56% of the variance in these GE scores.
The next largest eigenvalue was only 0.456, reinforcing the highly
integrated nature of the 5 regions. Also, the correlations of the
5 regions with the principal component were all large: 0.90
for the insula, 0.87 for the amygdala, 0.85 for the STP, 0.85
for the ACC, and 0.90 for the parahippocampal gyrus. Across
the 6-months, the mean (SD) WL was 17.77 (10.49) pounds;
this variable was normally distributed as confirmed by visual
inspection of a histogram and a non-significant Kolmogorov-
Smirnov test (p = 0.200).

Preliminary Data Analyses
To examine whether our analyses should focus on responses
during the resting state or food imaging task, we created a
stepwise model in which we entered the GE of the ACC from
rest followed by GE of the ACC from the food visualization
task after controlling for planned covariates. We chose the GE
of the ACC because this component of the HBN-A had the
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strongest relationship toWL of all 5 hubs (see secondary analyses
below). The results of this stepwise analysis clearly favored the
food visualization task in that, although the ACC during the
resting state accounted for 12.7% of the variance in WL beyond
the covariates (p = 0.011), entry of the ACC from the food
visualization task added another 4.9% of the variance (p = 0.03).
In order to decide whether we would focus on the factor score
from the PCA or the ACC of the HBN-A, we constructed
a stepwise model entering the factor score during the food
visualization task followed by the GE of the ACC during this
task. Interestingly, the raw GE data from this specific hub of
the HBN-A added another 7.1% of variance in explaining WL
over and above the factor score and covariates (p = 0.010). Thus,
in subsequent analyses, we focus exclusively on data collected
during the food visualization task and the specific hubs of the
HBN-A as opposed to factor scores.

Evaluation of the Primary Hypothesis
As shown in model 1 of Table 1, the combined effects of the
covariates in a linear regression accounted for a statistically and
clinically meaningful percent of the variance in WL—36.9%.
Examination of the corresponding p-values and standardized
regression coefficients for each covariate provided in our final
model found in Table 2 reveals that, after controlling for the
effect of treatment, the amount of weight lost during the intensive
phase of the intervention was greater for (a) men than women,
(b) older than younger participants, (c) individuals who were
heavier at baseline, and (d) those who experienced increased self-
efficacy for control over eating in challenging situations.

As a first step in evaluating the primary study hypothesis,
we added the 5 hubs of the HBN-A to the block of covariates
using a stepwise regression procedure to identify whether there

was a single hub that was driving the effect that the HBN-A had
on WL. In other words, after controlling for the covariates, we
allowed the computer program to identify which hub or group of
hubs added unique variance to explaining WL over and above
the covariates. Because the hubs of the HBN-A are so highly
integrated, as shown by the results of the PCA, we expected
that only a single hub would be selected. Model 2 in Table 1
reveals that GE for the ACC proved to be this hub, accounting
for an additional 14.5% of the variance in WL. Also, as shown
by examination of the standardized regression coefficients in
Table 2, the ACC was important relative to other variables
in the model. This 14.5% of explained variance that the ACC
contributed to WL over and above the covariates was an increase
over the simply bivariate common variance between the ACC
and WL of 8%, p = 0.03; a plot of the residualized values for GE
of the ACC vs. WL can be found in Figure 2. Not surprisingly,
in this stepwise entry of the HBN-A into the model, other than
the ACC, the only hub that approached statistical significance
was the insula with a p-value = 0.06; the remaining 3 hubs
had p-values ranging from 0.25 and 0.66. However, because the
HBN-A is a highly-integrated network, as a second step, we
created a model that forced in all 5 hubs of the HBN-A after entry
of the covariates. As shown in model 3 of Table 2, this resulted in
a change in the R2 beyond the covariates of 19% as compared
to 14.5% with only GE of the ACC in the model. Thus, our full
models, combining information from the known correlates of
WL with either the GE of the ACC or the GE of all 5 hubs of the
HBN-A assessed during the active visualization of food explained
over 50% of the variance in WL, 51.4% and 55.9%, respectively.

To confirm that the GE of the ACC was in fact the single
most important hub of the HBN-A, we conducted separate
regression models for each hub of the HBN-A, entering each hub

TABLE 1 | Models for R2 explained by covariates and R2 change with the addition of various regions of interest*.

Model Change in R2 F for Change df p-Value

#1. Covariates 36.9% 4.77 6.49 0.001
#2. GE for ACC added to Covariates 14.5% 14.34 1.48 0.000
#3. All 5 Hubs of the HBN-A added to the Covariates 19.0% 3.80 5.44 0.006
#4. GE of ACC during Rest State added to model 2 3.1% 3.16 1.47 0.08
#5. GE for Total Brain added to model 2 0.2% 0.16 1.47 0.69
#6. DFN added to model 2 5.1% 1.28 4.44 0.29

*Note. Models 4–6 represent alternative predictors models within the same step.

TABLE 2 | Results of linear regression model on change in weight (lbs., 6 month—baseline): covariates + ACC added with stepwise procedure.

Effect Unstandardized Coefficients Standardized Coefficients t p-value

Intercept −27.69
Treatment* Vector 1 −8.74 −0.42 −3.25 0.002

Vector 2 −2.81 −0.12 −0.929 0.357
Baseline Weight −0.165 −0.45 −3.80 0.000
Sex 11.59 0.48 3.66 0.001
Age in Years −0.645 −0.31 −2.55 0.014
Self-Efficacy −0.13 −0.39 −3.72 0.001
ACC: Global Efficiency −195.42 −0.42 −3.79 0.000

∗Dummy coding was used to control for the 3 treatments, thus requiring 2 vectors. Because treatment was used as a covariate and we did not want to reveal treatment

assignment prior to completion of the main study, we do not discuss the treatment effect any further. The continuous predictor variables were centered to facilitate

interpretation of the intercept.
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FIGURE 2 | Correlation between GE of the ACC during Food
Visualization, Residualized for Covariates, and 6-Month Weight Loss.

individually after the covariates. The partial correlations for each
hub in these models withWLwere as follows:−0.38 for the ACC,
−0.27 for the hippocampus, −0.20 for the insula, −0.22 for the
amygdala, and−0.29 for the STP. The ACC accounted for 6.03%
more variance in WL than any other single hub of the HBN-A.

Secondary Analyses
As secondary analyses, we evaluated whether the GE for the
resting state ACC, the GE for the total brain during the food
visualization task, or the GE for the four regions of the DMN
explained variance in WL beyond that accounted for by the
covariates and the ACC of the HBN-A during the visualization
of food. This aim was achieved by examining change in R2 that
occurred with their addition to the model shown in Table 2. As
shown inmodels 4, 5 and 6 ofTable 1, neither the GE for the ACC
during the resting state, the GE associated with the total brain,
nor the GEs for the four hubs of the DMN explained additional
variance in WL beyond what was achieved with our final model
which included the covariates and the GE of the ACC during the
food cue visualization task.We also ran stepwise models in which
either the GE from the ACC at rest, the GE for the total brain
during the visualization of food, or theDMNwas forced into each
model prior to the stepwise entry of the GE for the ACC during
the visualization of food. In each case, the GE for the ACC during
the food visualization task added significant variance to each
model: 4.9%, p = 0.030 for the GE of the ACC during rest; 5.3%,
p = 0.028 for GE of the total brain; and 5.7%, p = 0.021 for the
DMN. Finally, we explored whether there were any meaningful
interaction terms between GE of the ACC and the covariates of
interest. None of these interactions proved to be significant (p-
values > 0.05) including interactions with treatment.

Discussion

Using PCA, and consistent with our previous work (Paolini et al.,
2014), we were able to demonstrate that the five regions of the
HBN-A were highly interrelated during a food visualization task

that followed an overnight period of food restriction. We want
to emphasize that the HBN-A was originally conceptualized in
line with a recent review by Stice and colleagues and recognizing
the inherent limitations of fMRI (Stice et al., 2013). The study
population involved obese, older adults who had cardiometabolic
dysfunction and were participating in a community-based WL
trial. Consistent with our study hypothesis, we found that
baseline GE of the HBN-A during a food cue visualization task
accounted for 19% of the variance in WL following 6-months
of active treatment. This effect was in addition to the 36.9% of
the variance due to treatment assignment and several known
correlates of WL including initial body weight, sex, age, and
change in self-efficacy related to control of eating behavior.
Given the additional variance that the HBN-A accounted for
over and above self-efficacy, an intriguing hypothesis is that
self-efficacy reflects a conscious component of self-regulation
(top-down), whereas the HBN-A is capturing an unconscious,
bottom-up self-regulatory influence on WL. Interesting, in a
stepwise regression procedure, we found that the primary driver
of the HBN-A was the ACC, accounting for 14.5% of the overall
19% of the variance captured by this network. Interpretation
of the standardized regression coefficient for the GE of the
ACC (−0.42) indicates that, after controlling for covariates in
the model, a change of 1 standard deviation unit in the GE of
the ACC is associated with 0.42 further decrease of a standard
deviation unit in WL—a moderate effect. At the same time,
as evident from results of the PCA and previous work by our
group (Paolini et al., 2014), we want to emphasize that the ACC
is highly integrated with the other hubs of the HBN-A. Also,
from amethodological perspective, network theory argues for the
importance of connectivity across the brain as opposed to region-
specific explanations for behavior (Pessoa, 2014). That being said,
a single network component can have more or less influence on
the system behavior than other network components.We suggest
that in the current study, the ACC was a key driver of system
behavior, but that this influence only occurs because the ACC is
a member of the HBN-A.

Secondary analyses were then conducted to evaluate whether
GE metrics for the resting state HBN-A, the overall brain, or the
DMN explained variance inWLwhen added to the parsimonious
model described in Table 2; that is, a model including the
combined effects of the covariates and the ACC of the HBN-A
which together accounted for 51.4% of the variance in WL.
None of these variables exceeded the criterion for entry into
the model. Furthermore, we checked to determine what would
happen if the GE of the ACC was not forced in the model
prior to the competing GE metrics. In each case, the GE of
the ACC always was selected for entry after the covariates as
oppose to the GE of the resting state, total brain, or DMN. This
adds confidence to our position that the HBN-A is an important
network in understanding WL among older, obese adults with
cardiometabolic dysfunction.

The obvious question that needs to be considered is why is
this brain signature prospectively related to WL? As a caveat,
we would like to begin by emphasizing that this is a single
study that was not mechanistic by design. As research on this
topic continues, it is important to emphasize that the regions
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of the HBN-A are all limbic or paralimbic and are important
for processing visceral sensations and for the related emotional
elaboration of these sensations (Paolini et al., 2014). Of interest is
the fact that, in the stepwise model selection of the five regions of
the HBN-A, the only other hub besides the ACC that approached
statistical significance was the insula with a p-value = 0.06. In
research by other investigators, the insula has been found to
work in concert with the ACC to translate visceral and emotional
processing into behavioral consequences and has a long history of
being implicated in eating behavior (Critchley, 2004; Rothemund
et al., 2007; Kringelbach et al., 2012; Uddin et al., 2014).
Historically, the ACC has been associated with goal-directed
behavior and attention regulation for both cognitive (dorsal
portion) and emotional processing (ventral portion) (Devinsky
et al., 1995; Bush et al., 2000; Mohanty et al., 2007; Gasquoine,
2013). Generally speaking, traditional activation studies have
shown that greater activity in the ACC is associated with obesity
(Stoeckel et al., 2008; Gearhardt et al., 2014; Jensen and Kirwan,
2015), weight gain (Mathews et al., 2012), and food addiction
(Gearhardt et al., 2011). Thus, the central role played by the ACC
within the HBN-A is not surprising.

We want to emphasize that research in this areas by other
investigators has relied on traditional activation methods, which
identify isolated brain regions that become differentially active
between tasks. The present approach used graph-theory to study
the entire brain focusing on overall patterns of connectivity.
Specifically, we used GE, a choice metric for capturing a
region’s integration or reach throughout the entire brain network
(Rubinov and Sporns, 2010); we found that WL was directly
related to the greater reach of the ACC throughout the brain
network. While it appears highly likely that important food-
related processing does occur in the ACC (Stoeckel et al., 2008;
Gearhardt et al., 2011, 2014; Mathews et al., 2012; Jensen and
Kirwan, 2015), we hypothesize that it is the ACC’s role within
the HBN-A and its ability to globally distribute this information
throughout the brain that is most important for success with
intentional WL. Integration may allow the HBN-A’s visceral
and emotional information to be shared across the brain and
to reach higher, cortical areas, potentially allowing unconscious
information to enter into conscious awareness. Global sharing
may provide individuals with superior body and emotional
awareness and improve processing capabilities that foster
adaptive self-regulatory behaviors; however, confirmation of this
hypothesis awaits further controlled study. In previous work
we found that, following recovery from a food challenge (i.e.,
visualization of food cues), individuals high in trait mindfulness
had greater GE in the insula relative to individuals lower on trait
mindfulness (Paolini et al., 2012). These individuals also have
greater perceived self-control related to eating behavior (Paolini
et al., 2012). Collectively, these data support the adaptive nature
of maintaining distributed processing throughout the brain when
exposed to food-related challenges and substantiate the work
of Cozolino (2010) and Siegel (2007) who suggest that both
horizontal and vertical brain integration is required for effective
self-regulation.

It is important to mention three studies in the literature that
have examined baseline brain activity and subsequent success

or failure during an active WL intervention (Kishinevsky et al.,
2012; Murdaugh et al., 2012; Hege et al., 2013; Weygandt et al.,
2013), although this body of evidence has not employed state-
of-the-art methods in network science. Weygandt et al. (2013)
using fMRI found that higher activity in two regions of the
frontal cortex, the VMPFC and DLPFC, during a food-related
task requiring executive function predicted subsequent WL in a
twelve-week low calorie dietary intervention (Weygandt et al.,
2013). The other two studies identified regions outside of the
frontal cortex. Murdaugh and colleagues (Murdaugh et al., 2012)
found that greater baseline ACC activation in obese individuals
was associated with less WL. Alternatively, Hege et al. (2013)
reported an opposite pattern with magnetoencephalography
(MEG). Specifically, they found that those individuals who were
successful with WL had greater baseline brain activation in right
temporal areas, including the hippocampus and the fusiform
gyrus during a one-back visual memory task with food cues than
individuals who struggled with WL. One likely reason that these
studies may be in conflict is because they used different food-cue
tasks and, therefore, were dynamically recruiting differing brain
regions.

The current study is not without limitations. Although we
feel that GE is an ideal metric for capturing the experience of
hunger and, consequently, self-regulation during WL, it would
have been ideal to replicate the findings of our original study on
the HBN-A circuit using degree (Paolini et al., 2014). We were
unable to do so for two reasons. First, as we demonstrated in that
original work, degree appears to be associated with the state of
being fed or unfed (i.e., regions of the HBN-A have higher degree
in the unfed vs. the fed condition). Unfortunately, the current
study was not designed to replicate this finding, as we did not
have a fed condition. Second, the present network analyses were
performed in native space; thus, each network had a different
number of nodes and connections making it impossible to use
the same analysis employed in the original study. In addition, we
are unable to determine if our findings were specific to the ‘‘hot-
state’’ created by food restriction. Since our participants fasted
overnight, based on findings from our previous work (Paolini
et al., 2014), we assumed that these individuals were experiencing
a ‘‘hot-state.’’ However, without a cold/fed condition, we do not
have the data to make this definitive conclusion. Future work
should compare baseline brain network integration between a
hot (i.e., fasting) and a cold (i.e., fed) condition.

In summary, after controlling for important covariates, this
study demonstrated that distributed connectivity of the ACC and
the entire HBN-A during food-cue visualization are important
determinants of WL in obese, older adults with cardiometabolic
dysfunction. The HBN-A is comprised of limbic and paralimbic
regions important in processing visceral cues and emotions, and
the ACC is a significant structure for translation of this awareness
into behavioral consequences. Further research is warranted to
examine whether a targeted intervention can improve brain
integration across the regions of the HBN-A in those who have
compromised function and whether these changes augment the
success ofWL therapy. In addition, attention needs to be directed
to long-term WL and to the problem of weight regain that
commonly follows intentional WL.
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