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Abstract

Obesity is associated with significantly higher mortality rates, and excess adipose tissue is

involved in respective pathologies. Here we established a human adipose tissue slice cul-

tures (HATSC) model ex vivo. HATSC match the in vivo cell composition of human adipose

tissue with, among others, mature adipocytes, mesenchymal stem cells as well as stroma

tissue and immune cells. This is a new method, optimized for live imaging, to study adipose

tissue and cell-based mechanisms of obesity in particular. HATSC survival was tested by

means of conventional and immunofluorescence histological techniques, functional analy-

ses and live imaging. Surgery-derived tissue was cut with a tissue chopper in 500 μm sec-

tions and transferred onto membranes building an air-liquid interface. HATSC were cultured

in six-well plates filled with Dulbecco’s Modified Eagle’s Medium (DMEM), insulin, transfer-

rin, and selenium, both with and without serum. After 0, 1, 7 and 14 days in vitro, slices were

fixated and analyzed by morphology and Perilipin A for tissue viability. Immunofluorescent

staining against IBA1, CD68 and Ki67 was performed to determine macrophage survival

and proliferation. These experiments showed preservation of adipose tissue as well as sur-

vival and proliferation of monocytes and stroma tissue for at least 14 days in vitro even in the

absence of serum. The physiological capabilities of adipocytes were functionally tested by

insulin stimulation and measurement of Phospho-Akt on day 7 and 14 in vitro. Viability was

further confirmed by live imaging using Calcein-AM (viable cells) and propidium iodide (apo-

ptosis/necrosis). In conclusion, HATSC have been successfully established by preserving

the monovacuolar form of adipocytes and surrounding macrophages and connective tissue.

This model allows further analysis of mature human adipose tissue biology ex vivo.

Introduction

The prevalence of overweight and obesity, commonly measured by a high body mass index

(BMI), is notably increasing worldwide [1]. Meanwhile, current research has identified a high
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BMI as an underlying risk factor for many severe chronic diseases [2]. Furthermore, epidemio-

logic studies provide clear evidence that, relative to normal weight, obesity is associated with

significantly higher all-cause mortality [3]. In the USA alone, a morbid BMI is responsible for

approximately 18% of all deaths in the age group of 40 to 85 year-olds [4]. Lastly, prolonged

caloric excess leads to adipose tissue remodeling and thereby to chronic inflammation includ-

ing type 2 diabetes [5,6], cardiovascular diseases [7,8], cancer [9,10], osteoporosis [11], chronic

kidney disease [12] as well as depression [13], which altogether constitute the leading causes of

disability and death in developed countries.

Although, in general, there are three different types of adipocytes differentiated (white,

brown, beige) [2], white adipose tissue seems to occur most frequently [14]. Adipose tissue is

an active metabolic and inflammatory organ [15,16]. It can emit adipokines as well as anti-

and pro-inflammatory cytokines, e.g. tumor necrosis factor (TNF) and variable interleukins

[17,18]. Connected to the chronic inflammation, leukocytosis in adipose tissue has been

observed, including macrophages [19,20], B cells [21], T cells [22], neutrophils [23], eosino-

phils [24], and mast cells [25].

Despite the apparent key role of adipose tissue in severe diseases, only few methodological

approaches are available to study its biology ex vivo. Historically, fat cells could be isolated and

first cell lines, mainly of rodent origin, were obtained [26–28]. However, these cell lines created

differentiated adipocytes with multiple lipid droplets. Most frequently used are mice embryo-

originated 3T3-L1, 3T3-F442A and C3H10T1/2 cells and DFAT-GFP cells derived from

mature adipocytes of GFP transgenic mice [26,29–32].

A monovacuolar state was not reached until the invention of the ceiling cultures by Sugi-

hara et al. in 1986. With this method adipocytes were incubated floating on top of completely

filled culture flasks [33]. However, floating adipocytes cultures rapidly dedifferentiate into

fibroblast-like cells [34–36]. Three-dimensional culture of isolated mature adipocytes and ceil-

ing culture of adipose tissue fragments were also established by Sugihara [37,38]. These meth-

ods allow to investigate proliferation, differentiation and adipocyte functions of mature

adipocytes and preadipocytes in vitro [39]. A combination of adipose tissue fragments derived

from rats in three-dimensional collagen gel was described by Sonoda et al. 2008. They make it

possible to observe regenerating preadipocytes and mesenchymal stem cells [40,41]. The first

successful experiments on the cultivation of human adipose tissue explants were published by

Smith in 1971, and recently Harms et al. published an advancement of the ceiling culture

method with mature human adipocytes [42,43]. In recent years, first tissue engineering meth-

ods for human adipose tissue have been developed [44,45].

However, interspecies discrepancies impede possible translations of research findings.

Amongst numerous obstacles, the significant negative correlations in gene regulation between

mice and humans in caloric restriction make direct comparison prone to errors [46]. Further

differences occur between sex and life stages. It could, for example, be found that the femoral

adipose tissues of premenopausal females appear to have a greater capacity for adipose expan-

sion via hyperplasia, hypertrophy, and insulin sensitivity compared to age-matched postmeno-

pausal females [47].

In addition, the place of origin affects cell composition and the extracellular matrix [48].

Especially the non-cellular structure of the extracellular matrix seems to have a major impact

on adipocyte metabolisms and is thus remodeled in diseases (e.g. in diabetes) pointing out the

complexity of adipose tissue and the shortcomings of frequently used cell culture models

[49,50].

Based on the previously established slice cultures of human tumor tissues, this study aims at

investigating whether human adipose tissue can be kept in a human slice culture system model

[51–54].
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Materials and methods

Tissue samples

This study has been approved by the Ethical Committee at the Medical Faculty, Leipzig Uni-

versity (#290-13-07102013). All patients declared their informed consent in written form. Sub-

cutaneous AT was obtained from the Department of Orthopedics, Trauma Surgery, and

Plastic Surgery (University Hospital Leipzig, Germany). ATs were derived from abdomen,

dorsum, mamma, pelvis and thigh (Table 1). The samples were transported in sterile Hanks’

Balanced Salt Solution (HBSS, Gibco, Life Technologies, Carlsbad, USA) or DMEM (Gibco)

and were processed within one to six hours after dissection.

Preparation of slice culture

AT samples were dissected into 5 x 5 x 10 mm pieces and cut by a tissue chopper (Mc Ilwain,

Redding, USA) in 350, 500, and 750 μm thick slices. Subsequently, slices were transferred onto

cell culture inserts with a pore size of 0,4 μm (Millipore, Merck, Darmstadt, Germany) placed

in six-well plates (Corning, New York, USA), and cultivated on a liquid-air-interface in a

humidified incubator at 35 ˚C and 5% CO2 (Fig 1). Each well contained 1 ml culture medium

under the membrane inserts supplying the tissue via diffusion. The basic culture media con-

sisted of DMEM, insulin-transferrin-selenium mixture (1:100, ITS, Sigma Aldrich, Saint

Louis, USA), and Penicillin/Streptomycin (1:100, PenStrep, Gibco). Fetal bovine serum (1:10,

Table 1. Adipose tissue samples.

Sample Origin Indication of surgery Age [years] Sex BMI [kg/m2] Secondary diagnoses Medium Max. Period [days]

#001 Abdomen Postbariatric 55 male 29 HT, HU, NIDDM, O I, II, III 14

#002 Mamma Gynecomastia 21 male 32 - I, II, III 14

#003 Abdomen Postbariatric 70 female 34 CAD, NIDDM I, II, III 14

#004 Abdomen Postbariatric 59 male 40 CAD, HT, HU, PHT, T2D I, III 14

#005 Mamma Gynecomastia 17 male 27 PHT I, III 14

#006 Dorsum Postbariatric 34 male 58 HT I, III 14

#007 Thigh Postbariatric 62 female 31 HT I, III 21

#008 Dorsum Postbariatric 42 female 30 DL, HT, NIDDM I, III 14

#009 Mamma Macromastia 36 female 24 - I, III 14

#010 Dorsum Postbariatric 25 male 36 - I, III 14

#011 Abdomen VRAM flap 57 male 25 CKD, PAD I, III 14

#012 Abdomen Postbariatric 52 female 31 PHT I, III 14

#013 Abdomen Postbariatric 52 male 29 CAD, DL I, III, IV, V, VI 14

#014 Abdomen Postpartum 32 female 22 - I, III, IV, V, VI 14

#015 Abdomen Postbariatric 41 female 29 - I, III, IV, V, VI 14

#016 Abdomen Postbariatric 47 female 30 NIDDM, PHT I, III, IV 14

#017 Thigh Postbariatric 46 male 26 - I, III 14

#018 Abdomen Postbariatric 33 male 35 HT I, III 14

#019 Pelvis Sarcoma 37 male 23 - I, III 14

#020 Dorsum Sarcoma 77 male 28 COPD, HT, HU, PHT I, III, IV 14

#021 Thigh Sarcoma 47 female 41 MS, PHT I, III, IV 14

#022 Pelvis Exostosis 23 male 22 - I, III, IV 14

Coronary artery disease (CAD), chronic kidney disease (CKD), chronic obstructive pulmonary disease (COPD), dyslipidemia (DL), hypertension (HT), hyperuricemia

(HU), multiple sclerosis (MS), non-insulin-dependent diabetes mellitus (NIDDM), osteoporosis (O), peripheral artery disease (PAD), primary hypothyroidism (PHT),

insulin-dependent type 2 diabetes mellitus (T2D), vertical rectus abdominis myocutaneous (VRAM).

https://doi.org/10.1371/journal.pone.0233152.t001
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FBS, Gibco) or human tumor necrosis factor alpha (50 ng/ml, TNFα, Pepro Tech, Rocky Hill,

USA) were added (Table 2). The culture media were changed first after 24 hours, subsequently

every 48 hours. Pictures were taken with an Olympus SZ61 Stereomicroscope (Olympus,

Tokyo, Japan). Slices, which were fixed at the preparation day, were labeled as day 0. Each cul-

ture time point was compared with day 0 and is represented by an individual slice.

Live imaging

15 minutes prior to imaging the media were removed and replaced by basic culture media con-

taining fluorescent dyes: Hoechst 33342 (Nuclei, 1:1000, Sigma Aldrich), propidium iodide

(apoptosis/necrosis, 1:1000, PI, Calbiochem, Darmstadt, Germany) and Calcein-AM (unspe-

cific metabolism 1:200, Life Technologies). Pictures for 3D reconstruction or videos were

taken with an Olympus IX81 confocal microscope (FV1000, Olympus) equipped with a

humidified incubator and a motorized stage. During the imaging procedure, inside tempera-

ture was adjusted to 35 ˚C, 5% CO2, and 60% humidity.

Fig 1. Experimental setup. Tissue samples were derived from orthopedic, trauma and plastic surgeries. A—Tissue was

transported in sterile culture medium into the lab. B—Samples were cut into 500 μm thick slices by a tissue chopper. C

& D—The slices were incubated on top of filter membrane inserts on a liquid-air-interface in a humidified incubator.

On defined points of time specimens were live imaged or fixed.

https://doi.org/10.1371/journal.pone.0233152.g001
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Tissue analysis

At 0, 1, 7 or 8, and 14 days in vitro (DIV), slices were fixed over-night in 4% paraformaldehyde

(PFA) prior to paraffin embedding. Paraffin sections (10 μm) were cut, dewaxed in xylene,

dehydrated in decreasing alcohol series, and stained with hematoxylin/eosin (H/E) for conven-

tional histology. Pictures were taken using an optical microscope, Axioplan 2 (Carl Zeiss,

Oberkochen, Germany). In order to establish immunofluorescence, sections were pretreated

with citrate buffer (pH 6) in a microwave for 10 minutes and antibodies were incubated over-

night at 4 ˚C in 1,5% Triton/PBS with 0,5% bovine serum albumin (BSA, Sigma Aldrich) and

10% normal goat serum or normal donkey serum (NGS or NDS, Jackson Immuno Research,

West Grove, USA). To observe proliferation, antibodies against Ki67 (1:400, rabbit, DCS,

Hamburg, Germany) were used. Apoptosis was detected by staining for activated Caspase-3

(1:300, rabbit, Cell Signaling, Cambridge, United Kingdom). Macrophages were labeled using

Anti-IBA1 (1:500, rabbit, Wako, Osaka, Japan; 1:500, guinea pig, Synaptic Systems, Göttingen,

Germany) or Anti-CD68 (1:100, mouse, DAKO, Agilent, Santa Clara, United States). Viability

of adipocytes was visualized using Perilipin A (1:500, rabbit; 1:250, goat, both Abcam, Cam-

bridge, United Kingdom). The sections were washed and incubated at room temperature with

secondary antibodies for one hour (1:500, goat-anti-rabbit Alexa 488/568; 1:500, goat-anti-

guinea pig Alexa 488; 1:250, donkey-anti-rabbit Alexa 488; 1:250, donkey anti-goat Alexa 568,

all Life Technologies). Nuclei were counterstained using Hoechst 33342 (1:10.000, Sigma-

Aldrich). Pictures were taken using a fluorescence microscope BX40 (Olympus) or a LSM 710

(Carl Zeiss). In order to compare the cell size between conditions, the cross-section area of 20–

60 adipocytes of each H/E stained section per condition of four experiments (#009, #010, #011

and #021) was measured manually using ImageJ (Version 1.8.0).

Western blot

48 hours prior to the experiment, adipocyte tissue cultures were serum starved overnight by

changing medium to serum and insulin free medium. To determine Akt phosphorylation, adi-

pocytes were stimulated with insulin (10 nM), diluted in pre-warmed serum free medium for

15 min. Separation of membranes and cytosol was performed by a protocol modified from

Nishiumi and Ashida [55]. Briefly, adipocyte cultures were collected in buffer A (50 mmol/l

Tris, 0.5 mmol/l dithiothreitol, adjusted to pH 8.0 and 1% phenylmethylsulfonyl fluoride

(PMSF), 10 mM sodium orthovanadate and 1% Sigma protease inhibitor cocktail freshly

added) and stored at -80 ˚C until further analysis. Western blot analysis was performed as

described earlier [56]. Blots were incubated with Phospho-Akt (1:1000, Cell Signaling) at 4 ˚C

overnight. Immunoreactions were detected with the appropriate peroxidase-conjugated anti-

Table 2. Culture media.

Condition Basic Medium Serum Other contents Addition

I DMEM 0% FBS ITS, PenStrep

II DMEM 5% FBS ITS, PenStrep

III DMEM 10% FBS ITS, PenStrep

IV DMEM 0% FBS ITS, PenStrep TNFα

V DMEM 0% FBS ITS, PenStrep K+

VI DPBS 0% FBS ITS, PenStrep

Dulbecco’s Modified Eagle’s Medium (DMEM), Dulbecco’s phosphate-buffered saline (DPBS), fetal bovine serum (FBS), insulin-transferrin-selenium mixture (ITS),

Penicillin/Streptomycin (PenStrep), human tumor necrosis factor alpha (TNFα), potassium ion (K+).

https://doi.org/10.1371/journal.pone.0233152.t002
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rabbit IgG secondary antibody (1:5000 for phospho-specific antibodies; Vector Laboratories,

Peterborough, UK) at room temperature for 2 h. Peroxidase activity was visualized with an

enhanced chemiluminescence kit (Amersham, Pharmacia, Freiburg, Germany). In addition,

blots were stripped and incubated with pan-Akt antibody (1:3000, Cell Signaling) followed by

a secondary antibody (1:10000, anti-rabbit IgG, Vector Laboratories). In addition, blots were

stripped and incubated with anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

monoclonal antibody (diluted 1:100000, Research Diagnostics, Flanders, Netherlands) fol-

lowed by the anti-mouse IgG secondary antibody (1:10000, Vector Laboratories). GAPDH

antibodies were used as a loading control. Semiquantitative evaluation of arbitrary unit was

performed with the ImageJ plugin for western blot analysis.

Statistical analysis

One-way-ANOVA with Bonferroni correction was performed using GraphPad Prism 6

(GraphPad Software, Inc., La Jolla, USA). P<0.05 was considered significant.

Results

Adipose tissues were derived from nine abdominal, four dorsal, three breast, three pelvic, and

three limb surgeries (Table 1) and were kept in culture for up to 14 days. The tissue donors

were 43,9 years (SD ±15,9) old on average, had a BMI of 31,0 kg/m2 (SD ±8,0) on average, and

40,9% were female. In 14 cases, the patients had secondary diagnoses (Table 1). Tissue were

transferred from surgery and cut on a tissue chopper between 1 and 6 hours after removal (Fig

1). Pioneering experiments investigating the optimal thickness for cultivation showed that

500 μm were ideal for tissue preparation and handling. 350 μm thick slices often collapsed dur-

ing the preparation process while 750 μm slices proved difficult to embed into paraffin for fur-

ther histological analysis. 500 μm thick slices maintained approximately five to seven cell

layers and all layers were well preserved during cultivation.

Tissue integrity was macroscopically well preserved up to 14 DIV and adipocyte appearance

did not change (Fig 2). Tissue slices cultivated with 10% FBS (Table 2, III) showed minor slice

shrinkage (Fig 2B, 2E, 2H and 2K). To induce distinct tissue damage, TNFα was supplemented

to serum-free media provoking cell death (Figs 2C, 2F, 2I, 2L and 4).

Histological analysis of H/E staining’s demonstrated the well-maintained characteristics of

AT (Fig 3). The cross-section area of adipocytes increased under TNFα supplementation,

while no measurable difference was observed between the two different culture media between

0 and 14 DIV (Fig 3). Slices cultivated without serum supplementation (I, Table 2) maintained

their cellular composition up to 14 DIV. In medium supplemented with serum, stroma tissue

appeared to expand, but no obvious discrepancy could be observed between conditions with a

dose of 5% FBS (II, Table 2) as compared to 10% FBS (III, Table 2) (S1 Fig). Taking into con-

sideration the high serum doses used in previous experiments (e.g. 15% FBS [57]), 10% FBS

was used for our further experiments.

Viability of adipose cells was determined via immunofluorescence with antibodies against

Perilipin A (Fig 4). No obvious differences between the endpoints of the standard conditions I

and III (Table 2) could be observed. Homogeneous expression of the lipid droplet surface pro-

tein in both conditions proved the survival of adipocytes in slice cultures for 14 days. As a posi-

tive control for cell death, TNFα was added to the medium (IV, Table 2; Fig 4D). Thus,

positive controls confirmed the predictive validity of Perilipin A. To further investigate func-

tion of adipocytes the phosphorylation of Akt, a key step in insulin signaling, was investigated

after 15 min of insulin stimulation. After 7 and 14 DIV the phosphorylation of Akt remains

low in the control condition, whereas the insulin condition shows an enhanced expression of
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phosphorylated Akt (Fig 5A & 5B). Using antibodies against IBA1 and CD68 revealed viability

of macrophages. Some CD68-positive macrophages were co-localized with Ki67, proving pro-

liferation processes on 14th DIV (Fig 6, Circle).

In live imaging analyses medium with Calcein-AM was added 15 minutes prior to taking

pictures. The non-fluorescent Calcein-AM diffused through cell membranes, intracellular

Fig 2. Macroscopic development of adipose tissue under different culture conditions. On defined points of time in

each case the same slice was photographed using a Zeiss Stereomicroscope. A to C—0th DIV. D to F—1st DIV. G to I—

8th DIV. J to L—14th DIV. Left column—0% FBS. Middle column—10% FBS. Right column—TNFα.

https://doi.org/10.1371/journal.pone.0233152.g002
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Fig 3. Tissue analysis. A—No measurable difference in the cross-section area of adipocytes in medium with and

without 10% FBS, but TNFα supplementation increased the cross-section area of adipocytes (y-axis in μm2).

Morphological analysis was performed via H/E staining and showed well-sustained AT. B—0th DIV. C & D—7th DIV.

E & F—14th DIV. Left column—0% FBS. Right column—10% FBS.

https://doi.org/10.1371/journal.pone.0233152.g003
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esterases hydrolyzed the acetoxymethylester-group, and the fluorescent Calcein accumulated

in cell plasma [58]. This activating process could be shown in vital adipocytes and stroma cells

on day 7 and 14 in vitro (Fig 7, S1 Video). However, exposing the tissue to laser light provoked

a positive control cellular death of both adipocytes and stroma cells after prolonged exposure

(S2 Fig, S2 Video).

Discussion and conclusion

Organotypic slice cultures of human adipose tissue maintained their morphological character-

istics and their metabolism for up to 14 days in culture. It can thereby be concluded that

HATSC provides a platform to investigate human adipose tissue in a controlled ex vivo setting

with little ethical constraints.

Morphological analysis of H/E staining’s cannot discriminate viable adipocytes from dead

adipocytes; The distinction between living and dead adipocytes (lipid droplets with or without

Fig 4. Viability of adipose cells. Viability was determined via immunofluorescence and insulin stimulation.

Antibodies against Perilipin (red) and monocytes were shown with IBA1 (green). Cell nuclei were counterstained

(Hoechst 33342, blue). A—0th DIV. B to D—8th DIV. E & F—14th DIV. Left column—0 % FBS. Middle column—10 %

FBS. Right column—human TNFα.

https://doi.org/10.1371/journal.pone.0233152.g004
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cell nuclei) cannot be made on the basis of cell nuclear morphology. In histologic standard sec-

tions (approx. 10 μm) of normal-sized adipocytes (approx. 50–150 μm) their small nucleus is

not necessarily part of the histological section. Therefore, the state of a given adipocyte cannot

always be judged in the basis of its morphology (e.g. euchromatic, pyknotic, fragmented).

Studies in the literature on changes in the cell volume of adipocytes as a distinguishing feature

of vitality or apoptosis/necrosis of adipocytes do not exist. Jo et al. did not find an alteration in

cell volume during apoptosis, using mathematical models [59]. They could show that under

prolonged weight-loss conditions large adipocytes shrink, but at the same time the smaller adi-

pocytes die first [60]. A faster cell death of the small adipocytes could lead to an increase in the

average cell volume, even if the large adipocytes themselves shrink. In a human study, Verbo-

ven et al. could show that people with obesity, i.e. those with an increased inflammation in

fatty tissue, have more large and very large adipocytes, although they have an increased basal

lipolysis [61]. They attribute this to a decrease in the number of small adipocytes. Both pro-

cesses, early cell death of small adipocytes and the slow shrinkage of large adipocytes could

explain the total increase in adipocyte surface area of the TNFα condition that was observed in

the present study (see Fig 3A).

The survival of adipocytes was demonstrated by immunofluorescence staining and the via-

bility of adipose tissue by live imaging and functional experiments. Perilipins are lipid droplet-

associated proteins and their phosphorylation is essential in lipolysis. Perilipin A is a known

marker for viability of adipocytes and has been used in immunological research [62–66].

Using our own experiments, we were able to confirm the sensitivity of Perilipin A as a viability

marker of adipocytes (see Fig 4A and 4D).

Pathological remodeling of adipose tissue includes hypertrophy, accumulation of immune

cells such as macrophages, decreased capillary density, and fibroblast activation [67]. There is

some evidence that adipose tissue is able to control local regulation and proliferation of macro-

phages independently of the influx of blood precursors, but no evidence currently exists sup-

porting the role of local myelopoiesis in adipose tissue [68–72]. The preservation of

macrophages in HATSC was displayed with immunofluorescence staining with IBA1 and

CD68. Both antibodies were selected for their wide distribution in the study of macrophages in

adipose tissue [73,74]. Even the local proliferation in the absence of blood could be

Fig 5. Protein expression in HATSC. Tissue cultured with and without 10% FBS on 7th and 14th DIV. A—Representative western

blot for Phosphor-Akt, pan-Akt and GAPDH. B–Quantitative analysis (n = 4) of the protein expression levels normalized to pan-

Akt. From four individual donors, three slices were used for each condition and time point for the analysis.

https://doi.org/10.1371/journal.pone.0233152.g005

PLOS ONE Viability of human adipose tissue slice culture

PLOS ONE | https://doi.org/10.1371/journal.pone.0233152 May 26, 2020 10 / 17

https://doi.org/10.1371/journal.pone.0233152.g005
https://doi.org/10.1371/journal.pone.0233152


demonstrated on DIV 14 in human adipose tissue, where CD68-positive macrophages were

co-localized with Ki67 (Fig 6).

Live-imaging was used to further study the formation of crown-like structures consisting of

proliferating macrophages around dying adipocytes in murine adipose tissue [75,76]. The

results show that such experiments could also be performed in human tissues. In a rodent

study by Weisberg et al. TNFα was shown to be distributed by macrophages and not by adipo-

cytes as part of the stroma-vascular fraction during inflammation and diabetes [19,77]. Con-

trary to this, human adipocytes have the potential to secrete TNFα, thus signaling to immune

cells [78–80]. Such potential species differences can now be worked out. Moreover, studying

human adipose tissues from individuals with different BMI with and without type II diabetes

might help to better understand how inflammation and oxidative stress drives insulin resis-

tance, arteriosclerosis, angiogenesis, as well as cancer [81–84]. This can be concluded since the

open access of the system allows for studies of the accumulation of (secreted) molecules in the

medium. The large number of standardized samples which can be prepared from small probes

Fig 6. Proliferation and inflammation. Proliferation and inflammation in abdominal tissue were determined via

immunofluorescence with antibodies against Ki67 (green) and CD68 (red). Cell nuclei were counterstained (Hoechst

33342, blue). A & B—7th DIV. C & D—14th DIV. Left column—0% FBS. Right column—10% FBS. Circle triple

positive cell -> Proliferating macrophage.

https://doi.org/10.1371/journal.pone.0233152.g006
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further enables the investigation of therapeutics, targeting essential biochemical pathways,

drug accumulation, and modern pharmaceutics for gene therapy [85].

In conclusion, slice cultures derived from human adipose tissue have been successfully

established whereas the unique monovacuolar shape of the adipocytes as well as the complex

organization of the tissue could be maintained. Hence, this method serves as a confirmation of

the current findings about rodent adipose tissue while it allows to further dissect its biology in

the human system.

Supporting information

S1 Fig. Analysis of different culture media. Analysis was performed via H/E staining. Top

row—0% FBS, middle row—5% FBS and bottom row—10% FBS. A, C, E– 1st DIV. B, D, F—

8th DIV. The adipose tissue slice cultures maintain most of their morphologic properties, but

high serum concentrations increased the fibrocyte fraction.

(TIF)

S2 Fig. Live imaging of slice cultures on DIV 0. Viability and death of cells were determined,

directly after preparation of slice cultures in basic media without serum, via Calcein-AM (cell

metabolism, green) and propidium iodide (apoptosis/necrosis, red), e.g. arrows. A to C—60

min; D to F—180 min; H to J—300 min after laser exposure.

(TIF)

S1 Video. Live imaging of slice cultures on 7th DIV (0% FBS). Viability and death of cells

were determined via Calcein-AM (cell metabolism, green) and propidium iodide (apoptosis/

necrosis, red).

(AVI)

S2 Video. Live imaging of slice cultures on 0th DIV. Viability and death of cells were deter-

mined via Calcein-AM (cell metabolism, green) and propidium iodide (apoptosis/necrosis,

Fig 7. Live imaging of slice cultures on DIV 14. Viability and death of cells were determined via Calcein-AM (cell

metabolism, green) and propidium iodide (apoptosis/necrosis, red). A– 14th DIV, 10% FBS. B– 14th DIV, TNFα. Calcein

positive cytoplasm of adipocytes exemplarily marked with arrows.

https://doi.org/10.1371/journal.pone.0233152.g007
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red), directly after preparation of slice cultures in basic media without serum.

(AVI)
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