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Review

The immune system consists of two evolutionarily diver-
gent arms: the sophisticated and specific adaptive immunity 
and the more generic innate immunity. Although the adaptive 
immune system confers long lasting and protective immunity, 
it takes several weeks to develop a sustained response and the 
majority of organisms lack this acquired immune system.1 The 
innate immune system on the other hand, involves a popula-
tion of cells and signaling pathways that constitutively func-
tion to respond rapidly to pathogens at the site of infection. 
Innate immune system thus forms the first line of defense, sup-
pressing pathogens or keeping them at bay before the adaptive 
immune system takes over. This primitive form of immunity 
is present across multicellular organisms as disparate as nem-
atodes, f lies and vertebrates.2 However, not all innate immu-
nity signaling pathways are conserved among metazoans, the 
nuclear factor kappa-light-chain-enhancer of activated B cells 
(NFκB) pathway is conserved in vertebrates and flies but not 
worms whereas the mitogen-activated protein kinases (MAPK) 

pathway is conserved among all the three. The focus of this 
review will be on innate immunity, particularly on “effector 
triggered immunity” (ETI), a process by which bacterial toxins 
or secreted proteins initiate a protective immune response in the 
host. During infection, pathogens secrete a broad array of viru-
lence factors called “effector proteins”, which subvert the host 
cellular processes, including hijacking cytoskeletal machinery, 
blocking translation and suppressing the immune response.3,4 
Non-professional immune cells such as epithelial cells depend 
on ETI to respond quickly and robustly to pathogens, especially 
since these cells are constantly exposed to a barrage of microbes 
including those that form the microbiota. In contrast, profes-
sional immune cells like macrophages, which normally reside 
inside tissues, are less dependent on ETI and respond against all 
microbes that violate the sanctity of the tissues, irrespective of 
whether or not they are pathogenic. However, studies done on 
macrophages infected with Legionella pneumophila also suggest 
that TLR signals and ETI activation possibly work in concert 
as a two-signal infection response, which leads to transcrip-
tional upregulation of cytokines and activation of the adaptive 
immune system.5,6

Detection of Pathogens by the Host

The cells of the innate immune system rely on their pattern 
recognition receptors (PRR) to recognize conserved pathogen-
associated molecular patterns (PAMPs) and microbe-associated 
molecular patterns (MAMPs) such as microbial nucleic acids, 
lipoproteins, and carbohydrates that are expressed only in 
pathogens and not in the host.7 PRRs can be categorized into 
four families, Toll-like receptors (TLRs), C-type lectin receptors 
(CLRs), (RIG)-I-like receptors (RLRs), and NOD-like recep-
tors (NLRs).8 TLRs, the best characterized receptors among the 
PRRs, are transmembrane proteins that recognize lipoprotein, 
lipopolysaccharide, double stranded RNA, and other ligands 
associated with diverse pathogens such as bacteria, viruses, and 
protozoa.9,10 RLRs and NLRs are localized to the cytoplasm and 
recognize viral nucleic acids and bacterial peptides. PRRs can 
also recognize cellular damage by binding with products of cel-
lular and tissue degradation, or damage-associated molecular 
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Pathogenic bacteria produce virulence factors called 
effectors, which are important components of the infection 
process. effectors aid in pathogenesis by facilitating bacte-
rial attachment, pathogen entry into or exit from the host cell, 
immunoevasion, and immunosuppression. effectors also have 
the ability to subvert host cellular processes, such as hijacking 
cytoskeletal machinery or blocking protein translation. How-
ever, host cells possess an evolutionarily conserved innate 
immune response that can sense the pathogen through the 
activity of its effectors and mount a robust immune response. 
This “effector triggered immunity” (eTi) was first discovered in 
plants but recent evidence suggest that the process is also well 
conserved in metazoans. we will discuss salient points of the 
mechanism of eTi in metazoans from recent studies done in 
mammalian cells and invertebrate model hosts.
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patterns (DAMPs).11 Damaged or necrotic cells release factors 
such as high mobility group box-1 (HMGB1), serum amyloid 
A (SAA), and S100A8, which initiate an immune response by 
engaging TLRs.12-14 DAMPs trigger formation of inflamma-
somes, which are multimeric protein complexes consisting of 
caspase 1. Inflammasome formation results in caspase 1 activa-
tion, followed by the activation of cytokines IL-1β and IL-18, 
which induce inflammation.15 Binding with ligands activates 
the PRRs, which oligomerize and trigger a defense response 
including activation of NFκB, IRF, and MAPK pathways, sig-
naling the presence of an infection (Fig. 1). This signaling cas-
cade leads to secretion of antimicrobial peptides and attracts 
cells of the innate and adaptive immune system.16

Beneficial microbes, including commensal bacteria, also pos-
sess MAMPs. Therefore, mounting an immune response specifi-
cally against harmful pathogens is dependent on the recognition 
of both the pathogen and the associated host cell damage caused 
by the pathogen, through MAMPs and DAMPs respectively.11 
A decision checkpoint used by phagocytes before amplifying an 
immune response is the detection of live intracellular bacteria. 
Following phagocytosis, bacterial mRNA is released only by live 
bacteria, which is detected by cytosolic PRRs, signaling microbial 
life to the innate immune system.17 Non-professional immune 
cells such as intestinal epithelial cells, which are constantly 
exposed to microbes, detect the presence of pathogens through 
their cytosolic PRRs and by a polarized distribution of PRRs at 

Figure 1. effector triggered immunity (eTi). eTi can be triggered by toxins that are either directly injected into the host by bacterial secretion systems 
or internalized from the extracellular environment by endocytosis. effectors are directly capable of triggering an immune response through transcrip-
tional regulation. effectors can also disrupt cellular processes such as protein translation and cytoskeletal remodeling, which will trigger an immune 
response. Some bacterial effectors activate Rho-GTPases, which facilitate bacterial entry and can also trigger eTi. Pore-forming toxins form membrane 
channels, and the resulting influx/efflux of ions also triggers a protective response.
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the apical and basolateral surfaces. Activation of the PRRs in the 
cytosol or the basolateral surface will indicate an epithelial cell, 
or cell surface breach, and attract professional immune cells.18 
Pathogens have evolved multiple strategies to avoid detection by 
modifying MAMPs or subverting PRR signaling.19 Therefore, a 
rapid immune defense response can be initiated from also moni-
toring for perturbations in a few core pathways and essential 
cellular activities, which enables the host to indirectly sense the 
pathogen instead of evolving specific PRRs for each pathogen or 
damage-associated molecule.

Effector Triggered Immunity

The defense phenomenon ETI was first observed in plants 
and our understanding of this phenomenon has evolved start-
ing from the “gene-for-gene theory”, which describes the associa-
tion between plants and their pathogens through the interaction 
of pathogen-derived avirulence (Avr) genes and plant derived 
resistance (R) genes.20 Bacterial effectors are secreted by six dis-
tinct secretion systems classified as Type I–VIII.21,22 Pathogenic 
bacteria deliver their effectors into the plant cells through the 
type III secretion systems (TTSS) to interfere with plant PAMP-
triggered immunity (PTI) and facilitate pathogen survival and 
dispersal. Plants respond to these challenges by activation of ETI, 
which triggers release of antimicrobial molecules and hydrolytic 
enzymes and causes encasement of pathogens and deposition of 
callus at the infection site.23 For many years, ETI was also spec-
ulated to exist in animals, but the cellular mechanisms of ETI 
activation in metazoans have only just been identified in recent 
decades.5,24-34 In contrast to the fairly straightforward system for 
ETI activation in plants, ETI in metazoans can be more broadly 
defined to encompass host response to cellular damage and to 
bacterial virulence factors (including effectors) that manipulate 
central host processes, independent of PAMP and MAMP recog-
nition. ETI in metazoans is triggered by the activation of MAPK 
and NFκB signaling pathways and there are several excellent 
reviews describing the downstream effect of this activation.35-37

Blockade of Protein Translation

During an infection, bacterial pathogens cause damage to 
host cells either directly through their toxins or indirectly by elic-
iting an adverse immune reaction. The host responds to these 
challenges by initiating a damage response to maintain cellular 
integrity and an immune response to restrict bacterial growth.38,39 
Bacterial effectors and toxins can blunt these responses by block-
ing several steps of the host translation machinery.40 However, 
blockade of protein translation activates ETI and augments the 
initial immune response (Fig. 1). Legionella pneumophila invades 
macrophages by translocating over 200 effectors into the host 
cell through the type IV secretion system to create an intracel-
lular niche ideal for the pathogen to survive and replicate.41,42 The 
effectors Lgt1, Lgt2, Lgt3, SidI, and SidL inhibit host transla-
tion through inactivation of the host elongation factor eEF1a, 

which activates the NFκB pathway and promotes transcrip-
tion of stress response genes and pro-inflammatory cytokines.32 
Infection of macrophages with L. pneumophila also activates the 
MAPK pathway.43 Further insights into the effect of transla-
tional inhibition on innate immunity was gained from studies 
done in Caenorhabditis elegans, which has emerged as a popu-
lar model for studying host-pathogen relationship and drug dis-
covery.44,45 RNAi-mediated disruption of translation and other 
essential processes in C. elegans was reported to induce expression 
of innate immune response genes.46 In C. elegans infected with 
Pseudomonas aeruginosa, bacterial exotoxin ToxA is internalized 
by host cells through endocytosis. ToxA blocks translation by 
inhibiting the host elongation factor 2 (EF-2), triggering expres-
sion of the transcription factor ZIP-2, which elicits a protective 
transcriptional response.30,31,47

In contrast to the above studies, intracellular pathogens such 
as Shigella flexneri and Salmonella Typhimurium are not known 
to translocate toxins that directly block host translation. Instead, 
they cause an overall downregulation of protein synthesis. 
Infection of epithelial cells with S. flexneri triggers acute amino 
acid starvation. The resulting induction of the amino acid stress 
pathway triggers the activation of the GCN2, eIF2α, and ATF3-
dependent reprogramming of the transcriptional response in 
response to invasive pathogens.48 Infection with S. Typhimurium 
also triggers a similar, albeit transient amino acid stress response, 
suggesting that the pathogen has evolved strategies to subvert 
host metabolic stress response pathways. Amino acid starvation 
can also trigger autophagy, a highly conserved cellular process 
that is turned on during starvation stress.49 Autophagy func-
tions to recycle damaged cellular organs and complexes in order 
to maintain levels of essential nutrients such as amino acids.50 
Activation of autophagy response against bacteria (xenophagy), 
and the subsequent activation of the amino acid starvation path-
ways, represents an important link between innate immunity and 
metabolic pathways.

Reorganization of the Host Cytoskeleton

The eukaryotic cytoskeleton plays a pivotal role in several 
cellular processes, including endocytosis, adhesion, migration, 
phagocytosis, and formation of the immunological synapse.51-54 
Genetic mutations, such as those causing Wiskott Aldrich syn-
drome, affect cytoskeletal regulation and lead to immune defi-
ciency due to impaired function of phagocytes.55-58 Pathogenic 
bacteria have evolved multiple strategies to manipulate the host 
cytoskeleton to facilitate intercellular entry and tissue invasion.59 
In addition, pathogens have evolved effectors that manipulate 
the host cytoskeleton to facilitate evasion from the host immune 
response. In fact, a large number of bacterial effectors have been 
identified that have an immune inhibitory activity.60 However, 
when pathogens interfere with the host cytoskeleton for the pur-
pose of immune-evasion, paradoxically, they can also trigger an 
immune response against the pathogen (Fig. 1). For example, the 
type III secretion system in pathogenic Yersinia spp. translocates 
the Yop effectors across the eukaryotic plasma membrane and 
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into the cytosol, where they disrupt key functions of the host 
cell.61 YopJ inhibits MAPK kinases and MAPKK kinases and 
also activates Caspase-1, which disrupts the intestinal barrier 
and promotes dissemination of the bacteria.28 YopE paralyzes 
the phagocytic functions in macrophages by disrupting the actin 
microfilament structure.62 The treatment of cultured intesti-
nal epithelial cells with cytochalasin D or latrunculin B, which 
disrupts the actin cytoskeleton, can cause activation of the p38 
MAP kinase and NFκB pathways, showing that subversion of 
the host actin cytoskeleton components can activate an immune 
response.63 This was further evident from studies on the effect 
of Clostridium difficile toxin A on colonic CaCo-2 cells.64 Toxin 
A causes disruption of the actin cytoskeleton by monoglucosyl-
ation of Rho-GTPases Rho, Rac, and Cdc42, which triggers 
transcriptional upregulation of the p38 MAP kinase pathway. 
Additionally, Salmonella Typhimurium binds to the surface of 
epithelial cells and uses type III secretion system effectors to 
cause a burst of actin polymerization, which induces membrane 
ruffling and facilitates bacterial entry into the host cell.65 The 
Salmonella effectors SopE, SopE2, and SopB trigger these events 
by activating the Rho-GTPases of the host cell in a redundant 
manner, which in turn can cause a defense response by activat-
ing the MAPK and NFκB signaling cascade.29 The CNF1 toxin 
produced by E. coli is another example of a bacterial protein, 
which activates Rho-GTPase and can elicit activation of immune 
pathways.66 Interestingly, studies done in Drosophila and mam-
malian cells suggest that CNF1 is not injected into the host cell 
but internalized by receptor-mediated endocytosis into the cyto-
sol, where it covalently modifies the Rho-GTPase Rac 2, trigger-
ing protective immunity by activating the Rip kinase signaling 
pathway.34,67 Enteropathogenic E. coli (EPEC) and enterohemor-
rhagic E. coli (EHEC) use the type III secretion system to trans-
locate the WxxxE effectors Map, EspM, and EspT into the host 
cell. These effectors subvert the actin cytoskeleton by mimick-
ing guanine nucleotide exchange factors (GEFs) for activation 
of Rho-GTPases, which in turn triggers the MAPK and NFκB 
pathways.68

Pore Forming Toxins

Bacterial pathogens produce virulence factors called pore-
forming toxins (PFTs), which attack the cellular membranes 
of eukaryotic cells. Host proteases recognize and cleave PFTs, 
which aggregate into oligomeric structures that insert into the 
membrane to form ionic pores (Fig. 1).69 At high concentrations, 
PFTs cause rapid death of the host cell due to membrane disrup-
tion, leakage of intracellular contents and lysis. However, when 
PFTs are present in low, sublytic concentration, host cells respond 
to the damage by activating the ETI response, as seen from stud-
ies done in C. elegans and mammalian cells.25,26,70,71 Exposure 
to PFTs can lead to the activation of NFκB and MAPK path-
ways, in addition to the unfolded protein response (UPR) and 
increased autophagy. In epithelial cells, osmotic stress induced by 
membrane destabilization leads to phosphorylation of p38 MAP 

kinase. Relieving the osmotic stress by addition of dextran or 
cellulose can block phosphorylation and activation of p38 MAP 
kinase.72 The mechanism of activation of immune pathways pos-
sibly involves the efflux of potassium ions, as well as an influx 
of calcium ions73,74 Treatment of chinese hamster ovary (CHO) 
cells with aerolysin, a toxin produced by Aeromonas hydrophilia, 
induces K+ efflux, which subsequently leads to activation and 
assembly of caspase-1 inflammasome.26 Caspase-1 then induces 
the activation of the sterol regulatory element binding proteins 
(SREBPs), which in turn activate the MAPK pathway.75 A role 
for K+ efflux was similarly proposed for activation of p38 MAPK 
in HaCaT cells treated with Staphylococcus aureus α-toxin, in 
which case the immune activation could be neutralized by high 
concentrations of extracellular K+.73 Mammalian cells subjected 
to mechanical stress, or toxin-mediated plasma membrane insult 
cause Ca2+ influx, which triggers a rapid repair process.76 The 
repair mechanism possibly involves both removal of the damaged 
area and resealing the membrane by a combination of endocyto-
sis and exocytosis. C. elegans exposed to low doses of the Bacillus 
thuringiensis toxin Cry5B, resulted in transcriptional upregulation 
of the genes in the JNK and MAPK pathways.25 The involvement 
of these pathways in host defense was further demonstrated when 
C. elegans strains defective in these pathways were more suscep-
tible than the wild type strain to exposure to low doses of Cry5B. 
A similar response was seen when nematodes were treated with 
the B. thuringiensis toxin Cry21A. The p38 MAPK pathway is 
also induced by sublytic concentrations of the cholesterol binding 
cytolysin (CDC) PFTs such as anthrolysin O (Bacillus anthracis), 
vaginolysin (Gardnerella vaginalis), pneumolysin (Streptococcus 
pneumonia), and streptolysin O (Streptococcus aureus).77-80 CDC 
toxins bind to the cholesterol in the eukaryotic cell membrane to 
form oligomeric structures that form membrane pores.

Conclusion

Unlike the adaptive immune system, the innate immune sys-
tem does not need specialized immune cells to mount a protective 
response. Microbes and their components have a unique molec-
ular signature, which allows early and rapid detection through 
pattern recognition receptors. However, a system that mounts an 
antimicrobial response based solely on the molecular signature of 
microbial components is not only inefficient, but also runs the 
risk of killing the beneficial commensals that reside in our body. 
In this respect, effector-triggered immunity (ETI) is an ideal 
compensatory mechanism that relies primarily on detecting the 
damage inflicted on the host cell from the microbe, which allows 
distinguishing between pathogen and commensal. The examples 
listed in this review provide clear evidence that ETI is a key com-
ponent of the innate immune response, which is supported by the 
fact that it is evolutionary conserved across phylogeny in diver-
gent species such as plants, nematodes, and mammals.
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