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Abstract Atherosclerosis is a chronic inflammatory disease
in which initial vascular damage leads to extensive macro-
phage and lymphocyte infiltration. Although acutely gluco-
corticoids suppress inflammation, chronic glucocorticoid
excess worsens atherosclerosis, possibly by exacerbating
systemic cardiovascular risk factors. However, glucocorti-
coid action within the lesion may reduce neointimal prolif-
eration and inflammation. Glucocorticoid levels within cells
do not necessarily reflect circulating levels due to pre-
receptor metabolism by 11{3-hydroxysteroid dehydroge-
nases (11(3-HSDs). 113-HSD2 converts active glucocorti-
coids into inert 11-keto forms. 11(3-HSD1 catalyses the
reverse reaction, regenerating active glucocorticoids.
113-HSD2-deficiency/ inhibition causes hypertension,
whereas deficiency/ inhibition of 113-HSDI1 generates
a cardioprotective lipid profile and improves glycemic
control. Importantly, 113-HSD1-deficiency/ inhibition is
atheroprotective, whereas 113-HSD2-deficiency acceler-
ates atherosclerosis. These effects are largely independent
of systemic risk factors, reflecting modulation of gluco-
corticoid action and inflammation within the vasculature.
Here, we consider whether evidence linking the 11(3-
HSDs to vascular inflammation suggests these isozymes
are potential therapeutic targets in vascular injury and
atherosclerosis.
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Abbreviations

113-HSD 113-Hydroxysteroid dehydrogenase
GR glucocorticoid receptor

MR mineralocorticoid receptor

Introduction

Atherosclerosis is widely acknowledged to be an inflammatory
disease, with lesions resulting from an unchecked wound
healing response to chronic arterial injury. Extensive inflamma-
tory cell (macrophage and lymphocyte) invasion of the sub-
endothelial space is key to lesion development [1-5].
Consequently, glucocorticoids, which are potent anti-
inflammatory agents, might be expected to inhibit atherogene-
sis. In fact, glucocorticoid excess, whether endogenous
(Cushing’s disease) or through pharmacotherapy, is as-
sociated with increased atherosclerosis and cardiovascu-
lar events [6-9], probably due, at least in part, to
glucocorticoid-mediated exacerbation of systemic cardio-
vascular risk factors (including insulin resistance/type 2
diabetes, hypertension and dyslipidaemia). However,
most atherosclerosis occurs independently of exogenous
glucocorticoid administration, and plasma levels of glu-
cocorticoids are not normally elevated in atherosclerosis.
Nevertheless, recent evidence implicates cell-specific
modulation of glucocorticoid action within the vascula-
ture in this condition.

Glucocorticoid delivery and action within tissues can be
modulated at a number of levels beyond the hypothalamic-
pituitary-adrenal axis. Normally, the majority of plasma
glucocorticoid (cortisol or corticosterone) is bound to the
high affinity, but finite capacity, corticosterone binding
globulin (CBG), leaving ~5 % being "free" and accessible
to tissues. The mineralocorticoid aldosterone, and the
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intrinsically inactive 11-keto glucocorticoids cortisone and 11-
dehydrocorticosterone, bind poorly to CBG, so that free con-
centrations are similar to free cortisol/corticosterone levels.
However, CBG may not simply be an inert carrier; it can be
cleaved by neutrophil elastase, releasing cortisol/corticosterone
at sites of inflammation, thus potentially acting as a targeted
glucocorticoid delivery mechanism [10]. Once inside cells,
glucocorticoids can be actively removed by membrane pumps
such as MDRI1 [11], metabolised by 11{3-hydroxysteroid de-
hydrogenase (113-HSD; see below), or can bind to and acti-
vate cognate receptors, glucocorticoid receptor (GR) and, in
cells which lack 113-HSD2 (see below), the higher affinity
mineralocorticoid receptor (MR). Activated receptors translo-
cate to the nucleus to transcriptionally regulate specific gene
networks.

Although all these mechanisms represent potential
druggable targets in atherosclerosis, recent evidence points
to the type 1 113-HSD enzyme, which in vivo predomi-
nantly converts intrinsically inert glucocorticoids (corti-
sone, 11-dehydrocorticosterone) into corresponding active
forms (cortisol, corticosterone), as a particularly attractive
target [12]. Inhibition of 113-HSD1 is atheroprotective, at
least in animal models. Conversely, inactivation of renal
113-HSD type 2 (113-HSD2), which catalyses the oppo-
site reaction, inactivating glucocorticoids in vivo, is well
established as a cause of hypertension in humans. Recent
data have shown that 113-HSD2-deficiency worsens ath-
erosclerosis independently of effects on hypertension
[13¢]. Here, we assess the potential of 113-HSDI1 as a
therapeutic target in atherosclerosis by reviewing the ac-
tions of 11(3-HSDs on vascular inflammation, considering
local effects on the vasculature as well as effects on
systemic cardiovascular risk factors.

Glucocorticoids and Cardiovascular Risk

To understand the potential benefits of 11[3-HSD modulation
in vascular inflammation, it is essential first to consider the
actions of glucocorticoids. The complex relationship between
glucocorticoids and cardiovascular disease is incompletely
understood and may differ between humans and animal
models (recently reviewed in [14—16]). Some of this complex-
ity undoubtedly arises from the diverse actions of glucocorti-
coids: direct effects of glucocorticoids with the heart and
vasculature may be largely beneficial, at least within certain
cell types, whereas adverse effects may be mediated indirectly
by changes in systemic risk factors (such as hypertension,
lipids and insulin resistance/ diabetes).

The effect of glucocorticoids on dyslipidaemia and other
systemic risk factors has been established for over 60 years
[17—19]. Consistent with exacerbation of systemic risk fac-
tors, endogenous glucocorticoid excess or glucocorticoid
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pharmacotherapy in humans are associated with increased
extent and severity of atherosclerosis, and predict cardiovas-
cular morbidity and mortality [5, 20-28]. Discontinuation of
glucocorticoid pharmacotherapy reduces cardiovascular risk
[6, 29]. Similarly, normalisation of circulating glucocorticoids
in Cushing’s disease largely reverses pathophysiological
changes in vascular function and structure [9]. However,
hyperglycaemia and dyslipidaemia are only modestly im-
proved within the same time frame, suggesting distinct bene-
ficial effects of reducing glucocorticoid action separate from
effects on the classical systemic risk factors [9].

In contrast, animal studies suggest that glucocorticoids
reduce atherosclerosis, despite causing hyperlipidaemia
[30—40]. Furthermore, a recent report elegantly demonstrat-
ed that 'painting' dexamethasone onto atherosclerotic lesions
improved markers of plaque stability (reducing macrophage
content and increasing fibrous cap thickness) [41]. This
discrepancy between the atherosclerosis-promoting effects
of glucocorticoids in humans but not in animals remains
unexplained, but may be related to the predominant use of
dexamethasone as the glucocorticoid of choice in animals.
Whereas endogenous glucocorticoids are agonists at both
GR and MR, synthetic glucocorticoids, including dexameth-
asone, poorly activate MR. Chronically increased mineral-
ocorticoid action, even at relatively modest levels, appears
pro-inflammatory within the cardiovascular system, distinct
from effects of MR activation upon blood pressure [42].

Glucocorticoids and the Acute Vascular Response
to Injury

The introduction of percutaneous angioplasty for treatment of
occluded arteries highlighted the fibroproliferative vascular
response to acute mechanical injury. Indeed, re-occlusion
(restenosis) of atherosclerotic arteries following angioplasty
is a clinically significant complication of the technique. Acute
arterial injury (eg by insertion of a wire or stent, by ligation, or
with a laser) in animals provides a tool to elucidate the
mechanisms underlying restenosis in atherosclerosis as well
as exploring novel treatments. Mechanical arterial injury pro-
vokes an influx of inflammatory cells, recruited by factors
such as monocyte-chemoattractant protein (MCP)-1 released
from the injured vascular/endothelial cells [43], which stimu-
lates proliferation and migration of vascular smooth muscle
cells, forming the neointima [44]. Inhibition of this inflamma-
tory response has been central to the use of glucocorticoids as
potential inhibitors of neointimal lesion formation/restenosis
[45-50].

Despite the largely positive data obtained in animals,
clinical use of glucocorticoids (methylprednisolone, dexa-
methasone) for prevention of restenosis was initially disap-
pointing [51-55]. However, recent trials are promising
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[56-59], reporting beneficial effects of prednisone [59, 60] or
dexamethasone [55, 61]. It is not clear whether discrepancies
between clinical and pre-clinical studies are due to animal
models providing poor representations of human disease or
reflect limitations in clinical trials (eg small group sizes,
patient selection; route of administration). Alternatively, the
discrepancies may result from a different balance in rodents
and humans between the adverse effects of glucocorticoids
upon systemic risk factors and beneficial effects on vascular
inflammation, with the balance more in favour of the former in
humans. Moreover, any systemic therapy will depress HPA
axis activity, altering the balance of endogenous glucocorti-
coid ligands. Thus, identification of the cellular and molecular
(eg MR or GR) targets of glucocorticoid action, including
endogenous glucocorticoids, during vascular inflammation is
crucial to development of novel, better targeted therapies.

Metabolism by 113-HSDs Modulates Glucocorticoid
Action

Glucocorticoid action within cells depends upon receptor
density and ligand availability. The latter is potently
influenced by the 11(3-HSD isozymes. 113-HSD1 is co-
localised in the lumen of the endoplasmic reticulum with
hexose-6-phosphate dehydrogenase which, by coupling
glucose-6-phosphate oxidation to reduction of NADP", gen-
erates the high NADPH/NADP ratio required to drive 11p-
HSD1 reductase activity [62], converting inert cortisone and
11-dehydrocorticosterone into active cortisol and corticoste-
rone, respectively. 11(3-HSD2 is exclusively a dehydroge-
nase, inactivating glucocorticoids [63]. Some synthetic
glucocorticoids, notably prednisolone/prednisone, are also
substrates for the 11(3-HSDs and are readily interconverted
in vivo. Others, including dexamethasone, are poorly
metabolised by these enzymes. Both isozymes are inhibited
by the liquorice derivative, glycyrrhetinic acid or its syn-
thetic analogue, carbenoxolone, which have contributed
greatly to our current understanding of the function of
113-HSDs, especially in humans. More recently, selective
113-HSD1 inhibitors have been developed, allowing much
greater discrimination of the roles of these important en-
zymes [64].

The 113-HSDs are Expressed in the Cardiovascular System

113-HSD1 is widely expressed, with highest expression in
the liver and more modest expression elsewhere, typically in
classical glucocorticoid target cells and tissues [63]. During
pathogenesis, expression is increased at some sites, notably
in adipose tissue in obesity and at sites of inflammation (see
below). In contrast, 113-HSD2 expression is restricted to
mineralocorticoid target cells/tissues, including the distal

nephron, and limited other sites such as the skin, lung and
adrenal cortex [65]. Both isozymes are modestly expressed
in the vasculature; 113-HSD1 is probably restricted to vas-
cular smooth muscle cells, with 11(3-HSD2 expressed in the
endothelium (reviewed in [15, 16]). Some studies have
reported 11(3-HSD2 expression in the vascular smooth mus-
cle cells [66] and 113-HSDI in the endothelium [67¢],
though these studies depend on antibody specificity and
others have not confirmed these findings [68]. Whilst co-
expression cannot be excluded, normally 11{3-HSD isozyme
expression is mutually exclusive within individual cells.

The 113-HSDs Modulate Cardiovascular Disease Risk
Factors

Both 113-HSD isozymes modulate systemic cardiovascular
risk factors, with a well-established role for 113-HSD2 in
regulating mineralocorticoid effects, including blood pres-
sure, and with 113-HSD1 implicated in the pathogenesis of
metabolic syndrome.

By inactivating glucocorticoids, 11(3-HSD2 activity con-
fers mineralocorticoid-specificity upon MR in cells in which
they are co-expressed. Deficiency in, or inhibition of, 11(3-
HSD?2 allows inappropriate activation of MR by glucocorti-
coids, causing the syndrome of Apparent Mineralocorticoid
Excess, characterised by hypertension, hypokalaemia and
suppression of the renin-angiotensin-aldosterone system [69].

A physiological role for 113-HSD1 has been slower to
emerge. However, over the last decade it has become apparent
that amplification of intracellular glucocorticoid levels by
113-HSD1, especially in adipose tissue and/or brain, contrib-
utes to obesity-associated metabolic disease and age-related
cognitive decline (reviewed in [70]). 11[3-HSD1 expression in
adipose tissue is selectively elevated in obese humans and in
rodents with monogenic obesity. Inhibition of 113-HSD1 re-
duces levels of plasma glucose, glycated haemoglobin Alc
(HbATlc) and cholesterol in patients with type 2 diabetes [71]
and 113-HSD1-deficiency or inhibition improves insulin sen-
sitivity in animal models of diabetes and/or obesity [63].
Conversely, in mice, transgenic over-expression of 11[3-
HSD1 selectively in adipose tissue produces local, but not
systemic, glucocorticoid excess and causes visceral obesity,
hypertension, diabetes and dyslipidaemia [72, 73], whereas
over-expression in liver causes hypertension and mild insulin
resistance [74].

In a similar manner, age-related cognitive decline (itself
associated with impaired glycaemic control [75]) is associ-
ated with higher 113-HSD1 activity in humans [76] and in
rodents [77], and 113-HSD1-deficient mice are protected
from age-related cognitive decline (reviewed in [78]). A
causative role is supported by the phenotype of transgenic
mice with selective over-expression of 113-HSD1 in fore-
brain, which develops cognitive deficits at an earlier age
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than wild-type controls [77]. In humans, age-related cogni-
tive decline, diabetes and metabolic syndrome, like athero-
sclerosis, are all associated with increased markers of
inflammation, including in macrophages (or microglia in
the brain). It is conceivable that altered inflammatory re-
sponses underlie at least part of the effects of 113-HSDI
manipulation.

113-HSDs and Inflammation

113-HSD1 and 113-HSD2 show opposite regulation at sites
of inflammation, likely because of opposite regulation by
the pro-inflammatory cytokines IL-1 and TNF-«, with up-
regulation of 113-HSD1 and down-regulation of 113-HSD2
(reviewed in [12]), suggesting they modulate local gluco-
corticoid action during inflammation (Fig. la). 113-HSD1
is expressed in immune cells, including macrophages and
lymphocytes. Its expression, by-and-large, is increased fol-
lowing immune cell activation. In contrast, 113-HSD2 is
not normally expressed in immune cells, though it may
become expressed in human macrophages and possibly
other mononuclear cells in certain pathological situations
[79], suggesting resistance to endogenous glucocorticoids
under these circumstances.

Unsurprisingly, given the well-known effects of glucocor-
ticoids in limiting acute inflammation, 11{3-HSD1-deficiency
in mice increases the severity of acute inflammation.
Inflammation is increased in an experimental model of arthri-
tis, and more neutrophils and monocytes/macrophages are
elicited in sterile peritonitis and pleurisy, consistent with a
mechanism in which early induction of 113-HSD1 during
inflammation limits the severity of the response. 113-HSD2-
deficiency has no effect [80]. Similarly, following coronary
artery ligation, more neutrophils and monocyte/macrophages
are recruited in hearts of 113-HSD1-deficient mice [81]. This
contrasts with the attenuated inflammation that occurs in
adipose tissue of 113-HSD1-deficient mice during diet-
induced obesity, with reduced macrophage and T cell infiltra-
tion of visceral adipose tissue [82].

Plausibly, an increased angiogenic response to hypoxia
may be the common link in the beneficial effects of 11(3-
HSD1 inhibition or deficiency in metabolic disease (reviewed
in [12]). Angiogenesis in vivo and in vitro is increased with
113-HSD1-deficiency [83]. This results in better recovery of
heart function following myocardial infarction in 113-HSD1-
deficient mice, despite (or possibly because of) greater inflam-
mation acutely following coronary artery ligation [81, 83]. A
similar increase in angiogenesis likely underlies the reduced
hypoxia and inflammation within adipose tissue of high fat-
fed 113-HSD1-deficient mice [84]. Moreover, although it has
not been tested in 11(3-HSD1-deficient mice, angiogenesis is
implicated in the pathogenesis of rheumatoid arthritis [85].
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113-HSD2 may regulate angiogenesis in human endometri-
um, in the opposite manner. Higher endometrial 11(3-HSD2
expression is associated with heavy menstrual bleeding, plau-
sibly due to reduced thrombospondin-1-mediated inhibition of
angiogenesis as a result of greater cortisol inactivation [86].
Importantly, these 113-HSD actions are entirely consistent
with the known actions of glucocorticoids, which limit acute
inflammation whilst provoking adverse inflammatory
cardiometabolic states. Whilst glucocorticoids promote adap-
tion, including tissue remodelling when homeostasis is
perturbed, they are also strongly anti-angiogenic both in vivo
and in vitro [83].

113-HSDs as a Therapeutic Target in Atherosclerosis

Levels of 113-HSD1 mRNA are increased in human ath-
erosclerotic vessels compared either with nearby intact (ath-
eroma-free) vasculature or with vessels from control patients
without coronary artery disease [87, 88]. This may reflect a
pro-inflammatory peri-vascular environment in disease rath-
er than systemic inflammation; mRNA levels of both 11f3-
HSD1 and CD68 (a macrophage marker) are increased in
epicardial adipose tissue of patients with coronary artery
disease compared with controls [87], consistent with inflam-
mation within the peri-vascular adipose tissue associated
with vascular inflammation. Pro-inflammatory cytokines
increase 11[3-HSD1 expression (Fig. la) in human and
murine vascular smooth muscle cells in vitro [89, 90], but
acute systemic inflammation has little or no effect on vas-
cular 113-HSD1 expression in mice [90]. This situation,
with locally increased 11(3-HSDI, is similar to that associ-
ated with inflammation in adipose tissue of metabolic syn-
drome patients. It suggests that dysregulated vascular 11[3-
HSD1, possibly initially induced to control local inflammation
within the vasculature, might then drive local inflammation
both within the vasculature and in the surrounding adipose
tissue by restricting angiogenesis, thus promoting a hypoxic
environment. This, of course, points to 113-HSD1 inhibition
as an attractive target in atherosclerosis. Dysregulation of
113-HSD2 in human arterial disease has not been described
(Fig. la), but the opposite regulation of 113-HSD2 by pro-
inflammatory cytokines is predicted to decrease levels within
endothelial cells, allowing cortisol activation of MR and its
pro-inflammatory consequences, given a setting of high levels
of systemic risk factors (see below).

The potential for 113-HSDI inhibition as an effective
pharmacotherapy for atherosclerosis was demonstrated by
Hermanowski-Vosatka and colleagues from Merck [91].
Compound 544, a selective 11(3-HSDI1 inhibitor, modestly
reduced circulating cholesterol levels and markedly reduced
intra-aortic cholesterol in atherosclerosis-prone Apoe
mice fed a cholesterol-enriched 'western diet' [91]. More
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Fig 1 Regulation of 11§3-
hydroxysteroid dehydrogenase
isozyme activity in health and
disease. (a) The biochemical
pathways that regulate 113-
HSDs. A number of factors
have been identified that
selectively increase (green
arrows) or decrease (red lines)
113-HSD isozyme expression
[101-109]. Note: only some of
the biochemical pathways that
regulate 11[3-HSD expression
are shown; factors that may
affect 113-HSD activity (eg.
glucose-6-phosphate
availability, hexose-6-
phosphate dehydrogenase
activity [110] and insulin
signaling) are not shown. Little
is known about the pathways
that regulate 11(3-HSD2
activity in the vasculature. (b)
The relationship between 11§3-
HSD isozyme activity and
disease pathologies. High (top
left) and low (bottom left)
activity of 113-HSDI, and low
activity of 113-HSD2 (top
right) are all associated with
disease pathologies
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recently, this group has shown a similar reduction in intra-
aortic cholesterol with a distinct inhibitor (Compound L-
750), without effects on plasma lipids in Apoe " mice
[67¢]. However, another study in triple knock-out mice
(lacking the LDL receptor, apolipoprotein-b and leptin) with
a different selective inhibitor (Compound 2922), reported no
effect on atherosclerosis and only slightly reduced plasma
LDL levels, despite improved glucose homeostasis [92]. A
previous study in Ldlr/~ mice with the non-selective inhib-
itor, carbenoxolone, only showed an effect on plasma lipids
and atherosclerosis in severely obese mice (due to an addi-
tional mutation in the Agouti gene), though the drug treat-
ment is likely to have made the mice hypertensive through
inhibition of 113-HSD2 (blood pressure was not reported)
[93]. More recently, we have shown that generating either
homozygous or heterozygous Hsd11bI deletion and, thus,

Cortisone
(11-dehydrocorticosterone)

113-HSD1-deficiency (avoiding possible off-target drug ef-
fects) attenuates atherosclerosis in Apoe”’~ mice without
affecting plasma glucose or lipid levels. This suggests that
atheroprotection in this background is not simply due to
improvements in systemic risk factors, although it should
be noted that the contribution of hemostatic factors has not
been addressed. Reconstitution of lethally irradiated
Apoe””” mice with bone marrow from Hsd11b1 '~ Apoe '~
mice similarly reduced atherosclerosis compared to controls
reconstituted with Apoe ~ donor bone marrow, implicating
113-HSD1-deficiency in haematopoietic cells in the mech-
anism, and suggesting that any differences in plasma gluco-
corticoid turnover in 113-HSD1-deficient mice [74, 94] are
unlikely to be critical. The converse situation occurs with
113-HSD2-deficiency, which accelerates atherosclerosis
and worsens vascular inflammation in Apoe /~ mice
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independent of effects on blood pressure, even without the
stimulus of western diet [13¢]. Importantly, this suggests that
it is intravascular glucocorticoid action that is the main
culprit in 11(3-HSD2-deficient Apoef/ ~ mice, rather than
deficiency in the surrounding adipose tissue or circulating
immune cells; 11(3-HSD2 is not normally expressed either
in immune cells or in adipose tissue, though inflammation
within peri-vascular adipose tissue could, of course, contrib-
ute to pathology once initiated. A summary of experimental
studies describing the effects of 113-HSD inhibition or
deficiency on atherosclerosis/ vascular inflammation is
shown in Table 1. Interestingly, neither 11(3-HSD1- nor
113-HSD2-deficiency affected neointimal proliferation fol-
lowing femoral artery wire injury in lean healthy mice,
though it was reduced by 11p3-HSDI1-deficiency in
Apoe””” mice (Hsd11b2~"~ Apoe "~ double knock-out mice
were not tested) [95]. Thus, 113-HSDI1-inhibition is only
likely to be effective in reducing neointimal proliferation
when concurrent with exaggerated systemic risk factors.

Mechanism of Action of 113-HSD Manipulation

The mouse studies suggest at most a modest contribution of
systemic risk factors to the effects of 11(3-HSD deficiency or
inhibition upon atherosclerosis, pointing instead to effects with-
in both immune cells (113-HSD1) and the vasculature (11[3-
HSD2). As stated above, immune cells are implicated as a
target. Although macrophage density appears unaltered with
11p3-HSD1-deficiency, T cell infiltration is reduced [96¢] and
113-HSDI1 inhibition, either prophylactically or therapeutically
in established atherosclerosis, reduces expression of pro-
inflammatory and cell adhesion molecules in the vasculature
of Apoef/ ~ mice [70, 96¢]. Interestingly, the microarray studies
on vasculature also highlight suppression of mRNAs encoding
coagulation factors by 11(3-HSD1, something that warrants
further investigation. Experimental studies have implicated
the coagulation system in the pathogenesis of atherosclerosis
and atherothrombosis (reviewed in [97]) and megakaryocytes,
the precursors to platelets, would be transferred in the bone

Table 1 Experimental studies
describing the effects of 11f3-
HSD inhibition or deficiency on

vascular inflammation

11B-HSDI inhibition/ Species Outcome Ref
deficiency
11B-HSDI inhibitor Apoe”’” mice | atherosclerosis [91]

(Compound 544)

11B-HSD1 inhibitor
(Compound L-750)

11B-HSD inhibitor
(Compound 2922)

Apoe”’” mice

Ldlr™"" Apob™®”
I()(]Lepob/ob

| circulating cholesterol
| circulating MCP-1
| atherosclerosis [67¢]
# circulating lipids
| circulating MCP-1 and aortic MCP-1
mRNA expression

| expression of: inflammatory, adhesive and
coagulation factors in the vasculature

# atherosclerosis [92]
mice | circulating LDL

improved glucose homeostasis

11B-HSD inhibitor Ldlr"~ Agouti”~ | atherosclerosis in severely obese mice [93]
Carbenoxolone mice (additional agouti mutation)
(inhibits both | circulating lipids
isozymes)
11B-HSDI inhibitor Apoe”’” mice | atherosclerosis [96°]
(Compound 544) # fasting plasma cholesterol, triglycerides or NEFA
1 plaque stability
11B-HSD1 deficiency Hsdl1b1™" Apoe™"~ | atherosclerosis [96¢]

mice

# no significant effect, | re- 11B-HSD2 deficiency

esterified fatty acids

Hsd11b2™" Apoe™”~
duced, 1 increased, NEFA: non- mice

# circulating lipids

| circulating MCP-1

| circulating Ly6C" monocytes

# macrophage density into lesions

| T cell infiltration into lesions

| aortic VCAM-1 mRNA expression

| atherosclerosis in irradiated Apoe™”” mice
receiving bone marrow cells from
Hsd11b1™"~ Apoe”’~ donor mice

1 atherosclerosis [13¢]
# blood pressure

@ Springer



Curr Atheroscler Rep (2013) 15:320

Page 7 of 10, 320

marrow reconstitution experiments that implicate immune cells
[96°].

Western diet-induced monocytosis is attenuated with
11B3-HSD1-deficiency in Apoe ’~ mice, attributable to
the pro-inflammatory Ly6C™ monocyte subset. Instead, mono-
cytes are retained in the bone marrow and spleen of
Hsd11b1™" Apoe””~ mice [96¢]. Lower circulating levels of
MCP-1, the main macrophage chemoattractant in atherosclero-
sis [98], in Hsdl1bl " Apoe " mice are implicated in this
difference [67¢, 91, 96¢], though whether the MCP-1 originates
from the vasculature or adipose tissue is currently unclear [67,
96¢]. Either way, circulating MCP-1 is unlikely to be the sole or
even the main target of 11(3-HSD1-deficiency/inhibition.

Plausibly, the opposite effects of deficiency in 11f3-
HSDI or 113-HSD2 activity upon atherosclerosis reflect
different but complementary mechanisms. 113-HSD2 is
not expressed in mouse immune cells, but it is expressed
in vascular endothelial cells, where it restricts activation of
MR by glucocorticoids. In mouse aortic endothelial cells in
vitro, vascular cell adhesion molecule-1 was induced by
corticosterone in an MR-dependent manner, but only fol-
lowing inhibition of 11(3-HSD?2. In vivo, antagonism of MR
with eplerenone, at doses which had no effect on blood
pressure, attenuated lesion development and inflammation,
whilst also increasing collagen and smooth muscle content,
markers of plaque stability [13¢]. Together, these data clear-
ly suggest that preservation of vascular endothelial cell 113-
HSD2 activity is important in controlling vascular injury
and subsequent inflammation.

The target of 113-HSD1-generated ligand is less obvious.
Although GR has long been known to shape macrophage
phenotype, recent evidence has also shown a crucial role for
MR in governing macrophage polarisation, with MR-deficient
macrophages skewing towards a "pro-resolution” alternative-
ly activated (or M2) phenotype [99]. In vivo, MR deficiency
in macrophages alone is sufficient to protect against the vas-
cular damage and cardiac hypertrophy and fibrosis induced by
L-NAME and angiogensin II [99], consistent with pro-
inflammatory MR activation by glucocorticoids (113-HSD2
is absent from macrophages). However, the high affinity MR
is predicted to be activated even at basal plasma glucocorti-
coid levels, and these are normal in 113-HSD1-deficient mice
[94]. 113-HSD1 may therefore amplify ligand availability to
GR. But GR activation in macrophages would be expected to
promote a pro-resolution phenotype. Exactly how intracellular
glucocorticoid activation of MR versus GR is achieved in cells
that express both without 11 3-HSD?2 is currently unclear [99],
but could conceivably involve GR:MR heterodimers [100]
and might be critical in pro- and anti-inflammatory actions
of endogenous glucocorticoids. An alternative target is GR in
megakaryocytes, but whether 113-HSD1 is even expressed in
these cells is unknown. Future dissection of the cellular and
molecular targets will require selective receptor antagonism,

as well as tissue-specific disruption of the 113-HSD1 gene in
mice, to elucidate specific roles in key processes during in-
flammation and angiogenesis.

Conclusions

There is clearly a counterbalance between the pro-atherogenic
effects of 113-HSDI activity and the atheroprotective effects
of 113-HSD2 activity during vascular inflammation (Fig. 1b).
Any therapy based on manipulation of glucocorticoid metab-
olism should inhibit 113-HSD1 activity whilst preserving
113-HSD2 activity. Future work should concentrate on eluci-
dating whether the cellular and molecular targets are indeed
complementary or may be overlapping. New drug delivery
methods [41], targeting macrophages or indeed other cell
types, open up exciting new therapeutic possibilities in vascu-
lar inflammation and atherosclerosis.
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