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Abstract
The conserved Argonaute-family members ALG-1 and ALG-2 are known to regulate processing and maturation of
microRNAs to target mRNAs for degradation or translational inhibition (Bouasker and Simard 2012; Meister 2013).
Consequently, depletion of alg-1 and alg-2 results in multiple phenotypes. Our data describe a role of microRNA-regulation in
stress resistance and proteostasis with special emphasis on ubiquitin-dependent degradation pathways, such as ubiquitin fusion
degradation (UFD) and endoplasmic reticulum (ER)-associated protein degradation (ERAD).
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Figure 1. ALG-1 and ALG-2 Are Linked to Stress Resistance and Proteostasis: (A) Schematic overview on the
microRNA pathway in C. elegans. (B), (C) The Argonaute-family members ALG-1 and ALG-2 are required for resistance
against oxidative (B) and heat stress (C) compared to wild-type (WT) worms. Data show mean values ± SEM obtained from
n = 3 independent experiments using 100-250 worms for paraquat and 50-100 worms for heat stress treatment; *p < 0.05,
***p < 0.001; one-way ANOVA with post-hoc test. (D) alg‑1(gk214) and alg-2(ok304) deletion mutants exhibit short
lifespans. Data obtained from n = 2 independent experiments; median lifespan (mean values ± SEM): WT (18.5 ± 0.5 days),
alg-1(gk214) (9 ± 0.0 days), alg-2(ok304) (15 ± 0.0 days). Significance was determined using the Log-rank (Mantel-Cox) test;
< 0.0001. (E) The ubiquitin fusion degradation (UFD) model substrate monitors ubiquitin-dependent degradation. (F, G)
RNAi-mediated depletion of alg-1 and alg-2 (F) and the alg-1(gk214) and alg-2(ok304) deletion alleles (G) exhibit UFD
substrate stabilization. Representative western blots of worm lysates with indicated RNAi and genotypes detecting the UFD
substrate (UbV-GFP) and tubulin (TUB). (H) The CPL-1*-YFP model substrate monitors ER-associated protein degradation
(ERAD). (I, J) RNAi-mediated depletion of alg-2 (I) and the alg-2(ok304) deletion allele (J) exhibit increased ERAD
substrate level. Representative western blots of worm lysates with indicated RNAi and genotypes showing CPL-1*-YFP and
tubulin (TUB) level.

Description
A fundamental challenge during the life of an organism is to maintain a functional proteome that can adapt to physiological
and environmental stresses. Diverse pathways, collectively termed the protein homeostasis (proteostasis) network (PN),
provide protein quality control (Roth and Balch 2011; Morimoto and Cuervo 2014). The PN is highly dynamic and
continuously adjusted to changing physiological demands. Proteostasis decline results in increased susceptibility to
environmental stress and shortened lifespan (Heider et al. 2007; Labbadia and Morimoto 2015). Rapid activation of specific
stress response pathways, including the heat shock response (HSR), the unfolded protein response in the endoplasmic
reticulum (ER) (UPRER) and in mitochondria (UPRmt), and the oxidative stress response prevent cellular damage or
accumulation of misfolded proteins (Labbadia and Morimoto 2015). However, physiological and environmental changes
challenge these stress response mechanisms and trigger increased degradation of damaged proteins. Maintaining the PN
depends on changes in gene expression to regulate the protein folding and degradation capacities of the organism. The class of
short non-conding microRNAs can bind with partial complementarity to target mRNAs facilitating either mRNA degradation
or translational decay (Filipowicz et al. 2008). Previous findings showed that microRNAs and the RNAi machinery regulate
diverse mechanisms important for development, aging, and stress signaling as well as the development of neurological
disorders like myotonic dystrophy type 1 (Alvarez-Garcia and Miska 2005; Smith-Vikos and Slack 2012; Qawasmi et al.
2019). We described a role for microRNAs in environmental perception and organismal adaption and identified mir-71 as a
key player in translating sensory inputs from olfactory food cues to the PN in the nematode Caenorhabditis elegans (Finger et
al. 2019). However, the general role of microRNA processing in proteostasis regulation remains unclear.

We studied whether microRNA regulation impacts on proteostasis and stress resistance. We tested whether Argonaute
proteins, which are required for microRNA-dependent silencing, are linked to proteostasis in C. elegans (Figure 1A) (Tops et
al. 2006). We characterized the loss-of-function mutants alg‑1(gk214) and alg‑2(ok304), which lack the two Argonaute-family
members important for microRNA function, by using different proteotoxic stress assays (Grishok et al. 2001). Although
ALG‑1 and ALG‑2 are equally important for processing of most microRNAs, they comprise certain spatiotemporal differences
(Tops et al. 2006; Vasquez-Rifo et al. 2012). Double mutants of alg-1 and alg-2 are lethal and were therefore not included
here. Both alg-1(gk214) and alg-2(ok304) mutants showed increased sensitivity towards oxidative stress or heat shock
conditions, similar to worms deficient for the transcription factors SKN-1 or HSF-1, which mediate the respective stress
response pathways (Figures 1B and 1C) (Hsu 2003; Kahn et al. 2008; Park et al. 2009). Interestingly, alg-1 mutants seem to be
slightly more sensitive than alg-2 mutants. Thus, inhibition of microRNA biogenesis and target recognition resulted in
increased proteotoxic stress sensitivity, indicating that the respective stress pathways are intimately controlled and maintained
by microRNAs. We performed lifespan experiments and detected a reduced lifespan phenotype of alg-1(gk214) and
alg‑2(ok304) worms whereby the alg-1 mutants showed a more severe reduction compared to alg-2 (Figure 1D). This is in line
with previous findings (Alcedo and Kenyon 2004; Samuelson et al. 2007; Ben-Zvi et al. 2009; Douglas and Dillin 2010; Kato
et al. 2011), however, contradicts alg-2(ok304)-related lifespan results of the Pasquinelli lab (Aalto et al. 2018). Our data
support the idea that loss of microRNA biogenesis in adult worms limits stress resistance and reduces lifespan (Lehrbach et al.
2012), indicating that microRNA processing and maturation are important for organismal health.

The maintenance of a balanced proteome is supported by ubiquitin-dependent degradation of damaged proteins. We thus used
established in vivo degradation assays to directly test the involvement of ALG-1/2 in the turnover of an engineered
fluorescently labeled model substrates in C. elegans (Segref et al. 2011, 2014; Denzel et al. 2014). The UbV-GFP protein is a
short-lived ubiquitin fusion degradation (UFD) substrate, which is expressed under control of the ubiquitous sur-5 promoter. In
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wild-type worms, poly-ubiquitylation of the N-terminal ubiquitin moiety triggers degradation of the UFD substrate by the 26S
proteasome. Impairment of ubiquitylation or proteasomal turnover result in substrate stabilization, reflected by green
fluorescence of the transgenic worms (Figure 1E) (Segref et al. 2011). Strikingly, both alg-1 and alg-2 deletion mutants
affected UFD substrate degradation, similar to alg-1 and alg-2 depletion mediated by RNA interference (RNAi) (Figures 1F
and 1G). Ablation of the E3 ligase HECD-1, which catalyzes poly-ubiquitylation of the UFD substrate, served as a control
exhibiting increased UbV-GFP level. RNAi against gfp was used as an additional control to ensure RNAi efficiency. To study
whether the defects in UFD turnover reflect a general decline in ubiquitin/proteasome-system (UPS) activity, we also
monitored endoplasmic reticulum (ER)-associated protein degradation (ERAD). We followed the turnover of an unstable form
of the cathepsin L-like cysteine protease CPL-1 (CPL-1*-YFP), exclusively expressed in intestinal cells by the nhx-2 promoter
(Denzel et al. 2014) (Figure 1H). Under standard conditions, CPL-1*-YFP is retro-translocated out of the ER lumen for
proteasomal degradation in the cytosol, while loss of the substrate recruiting factor HRD3 homolog SEL-1 affects ERAD and
leads to substrate stabilization (Figure 1I) (Ruggiano et al. 2014). Similar to defects in UFD substrate turnover, CPL-1*-YFP
levels were also increased in the alg-2 deletion mutant or upon RNAi depletion (Figures 1I and 1J). In conclusion, our results
strongly suggest an intricate link between microRNA processing and ubiquitin-dependent regulation of proteostasis. On this
basis, further experiments are warranted to uncover the full range of physiological consequences and mechanistical details.

Methods
Request a detailed protocol

C. elegans Maintenance

Nematodes were grown at 20°C (unless stated otherwise) on nematode growth medium (NGM). NGM plates were seeded with
the E. coli strain OP50 as a food source according to standard procedures and methods (Brenner 1974; Stiernagle 2006). The
N2 Bristol strain served as wild-type.

Lifespan and Survival Assays

For lifespan assays 100 age-synchronized L4 larvae per strain were placed to fresh NGM agar plates. Day 0 of the lifespan
experiment refers to the first day after reaching adulthood. During the first seven days, animals were transferred on new plates
every day to separate from F1s and prevent starvation. After entering the post-reproductive phase, worms were only
transferred when necessary. Survival was examined daily by checking avoidance behavior in response to mechanical stimuli or
pharyngeal pumping. Experiments were performed in two biological replicates at 20°C. To induce oxidative stress, L4 larvae
were incubated in 200 mM paraquat in M9 buffer and survival rates were determined 24 h later, using 100-250 worms in three
independent experiments. Heat stress was induced by incubation of age-synchronized L4 larvae at 32.5°C for 15 h. Survival of
animals was analyzed in three biological replicates using 50-100 worms each.

RNA Interference (RNAi)

RNAi via the feeding method established for C. elegans was performed as described earlier (Timmons and Fire 1998; Kamath
et al. 2001). Age-synchronized worms were transferred to RNAi plates seeded with E. coli HT115 bacteria expressing the
respective double-stranded RNA (dsRNA). RNAi clones were either taken from the RNAi Collection (Ahringer) (alg-1, alg-2,
and hecd-1) or the ORF-RNAi Resource (Vidal) (sel-1) (Rual et al. 2004) (Source BioScience). As control condition, bacteria
transformed with the empty pPD129.36 vector were used for feeding.

Western Blotting

For whole worm lysates, 100 animals were collected in 80 µl 1x SDS loading buffer. Following, samples were boiled at 95°C
for 5 min, sonicated (30 sec at 60% amplitude) and again boiled at 95°C for 5 min. Next, samples were centrifugated at 15,000
rpm for 5 min. For western blotting, protein lysates were resolved by SDS-PAGE using NuPAGE® 4-12% Bis-Tris SDS-gels
with the NuPAGE® MES SDS running buffer (ThermoFischer Scientific; settings according to manufacturer’s instructions).
Protein transfer was achieved with a semi-dry blotting system (Bio-Rad, Trans-Blot Turbo) with NuPAGE® transfer buffer.
Antibodies were diluted in 1x Roti®-Block (Carl Roth). Visualization of fluorescent signals was achieved using the Odyssey
scanner (LI-COR) and the Image Studio Lite v4.0 software. All western blots were repeated in n = 3 independent experiments.
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Reagents
List of C. elegans strains:

Strain Referred to as Genotype Available from

N2 WT Bristol (N2)
CGC

Wormbase ID: N2

RF54 alg-1(gk214) alg-1(gk214)X

CGC

Wormbase ID:
WBVar00145621

WM53 alg-2(ok304) alg-2(ok304)II

CGC

Wormbase ID:
WBVar00091602

PS355 hsf-1(sy441) hsf-1(sy441)I

CGC

Wormbase ID:
WBVar00248994

PP563 UbV-GFP unc-119(ed4)III; hhIs64[unc-119(+); Psur-5::UbV-GFP]III
Hoppe Lab

Segref et al., 2011

PP1386 CPL-1*-YFP hhIs113[Pnhx-2::cpl-1W32AW35A::yfp;
 Pmyo-2::mCherry]I

Hoppe Lab

PP2396 alg-1(gk214);
CPL‑1*‑YFP

hhIs113[Pnhx-2::cpl-1W32AW35A::yfp;Pmyo-2::mCherry]I;
alg-1(gk214)X

Hoppe Lab

PP2067 alg-2(ok304);
UbV‑GFP hhIs64[unc-119(+); Psur-5::UbV-GFP]III;alg-2(ok304)II Hoppe Lab

PP2395 alg-1(gk214);
UbV‑GFP hhIs64[unc-119(+); Psur-5::UbV-GFP]III; alg-1(gk214)X Hoppe Lab

PP1634 alg-2(ok304);
CPL‑1*‑YFP

hhIs113[Pnhx-2::cpl-1W32AW35A::yfp; Pmyo-2::mCherry]I;
alg-2(ok304)II

Hoppe Lab

PP1536 sel-1(e1948);
CPL‑1*‑YFP

hhIs111[Pnhx-2::cpl-1W32AW35A::gfp]II; sqt-3(sc8) sel-
1(e1948)V

Hoppe Lab

PP952 hecd-1(tm2371);
UbV‑GFP hhIs64[unc-119(+); Psur-5::UbV-GFP]III; hecd-1(tm2371)

Hoppe Lab;

Segref et al. , 2011

List of antibodies and chemicals:

Antibody Source Identifier

Mouse Monoclonal anti-alpha Tubulin (Clone B-5-1-2) Sigma-Aldrich
Cat# T6074

RRID:AB_477582

Living Colors® A.v. Monoclonal Antibody (JL-8) (Mouse anti-GFP) Clontech
Cat# 632380

RRID:AB_10013427
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Donkey anti-mouse IRDye® 800CW LI-COR
Cat# 926-32212

RRID:AB_621847

Chemical Source Identifier

Paraquat dichloride hydrate Sigma-Aldrich Cat# 36541
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