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Background: Fermented black ginseng (FBG) is processed ginseng by the repeated heat treatment and
fermentation of raw ginseng. The protective effect and mechanism of FBG on cisplatin-induced neph-
rotoxicity was investigated to evaluate its therapeutic potential.
Methods: The free radical scavenging activity of FBG was measured using 1,1-diphenyl-2-picrylhydrazyl
(DPPH). In addition, the protective effect against cisplatin-induced renal damage was tested in rats. FBG
was orally administered every day at a dose of 150 mg/kg body weight for 10 d, and a single dose of
cisplatin was administered intraperitoneally (7.5 mg/kg body weight) with 0.9% saline on the 4th d.
Results: The DPPH radical-scavenging activity of FBG (IC50¼ 384 mg/mL) was stronger than that of raw
ginseng. The improved DPPH radical-scavenging activity was mediated by the generation phenolic
compounds. The decreased cell viability by cisplatin was recovered significantly after treatment with FBG
in a dose-dependent manner. Then, the protective effect of FBG on cisplatin-induced oxidative renal
damage was investigated in rats. The decreased creatinine clearance levels, which are a reliable marker
for renal dysfunction in cisplatin-treated rats, were reduced to the normal level after the administration
of FBG. Moreover, FBG showed protective effects against cisplatin-induced oxidative renal damage in rats
through the inhibition of NF-kB/p65, COX-2, and caspase-3 activation.
Conclusion: These results collectively show that the therapeutic evidence for FBG ameliorates the
nephrotoxicity via regulating oxidative stress, inflammation, and apoptosis.
� 2017 The Korean Society of Ginseng, Published by Elsevier Korea LLC. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Herbal therapeutics of the nutrition field has become one of the
most popular trends because herbal products not only contain an
important group of multicomponent therapeutics, but are also
known as being harmless [1,2]. The appropriate and concomitant
use of herbal medicines with modern medicines can prevent or
ameliorate the development of complications of multiple chronic
conditions. Several lines of evidence have underlined that many
medicinal herbal supplements have the potential to become valu-
able complementary therapy for various renal disorders [2,3].

Kidneys are vital organs that function to keep the blood clean
and maintain the chemical balance withindthat is, kidneys play
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important roles in excreting waste products and in maintaining
electrolyte and water balance in the body. Therefore, kidney injury
is considered to contribute to organ dysfunction of the lung, brain,
liver, heart, and other organs [4]. Recent literature indicates that
reactive oxygen species (ROS) play important roles in the pro-
gression of kidney damage [5,6]. Oxidative stress caused by alter-
ations in redox homeostasis can directly exert renal parenchymal
damage and may intensify renal microvascular and functional
dysregulation [7]. Then, increased oxidative stress in the kidney
leads to deterioration of the renal function, inflammation, and
apoptosis [8,9]. Moreover, oxidative stress is closely associatedwith
independent risk factors such as diabetes, hypertension, hyperlip-
idemia, and metabolic syndrome [10e13].
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Cisplatin is an important chemotherapeutic agent commonly
used for the treatment of several tumors, but accumulates and
causes severe damage in the kidneys. Although the exact mecha-
nism of cisplatin nephrotoxicity is not fully understood, multiple
studies have shown that it is associated with DNA fragmentation,
ROS, and caspase activation [14e16]. It has also been recognized
that apoptosis and inflammation are important factors in cisplatin-
induced nephrotoxicity [17,18].

Panax ginseng Meyer is one of the most widely used traditional
herbal medicines, and there are various commercial ginseng
products such as red and black ginsengs. The steaming process is
known to induce deglycosylation of ginsenoside and to enhance the
biological activities of ginseng [19e21]. Black ginseng (BG) is pre-
pared by steaming at 85�C for 8 h and then drying until the water
content decreases to less than 20%. This steaming and drying pro-
cess is repeated nine times. This process turns white ginseng to BG
[22]. Fermentation is known as a useful method to increase safety
and efficacy [23]. In addition, based on a large number of scientific
studies, ginseng is known to have a wide range of pharmacological
and physiological properties such as anti-inflammation, immu-
noenhancement, antistress, and antitumor activities [24e27]. For
the preparation of fermented black ginseng (FBG), BG is ground and
extracted with distilled water at 80�C for 72 h. Subsequently, this
water extract is fermented with Saccharomyces cerevisiae at 35�C
for 24 h [22]. Although the efficacy of FBG is poorly understood,
augmentation of antioxidant activity and its beneficial effect on
vascular dementia have recently been reported [28,29]. The
objective of this study is to evaluate how FBG shows renoprotective
efficacy against cisplatin-induced renal oxidative stress.

2. Materials and methods

2.1. Chemicals and reagents

Cisplatin, 1,1-diphenyl-2-picrylhydrazyl (DPPH), and Foline
Ciocalteu’s phenol reagent were purchased from Sigma-Aldrich Co.
(St. Louis, MO, USA). NF-kBp/65, COX-2, cleaved caspase-3, glycer-
aldehyde 3-phosphate dehydrogenase (GAPDH), and horseradish
peroxidase-conjugated antirabbit antibodies were purchased from
Cell Signaling (Boston, MA, USA).

2.2. Preparation of herbal extract

FBG in the form of a dried powder extract was supplied by
GINSENG BY PHARM Co., Ltd. (Wonju, Korea). FBG was prepared
using a recently reported method [22]. In brief, BG was manufac-
tured via nine cycles of repeated steaming of ginseng at 85�C for
8 h. Then, BG extract was fermented with S. cerevisiae (Lallemand,
Birkerod, Denmark) at 34�C for 25 h.

2.3. Measurement of total phenolic contents

The total phenolic contents of samples were determined using
the FolineCiocalteu method [30]. Contents were expressed as
milligrams of gallic acid equivalent (GAE) per gram of ginseng
extract, which was repeated three times.

2.4. DPPH radical scavenging activity test

The free radical scavenging effect of samples was evaluated
according to the method described by Hatano et al [31]. Four con-
centrations were prepared for each sample. After mixing gently and
leaving the samples to stand for 30 min at room temperature, the
absorbance at 540 nm was determined using a microplate reader
(PowerWave XS; Bio-Tek Instruments, Winooski, VT, USA), and a
green tea extract was used as DPPH-scavenging positive control.
2.5. Renoprotective effect against cisplatin-induced damage in
kidney cells

The renoprotective effect against oxidative renal cell damage
was evaluated using LLC-PK1 cells [32,33]. The LLC-PK1 (pig kidney
epithelium, CL-101) cells were purchased from the American Type
Culture Collection (Rockville, MD, USA), and cultured in Dulbecco’s
modified Eagle’s medium, supplemented with 10% fetal bovine
serum, 1% penicillin/streptomycin, and 4mM L-glutamine at 37�C
with 5% CO2 in air. The cells were seeded in 96-well culture plates at
1 �104 cells/well and allowed to adhere for 2 h. Thereafter, the test
sample and/or 25mM cisplatin were added to the culture medium.
Twenty-four hours later, the medium containing the test sample
and/or cisplatin was removed. Next, the cells were incubated with
serum-free medium (90 mL/well) and Ez-Cytox reagent (10 mL/well)
at 37�C for 2 h. Cell viability was measured by absorbance at
450 nm using a microplate reader (PowerWave XS; Bio-Tek In-
struments, Winooski, VT, USA).
2.6. Renoprotective effect against cisplatin-induced oxidative
damage in rats

2.6.1. Treatment of animals
In this study, we followed the Guidelines for Animal Experi-

mentation, which is approved by the Korea Institute of Science and
Technology, Gangneung, Taiwan. Male Wistar rats weighing 140e
160 g were used to evaluate the protective effect of the BG against
cisplatin-induced nephrotoxicity. The rats were housed under fixed
temperature (23 � 2�C) and humidity (55 � 5%) conditions with a
standard light (12 h light/dark). The rats were given free access to
water and normal diet (38057; Agribrands Purina Korea, Seong-
nam, Gyeonggi, Korea) containing 10 kcal% fat for a period of 1 wk
after arrival. Then rats were divided into three groups based on
their body weight (vehicle, cisplatin, cisplatinþ FBG) and then
treated: Group 1, vehicle (n¼ 4) received water (no sample treat-
ment); Group 2, cisplatin (n¼ 4) received water (no sample treat-
ment); and Group 3, cisplatinþ FBG (n¼ 4) treated with FBG water
extract (150 mg/kg) in aqueous solution orally for 10 d.

FBG was orally administered daily at a dose of 150 mg/kg body
weight, whereas water was given orally to vehicle-treated rats. The
dose used (150 mg/kg FBG) was chosen according to the literature
[34]. After 4 d, rats in two groups (cisplatin and cisplatinþ FBG)
were intraperitoneally administered a single dose of cisplatin
(7.5 mg/kg body weight) in 0.9% saline. Animals in the vehicle
group were given an equivalent amount of normal saline for 10 d.
The rats were sacrificed 6 d after cisplatin administration under
light ether anesthesia. Next, 24-h urine samples were collected
using a metabolic cage. Blood samples were collected from the
abdominal aorta and kidneys were removed. Body weights of rats
were measured daily during the experimental period.
2.7. Plasma and urine biomarker analysis

Blood samples were collected in test tubes containing 0.18M
EDTA, which were then centrifuged at 3,000 g for 5 min at 4�C. The
plasma creatinine levels were determined using a rate-blanked
kinetic Jaffe method. Creatinine clearance was calculated on the
basis of the urinary creatinine (Cr), serum Cr, urine volume, and
body weight using the following equation:
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Fig. 1. Comparison of antioxidant effect and protective effects of raw ginseng, BG, and FBG against cisplatin-induced damage in LLC-PK1 cells. (A) Total phenolic contents. (B) DPPH
radical scavenging activity. (C) Effects on cisplatin-induced damage in LLC-PK1 cells. The total phenolic contents and antioxidant effects of samples were determined using the
FolineCiocalteu and DPPH radical scavenging assays. LLC-PK1 cells were pretreated with various concentrations (up to 500 mg/mL) of the ginsengs for 2 h, and then 25mM cisplatin
was further treated for 24 h. Cell viability was assessed using the MTT assay. * p< 0.05 compared to raw ginseng value. BG, black ginseng; FBG, fermented black ginseng; DPPH, 1,1-
diphenyl-2-picrylhydrazyl; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.
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Creatinine clearance (mL/kg body weight/min) ¼ [urinary Cr (mg/
dL) � urine volume (mL)/serum Cr (mg/dL)] � [1,000/body weight
(g)] � [1/1,440 (min)]. (1)

2.8. Histological analysis of kidney

Kidney samples were fixed in 10% buffered formalin phosphate
(Fisher Scientific, Pittsburgh, PA, USA), and then dehydration and
embedding in paraffinwere performed sequentially. These samples
were sectioned at 3-mm thickness and then stained with periodic
acid-Schiff (PAS) reagents for histological examination. Tubular
damage in PAS-stained sections was examined under the
microscope.

2.9. Preparation of cytosolic and nuclear extracts from tissue

The frozen kidney tissues, weighing 30 mg, were powdered by
grinding thoroughly with a pestle and mortar in liquid nitrogen.
The tissue powders were resuspended in hypotonic buffer
[10mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
(HEPES; pH 7.9), 10mM KCl, 0.1mM EDTA, 1mM DTT, 1� protease
inhibitor cocktail, 1mM phenylmethylsulfonyl (PMSF), and 1mM
Na3VO4] for 15 min on ice. Subsequently, 10% Nonidet P-40 (USB,
Cleveland, OH, USA) was added, and the mixture was vortexed
and then centrifuged at 19,480 g for 30 s at 4�C. The supernatant
containing cytosolic proteins was collected and stored at �80�C
until further use. The nuclear pellets were rinsed twice with cold
phosphate-buffered saline and resuspended in hypertonic buffer
[20mM HEPES (pH 7.9), 0.4M NaCl, 0.1mM EDTA, 1mM DTT, 1�
protease inhibitor cocktail, 1mM PMSF, and 1mM Na3VO4] by
rocking at 4�C for 15 min. The resuspended nuclear fraction was
then centrifuged at 13,200 rpm for 5 min at 4�C. The supernatant
containing nuclear proteins was collected and stored at �80�C
until further use.
2.10. Western blot analysis

Proteins (whole-cell extracts, 30 mg/lane; nuclear extracts, 10 mg/
lane; cytosolic extracts, 20 mg/lane) were separated by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to
polyvinylidene fluoride (PVDF) membranes for 1 h at semidry, and
then stopped with blocking buffer for 1 h at room temperature. The
PVDF membranes were incubated with primary antibody against
NF-kB/p65 (1:1,000 dilution), COX-2 (1:1,000 dilution), cleaved
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Fig. 2. Effect of fermented black ginseng (FBG) on body weight, food intake, and renal function parameters in the cisplatin-induced renal damage rats. (A) Changes in body weight.
(B) Changes in food intake. (C) Serum creatinine levels. (D) Creatinine clearance. FBG was orally administered every day at a dose of 150 mg/kg body weight, whereas vehicle-treated
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caspase-3 (1:1,000 dilution), GAPDH (1:1,000 dilution) for over-
night at 4�C, and then washed three times for 5 min with wash
buffer, incubated with horseradish peroxidase-conjugated sec-
ondary antibody (1:2,000 dilution, antirabbit) for 1 h at room
temperature, washed three times, and then detected with ECL
solution.
2.11. Statistical analysis

The quantitative data were expressed as means� standard de-
viation. Statistical significancewas determined using the analysis of
variance followed by a multiple comparison test with a Bonferroni
adjustment. A p value < 0.05 was considered statistically signifi-
cant. The analysis was performed using SPSS version 19.0 (SPSS Inc.,
Chicago, IL, USA).
3. Results

3.1. Total phenolic contents and DPPH radical scavenging activity of
FBG extract

The contents of total phenolic compounds in raw ginseng, BG,
and FBG were 3.9� 0.5, 31.3� 2.3, and 40.5� 2.2 GAE, respectively
(Fig. 1A). The total phenolic content of FBG was 10 times more
compared to that of raw ginseng (Fig. 1A). The DPPH radical scav-
enging activity of FBG (IC50¼ 399.5 mg/mL) was increased in a dose-
dependent manner, and its effect was significantly stronger than
those of raw ginseng and BG (Fig. 1B). The free radical scavenging
activities of raw ginseng and FBG extract were correlated with the
total phenolic content.
3.2. Renoprotective effect of FBG extract against cisplatin-induced
damage in kidney cells

The LLC-PK1 cell viability was decreased to 59% of the control
value after cotreatment with 25mM cisplatin. The decreased cell
viability by cisplatin was recovered significantly after treatment
with FBG in a dose-dependent manner, whereas raw ginseng and
BG showed no or moderate level of protective effect (Fig. 1C). FBG
(250e500 mg/mL) ameliorated cisplatin-induced nephrotoxicity up
to 80% of the control level, and further in vivo studies were carried
out with FBG.
3.3. Protective effect of FBG on cisplatin-induced renal damage in
rats

The body weight gain of rats in the cisplatin- and cispla-
tinþ FBG-treated groups was markedly reduced compared to that
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in the vehicle-treated group (Fig. 2A). Similarly, food intake was
slightly lowered after cisplatin treatment, but it gradually recov-
ered in vehicle-treated groups (Fig. 2B). The food intake decreased
sharply on the 4th d in both cisplatin- and cisplatinþ FBG-treated
groups. These results are in accordance with previous reports about
the decrease in body weight gain after cisplatin injection [35].

In the comparison of serum and urine biochemical parameters,
cisplatin-injected rats showed increased serum creatinine level and
decreased creatinine clearance levels than those of the vehicle-
treated group (Figs. 2C and 2D). The elevated serum creatinine
level of cisplatin-treated rats was slightly reduced by cotreatment
with FBG. In particular, the decreased creatinine clearance level
recovered nearly up to its normal levels after administration of FBG
(Fig. 2D).
PAS staining was performed on renal tissue sections to mea-
sure tubular damage. As shown in the representative pictures of
renal sections, we observed severe tubulointerstitial injuries
including cystic dilatation of tubules, tubular epithelial cell de-
tachments, and inflammatory cell infiltration in the cisplatin-
exposed kidneys (Fig. 3A). However, the increased tubular dam-
age in cisplatin-treated rats was significantly reduced by
cotreatments with FBG (Fig. 3A). Fig. 3B shows the effect of FBG
on NF-kBp65, COX-2, and cleaved caspase-3 protein expression in
the cisplatin-treated rat kidneys. Proteins from nuclear extracts
were used for the Western blot analysis of NF-kBp65, whereas
whole-cell extracts were used for the analysis of COX-2 and
cleaved caspase-3. NF-kBp65, COX-2, and cleaved caspase-3
protein expressions were significantly increased after cisplatin
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injection, and its cotreatment with FBG afforded almost complete
kidney protection (Figs. 3Ce3E).
4. Discussion

The recent literature indicates that ROS plays critical roles in the
progression of renal damage [5,7,10]. Treatment with antioxidants
can reduce oxidative damage, which might delay the development
of kidney disease. Therefore, antioxidants as an inhibitor of ROS are
considered to be an important therapeutic approach for kidney
disorders. In the present study, we have investigated the protective
potential and mechanism of FBG on the renal damage caused by
cisplatin, oxidative stress, and inflammation to evaluate its possible
use in treating kidney damage.

P. ginseng contains high concentrations of saponins such as
ginsenosides Rb1, Rb2, Rc, Rd, and Re. Many studies have been
conducted to develop novel methods for enhancing the biological
effects of ginseng by conversion of the saponins via high-
temperature or high-pressure thermal processing [22,36,37]. FBG
is prepared by repeated steaming and drying processes with fresh
ginseng followed by fermentationwith S. cerevisiae. The contents of
ginsenosides Re, Rg1, Rb1, Rc, and Rb2 were decreased, whereas the
contents of less polar ginsenosides Rg2, Rg3, Rh1, Rh2, and Rf were
newly detected in FBG [22]. In particular, ginsenoside Rg3, which is
abundantly contained in FBG, was found to prevent the progression
of renal damage and dysfunction in type 1 diabetic rats via inhi-
bition of oxidative stress and inflammation [25,38].

The DPPH radical scavenging activity test has been widely used
to test the free radical scavenging ability of plant extracts or com-
pounds [31,39], and the phenolic contents of plants can be related
to their antioxidant activities [40]. FBG extract showed a stronger
DPPH radical scavenging activity than that of raw ginseng, which
was thought to relate with its higher content of total phenolic
compounds.We carried out in vitro kidney cell protection screening
to compare the protective effect of raw ginseng, BG, and FBG on
LLC-PK1 pig kidney epithelial cells. The kidney cell protection assay
conditions were established using the LLC-PK1 cell line, which is
commonly used to evaluate nephrotoxicity [32]. The potent pro-
tective effect by ameliorating reduced cell viability due to cisplatin
was observed only after treatment with FBG. Then, we further
examined the effect of FBG on cisplatin-induced nephrotoxicity in
rats.

In line with in vitro results, FBG abrogated the cisplatin-induced
renal dysfunction and tubulointerstitial injuries in rats. The low-
ered creatinine clearance as an indicator of kidney dysfunction in
cisplatin-treated rats [14,16] recovered to nearly normal levels after
cotreatment with FBG. Renal tubules comprise 95% of the renal
mass, so damage to the tubulointerstitium is an important pre-
dictor of renal dysfunction [41]. The severe tubulointerstitial in-
juries in cisplatin-treated kidneys, which were analyzed by PAS
staining, were also reduced by cotreatments with FBG, reflecting its
protective effect. ROS play an important role in mediating apoptosis
by inducing the activation of caspases. Among all the caspase
members, caspase-3 in particular is an essential apoptotic effector
leading to cytoskeletal breakdown, nuclear demise, and other cell
changes associated with apoptosis [42]. Therefore, caspase in-
hibitors have the potential to minimize uncontrolled apoptosis in
cisplatin-induced nephropathy [43]. Our results also showed sig-
nificant increases in cleaved caspase-3 expression levels of the
cisplatin-treated rat kidney, but its elevated level was significantly
reduced after FBG administration. Similarly, the elevated NF-kB/
p65 and COX-2 protein expressions, which are reliable markers of
inflammation in cisplatin-treated rat kidney [44], were lowered
nearly back to its normal levels. These results imply that FBG may
alleviate oxidative stress by preventing caspase-3 activation and
related inflammation in the kidney.

In summary, the kidney cell damage induced by oxidative stress
was significantly inhibited by the treatments with FBG. In addition,
the renal dysfunction of cisplatin-treated mice was markedly
ameliorated by FBG extract administration. The kidney protection
effect of FBG was associated with the caspase-dependent anti-in-
flammatory pathway. Taken together, these results demonstrate
that FBG exerted a renoprotective effect in cisplatin-treated rats.
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