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Abstract

Real-time on-site histopathology review of biopsy tissues at the point-of-procedure has great

potential for significant clinical value and improved patient care. For instance, on-site review

can aid in rapid screening of diagnostic biopsies to reduce false-negative results, or in quanti-

tative assessment of biospecimen quality to increase the efficacy of downstream laboratory

and histopathology analysis. However, the only currently available rapid pathology method,

frozen section analysis (FSA), is too time- and labor-intensive for use in screening large quan-

tities of biopsy tissues and is too destructive for maximum tissue conservation in multiple

small needle core biopsies. In this work we demonstrate the spectrally-compatible combina-

tion of the nuclear stain DRAQ5 and the anionic counterstain eosin as a dual-component fluo-

rescent staining analog to hematoxylin and eosin intended for use on fresh, unsectioned

tissues. Combined with optical sectioning fluorescence microscopy and pseudo-coloring algo-

rithms, DRAQ5 and eosin (“D&E”) enables very fast, non-destructive psuedohistological

imaging of tissues at the point-of-acquisition with minimal tissue handling and processing.

D&E was validated against H&E on a one-to-one basis on formalin-fixed paraffin-embedded

and frozen section tissues of various human organs using standard epi-fluorescence micros-

copy, demonstrating high fidelity of the staining mechanism as an H&E analog. The method

was then applied to fresh, whole 18G renal needle core biopsies and large needle core pros-

tate biospecimen biopsies using fluorescence structured illumination optical sectioning

microscopy. We demonstrate the ability to obtain high-resolution histology-like images of

unsectioned, fresh tissues similar to subsequent H&E staining of the tissue. The application of

D&E does not interfere with subsequent standard-of-care H&E staining and imaging, preserv-

ing the integrity of the tissue for thorough downstream analysis. These results indicate that

this dual-stain pseudocoloring method could provide a real-time histology-like image at the

time of acquisition and valuable objective tissue analysis for the clinician at the time of service.
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Introduction

Real-time assessment of freshly removed, intact tissue specimens can help improve clinical
procedures, such as diagnostic biopsy, collection of samples for genetic or molecular testing,
and/or surgical tumor resection. The current approach of frozen section analysis (FSA) for in-
procedure histopathology is relatively time-consuming and damaging to the tissue and is not
feasible for the immediate evaluation of small needle core biopsies [1]. Touch preparation of
these specimens is currently the most effectivemethod, but can frequently misrepresent tumor
content and often needs a specialized cytopathologist for proper interpretation [2]. The labor-
intensiveness and destructiveness of traditional histopathology preparations, like formalin-
fixed, paraffin-embeddedprocessing or frozen section analysis, is due to the need to deposit a
thin section of hematoxylin and eosin (H&E) stained tissue on a slide to enable it to be evalu-
ated by light-transmissionmicroscopy. Emerging advanced microscopy techniques promise to
eliminate the cutting step, enabling non-destructive imaging of the fresh, fully-intact biopsy. In
particular, ex vivomicroscopy methods that leverage fluorescent stains, such as confocal
microscopy [3–10] or fluorescence structured illuminationmicroscopy [11–14], are a direct
analog to traditional pathology in terms of image contrast, enabling accurate assessments by
trained pathologists. An alternative to FSA or touch-prep could be achieved by the application
of topical fluorescent stains onto fresh, unprocessed and unsectioned tissues, which are able to
mimic the pathological features of traditional hematoxylin and eosin (H&E) staining [15, 16].
Topical fluorescent staining is quick [14, 17], on the order of seconds, and when paired with a
suitably rapid ex vivomicroscopy system, could allow virtual H&E images of fresh tissue sur-
faces to be obtained within minutes of removal from the patient. This type of procedure, which
also conserves the tissue for cryopreservation, could represent an attractive processing alterna-
tive to FSA and/or touch preparation for in-procedure pathology and triage of small biopsy
samples for downstream analysis.
In order to reproduce the effects of H&E stains, a dual-component image contrast method

suitable for ex vivomicroscopy is needed that highlights the same nuclear, cytoplasmic, and
extracellular features as H&E. Previous work on dual component contrast for ex vivomicros-
copy has used acridine orange (AO) for nuclear contrast combined with either reflectance [5,
18] or eosin [19] as a counterstain to achieve a fluorescent replacement for H&E. Acridine
orange (AO) is a cationic stain commonly referred to as a nuclear stain; however, in reality it
binds DNA, cytoplasmic RNA, muscle fibers and other cellular structures such as adipocyte
cell walls [11, 20–22]. This nonselective staining makes it useful as a general comprehensive
fluorescence histology stain, as we and others have demonstrated [13, 14, 23], but it also lim-
its its utility as a fluorescent H&E analog since it demonstrates a staining mechanism that
mixes features of both hematoxylin and eosin. Also, since AO binds cytoplasmic RNA, it
does not specifically label the nucleus like hematoxylin. The inability to specifically label the
nucleus in cells rich in cytoplasmic RNA makes it difficult or impossible to discern useful
pathologic features, such as nuclear spatial density, nuclear-to-cytoplasmic ratio, nuclear
pleomorphism, and nucleomegaly, which are important features of neoplasia assessed on
H&E pathology. DRAQ5, on the other hand, is a live-cell nuclear stain with excitation and
emission properties in the far red to near infrared spectrum (λex = 647 nm, λem = 665–780
nm) that binds DNA stoichiometrically and exclusively, and is commonly used as a marker
for DNA content in flow cytometry [24, 25]. The nuclear specificity of DRAQ5 suggests its
potential use as a hematoxylin replacement in a fluorescent H&E analog. In the standard
H&E stain, eosin acts as an anionic counterstain to hematoxylin. Fortunately, eosin is yel-
low-fluorescent under blue-green excitation (λex = 490nm, λem = 530- 620nm) and is there-
fore a spectrally compatible fluorescent counterstain to DRAQ5 [26].
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In this work, we evaluated the use of DRAQ5 and eosin (“D&E”) as a direct fluorescent analog
to traditional H&E staining on fresh, unsectioned (‘zero-cut’) tissues at the point-of-acquisition.
The fidelity of D&E staining compared to traditional H&E was first validated in frozen and fixed
sections from a variety of human tissues. The intended use of D&E for virtual histology of ex vivo
uncut human tissues was then demonstrated on human kidney and prostate biopsies using struc-
tured illumination fluorescencemicroscopy, which is one method of obtaining thin optical sec-
tions of tissue. D&E for renal biopsy diagnosis was used to identify normal and sclerotic
glomeruli, as well as clear cell renal cell carcinoma in simulated 18G needle-core biopsies without
any tissue processing other than immersion in the dyes. D&E was also used in the assessment of
prostate cancer biospecimenquality by evaluating the amount of prostate cancer present in a
simulated large-core biopsy. The topical stainingmethod introduced here, combined with fluo-
rescent ex vivomicroscopy, could enable routine non-destructive histological assessment of fresh
human tissues at the point-of-care for a variety of applications.

Materials and Methods

Stains

DRAQ5 (5 mM, Biostatus, Ltd.) was diluted from 5 mM to 50 μM in PBS. Eosin Y (E4009,
Sigma-Aldrich)was dissolved to [2% v/v] in 80% ethanol. Stains were applied directly to tissue
sections and intact tissues without furthermodification.

Tissue collection and processing

Formalin-fixed paraffin embedded (FFPE) tissue sections (n = 11) were obtained from the
Tulane Medical School Histology core under an IRB-approved protocol. De-identified, large,
paraffin-embeddedtissues were selected as examples of unique tissue morphology of different
organs. The tissues were cut into 4 μm thick sections and mounted on microscope slides. They
were stored at room temperature until immediately prior to staining, at which point the sec-
tions were de-paraffinized, stained according to the protocol below and imaged with wide-field
epifluorescencemicroscopy. After fluorescence imaging, they were processed for H&E through
the Tulane Medical School Histology Department and scanned at 20X with an Aperio whole
slide scanner (Leica Biosystems).
Frozen section tissues (n = 22) were obtained from the Louisiana Cancer Research Center

(LCRC) BiospecimenCore under an IRB-approved protocol. Flash-frozen, de-identified tissue
biopsies from various organs were processed into 10 μm thick sections then placed onto stan-
dard glass microscope slides. They were then stored frozen at -18°C until immediately prior to
staining and imaging the tissue. The slides were removed from the freezer, gently rinsedwith
room temperature PBS to thaw the tissue, stained using the protocol describedbelow, and
imaged. After imaging, the sections were sent to Tulane Medical School Histology Department
for standard H&E processing, then scanned with the whole slide scanner.
Fresh renal biopsies (n = 3) and prostate biopsies (n = 1) for this study were obtained in accor-

dance with an Institutional ReviewBoard-approved protocol. Biopsies were collected from excised
tissue specimens for purposes of research and were not collected for clinical diagnosis, therefore we
use the term “simulated biopsy” when referring to them. Simulated renal biopsies were obtained
using an 18G core-needle biopsy device (BardMonopty) from freshly excised (ex vivo) partial and
total nephrectomy specimens from benign and adjacent neoplastic renal tissues. Prostate biopsies
were taken as punches from radical prostatectomy specimens containing prostatic adenocarci-
noma. Intact biopsies were stained and imaged according to the protocol below, then sent to the
Tulane Medical SchoolHistologyDepartment for fixation, sectioning, and standard H&E process-
ing. ResultingH&E sectionswere scannedwith the previously describedwhole slide scanner.

DRAQ5 and Eosin for Fresh Tissue Fluorescence Histology
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All research was conducted under a protocol approved by the Tulane University Biomedical
Institutional ReviewBoard. Specimens were de-identified prior to acquisition and data were
analyzed anonymously, therefore informed consent was not required.

Thin tissue section staining and fluorescence imaging

A validation study was conducted on de-paraffinizedFFPE and thawed frozen sections stained
with D&E. A section of tissue was briefly exposed to DRAQ5 by immersing the section in 50 μM
DRAQ5 for ten seconds. Then 2% eosin in ethanol was applied for 10 seconds and then thor-
oughly rinsedwith PBS to remove any excess stain. The tissue sectionwas then exposed to 50 μM
of DRAQ5 again for three minutes before a single rinse with PBS. The double-exposure protocol
for DRAQ5 was developed after an initial staining optimization demonstrated a marked increase
in intensity of DRAQ5 compared to single exposures staining before or after eosin application.
Eosin intensity was not significantly affected by subsequent application of DRAQ5. Samples were
imaged with a custom epi-fluorescencemicroscopewith optical sectioning structured illumina-
tionmicroscopy (SIM) capability based on an automated modular platform (RAMM,Applied
Scientific Instrumentation) and described in detail in our previous publications [13, 14]. Briefly,
the system consists of a 470 nm LED for eosin excitation (M470L2, Thorlabs), and was modified
in this work to include a 630 nm LED for DRAQ5 excitation (UHP-Mic-LED-630, Prizmatix).
The LEDs were combined with a dichroic beam combiner (Prizmatix) and imaged onto a ferro-
electric spatial light modulator (SLM, 3DM, Forth Dimension Displays), which was used to proj-
ect patterns for structured illuminationmicroscopy onto the sample through a 10X, 0.45NA Plan
Apo objective lens (Nikon) in epi-illumination configuration.A multiband dichroic beamsplitter
(FF409/493/573/652-Di01-25x36, Semrock) and emission bandpass filter (FF01-432/515/595/
730-25, Semrock)was used to allow excitation and emission of both DRAQ5 and eosin; the
DRAQ5 and eosin images were taken sequentially at each frame position by illuminating with
their respective LEDs. The sample was imaged through the 10X objective and a Nikon tube lens
onto a Hamamatsu Orca Flash 4.0v2 scientific CMOS camera. The system was controlled
through custom-written LabVIEW software. The single frame field of view for the system is 1.3 x
1.3 mm at 4.2 megapixel resolution (2048 x 2048 pixels). The lateral resolution for eosin emission
is 1.47 μm and for DRAQ5 emission is 1.90 μm, both limited by the optical point spread function.
Images of larger areas were taken by translating the sample over the objective and takingmultiple
frames, which were assembled into mosaics after imaging, similar to digital whole slide scanners.
For tissue section imaging, the microscopewas operated in standard wide-field illumination
(non-SIM) epifluorescencemode. Both channels used an integration time of 110 ms and each
LED intensity was adjusted to maximize signal while not saturating the camera.

Intact, whole biopsy staining and fluorescence structured illumination

microscopy

Adjustments were made to the staining protocol for whole pieces of tissue versus tissue sections
on slides. Whole biopsies were submerged in PBS immediately after collection until time of
staining. The biopsies were then submerged in [2% v/v] eosin for 10 seconds and rinsed by
immersion in phosphate buffered saline (PBS) to remove excess stain. The biopsy was then
blotted dry with lab tissue (Kimtech) and submerged in 50 μMDRAQ5 for 3 minutes. After
incubation in DRAQ5, the biopsy was rinsed by immersion in PBS and dried by patting with
lab tissue. The stained tissue was placed on a glass slide ensuringmaximum contact with the
surface of the slide. The entire staining process took approximately 5 minutes and could be par-
allelized for multiple biopsies using cassettes.

DRAQ5 and Eosin for Fresh Tissue Fluorescence Histology
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For fresh, uncut tissue imaging the microscopewas operated in structured illumination
microscopy mode using an absolute spatial frequency of the grid pattern at the sample of
f = 17.1 cycles/mm and an integration time of 100 ms—110 ms, with the power of each LED
adjusted to maximize signal without saturating the camera in wide-fieldmode. The normalized
spatial pattern frequency (ν) for each excitation channel was determined using the relationship
v = f λex / NA, where λex is the center excitation wavelength of the respective LED and NA is
the numerical aperture of the objective lens [13]. Using ν and the center emission wavelengths
of the eosin and DRAQ5 channels, theoretical calculations for the axial response of the system
in terms of half-width-half-maximum (HWHM) of each channel was made following Karadag-
lic and Wilson [27]. The HWHM is used as it most closely approximates the thickness of tissue
sampled at the planar surface in contact with the glass slide. At f = 17.1 cycles/mm, the theoret-
ical HWHMof the eosin channel is 18.8 μm and the HWHM of the DRAQ5 channel is
18.7 μm. Our previous work demonstrated that the theoretical calculation closely aligns with
the measured response of the system using the eosin (470 nm excitation) channel [13].
AlthoughH&E section thicknesses vary between institutions, typical paraffin and frozen sec-
tion cutting plane thickness at our institution can range from 4 μm to 10 μm. Similar to a con-
focal microscope, the optical section thickness of the structured illuminationmicroscopemay
be adjusted to get section thicknesses approximating those of H&E sections, in this case by
changing the grid pattern frequency to higher values to achieve thinner optical sections. How-
ever, this comes at the expense of decreased signal recovery and decreased SNR, and we have
found that the frequencies used in this work represent an acceptable tradeoff between SNR and
increased contrast due to background rejectionwith optical sectioning.
Using structured illuminationmicroscopymode it took 330 ms to image an area of 1.3 mm x

1.3 mm per channel for the stains used in this work. A typical 18G biopsy tissue area of 33.8
mm2 can be stained using the above protocol within 5 minutes, placed on a slide, and imaged in
slightly greater than 10 seconds per channel, allowing for motorized stage (7mm/sec lateral trans-
lation speed) adjustment. Multiple biopsies may be placed in a cassette and stained concurrently,
such that increasing the number of biopsies to be imaged increases the total processing time only
by the imaging time per biopsy and not the staining time. By increasing illumination intensity to
improve signal, imaging time could be further reduced by a factor of 10 to 30 ms per frame as
shown in our prior work using a very bright fluorophore, acridine orange [13, 28]. After imaging,
the imaged surface of the biopsy was marked with histological ink and fixed in 10% formalin for
a minimum of 48 hours. The biopsies were sent to the Tulane HistologyDepartment for standard
H&E processing where a 4 μm sectionwas cut from the biopsy, enabling comparison of the H&E
section against the D&E pseudocolored image of the intact biopsy.

Digital pseudo-H&E staining of fluorescent images

Raw 16-bit grayscale TIFF images (either widefield images for tissue sections or SIM images for
thick tissues using the RMS optical sectioning algorithm [14, 29]) were first converted to dou-
ble precision arrays spanning the range [0 1] for furthermathematical processing. In order to
account for illumination uniformity, a flat-field correction procedure was performed by divid-
ing each raw image frame by a calibration image of a uniform fluorescent sample for each
respective channel, followed by construction of a mosaic from the assembled frames. The
mosaicked image for each channel was further preprocessed using the following operations:

D5 ¼ AID5
gD5 ð1Þ

E ¼ BIE
gE ð2Þ

DRAQ5 and Eosin for Fresh Tissue Fluorescence Histology
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where ID5 and IE are the intensity correctedmosaics for each channel, yΔ₅ and yE are non-linear
weighting factors applied to compress the image intensities to improve visualization of the
large-dynamic-range images, and A and B are empirically determined scaling coefficients used
to match the mean intensities of the two channels. For all images, the gamma factors ranged
from 0.65–1. The average yE was 0.75; the average yΔ₅ was 0.85. The scaling coefficients typi-
cally ranged from 0.8 to 5, whereA ranged from 0.8–3 and B ranged from 1.5–5.
Following these preprocessing steps, using the procedure first outlined by Gareau [5] and

later improved by Bini et al. [15], we re-mapped the pixel intensities of the DRAQ5 and eosin
channels of the pre-processedmosaics into a composite RGB image that simulated the appear-
ance of H&E staining:

R : ½1 � D5ð1 � 0:24Þ � Eð1 � 0:88Þ� ð3Þ

G : ½1 � D5ð1 � 0:21Þ � Eð1 � 0:27Þ� ð4Þ

B : ½1 � D5ð1 � 0:62Þ � Eð1 � 0:66Þ� ð5Þ

The individual RGB arrays were then re-scaled into a single composite 16-bit RGB TIFF image.
All processing was performed in MATLAB.

Validation study of D&E against H&E on tissue sections

We examined the performance of D&E on FFPE sections and frozen sections in order to com-
pare D&E’s effectiveness as a diagnostic tool against standard H&E processing before applying
it to thicker tissues. Serial staining and imaging (D&E followed by H&E) of thin sections was
useful in order to examine the exact morphology and staining correspondence between the two
methods. In order to test D&E on fixed tissue, the pathologist and other researchers were
blinded to the source organ of each tissue section. A previous critique for many previous ex
vivo imagingmethods is that a pathologist would need to undergo a training period to adjust to
the images generated by the new imagingmodality. This training period is especially important
if the images could possibly convey false or misleading data created by imaging artifact or con-
trast mechanisms which do not recapitulate standard histological contrast, which may lead to
low reviewer certainty and resulting errors in interpretation. By using as close an approxima-
tion of the histochemical behavior of H&E as possible in fluorescencemicroscopy, the need for
training could be vastly reduced or theoretically eliminated. This validation study was con-
ducted in order to determine if a pathologist, with no prior training in review of D&E images,
could correctly identify and diagnose a variety of tissues using this contrast mechanism. The
blinded pathologist evaluated first the D&E image of the section and then the digitally scanned
H&E section to determine the organ of origin, tissue type, and noted any distinctivemorpho-
logical features commonly used in diagnostic evaluation. In total, seven tissue types were iden-
tified across twelve sections: lung (n = 3), prostate (n = 2), thyroid (n = 2), liver (n = 2), kidney
(n = 1), adrenal gland (n = 1), and colon (n = 1). A second study was performed to evaluate the
effectiveness of D&E on previously frozen tissue sections. These frozen sections were selected
from various organs that are likely to be subjected to in-procedure histological assessments
(prostate, lung, colon, breast, bladder, kidney, and skin) and may be subjected to ancillary
molecular techniques for further diagnostic workup. As with the fixed tissue study, each section
was evaluated to determine the organ of origin, tissue type, and noted any distinctivemorpho-
logical features commonly used in diagnostic evaluation. Those sections that were so degraded
by frozen artifact as to impair recognition in both D&E and H&E were excluded from analysis.
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A total of 25 sections were evaluated: lung (n = 6), prostate (n = 6), colon (n = 4), kidney
(n = 3), breast (n = 3), and bladder (n = 3).

Evaluation of D&E for ‘zero-cut’ pathology on intact fresh biopsies

A pilot study was conducted to test the use of D&E on intact whole needle core renal biopsies
and large prostate biopsies. Three 18G core needle renal biopsies obtained from the previously
describedkidney samples were stained with D&E and imaged using fluorescence structured
illuminationmicroscopy. A large core needle prostate biopsy from the previously described
prostate samples was also stained with D&E and imaged using fluorescence structured illumi-
nation microscopy. The pathologist examined the ability to differentiate pathologically relevant
features and identify any evidence of disease in the D&E thick tissue images and their corre-
sponding H&E tissue sections.

Results

To demonstrate the image collection and processing pipeline, Fig 1 shows a single 10 μm
thawed frozen section of a prostate punch biopsy, stained with D&E, imaged, and recolored to
simulate H&E, followed by standard H&E processing and imaging. This figure shows eosin
staining all non-nuclear cellular material (Fig 1A and 1B), DRAQ5 bound to the nuclei (Fig 1C
and 1D), and the combined image of the two channels in green/magenta pseudo-coloring (Fig
1E, 1F and 1K). The prostate sectionwas later stained with H&E and then scanned with a digi-
tal slide scanner (Fig 1I, 1J and 1M). After re-coloring the D&E image to simulate the appear-
ance of H&E (Fig 1G, 1H and 1L), the two images are shown to be highly similar. Specifically,
in the eosin channel (Fig 1A and 1B), cytoplasmic and stromal material is clearly visualized as
well as the absence of fluorescence signal where nuclei are located. The DRAQ5 channel (Fig
1C and 1D) demonstrates specific nuclear staining; the morphology of individual nuclei form-
ing glands and fibroblast nuclei throughout the stroma are clearly visualized and spatially con-
sistent with hematoxylin staining in H&E. Merging the two separate channels creates a single
fluorescent image that shows nuclei, cytoplasmic and extracellularmaterial together (Fig 1E,
1F and 1K). The fluorescent composite image of the DRAQ5 and eosin channels shows that
the nuclear (magenta) and cytoplasmic/extracellular (green) compartments are each uniquely
stained and spatially consistent with H&E. The individual fluorescent channels of A and C
were then combined using Eqs 1–3 to create Fig 1G, 1H and 1L, recapitulating standard H&E
histology (Fig 1I, 1J and 1M).
Fig 2 contains example images of FFPE sections from various tissue types imaged with both

D&E and H&E, allowing a direct comparison of the tissue morphology and staining fidelity.
The pathologist correctly identified the tissue type in all twelve D&E fixed sections in a blinded
review. The comparison betweenmethods demonstrated complete morphological correspon-
dence. Specific regions of interest of particular tissues are shown in Fig 2. Unique morphologi-
cal features in the same type of tissue, such as the distinction between a pulmonary artery (Fig
2A and 2B) and a bronchus (Fig 2C and 2D) were observed in both D&E and H&E versions of
the tissue. Alveolar septae, bronchial epithelium, mucus, and blood clot show strong morpho-
logic and color compatibility in both modalities. Thyroidal colloid and follicular cells [Fig 2E
and 2F] are easily distinguished in the D&E and H&E images.
Although the pseudo-coloredD&E replicates H&E with high fidelity spatially, potentially

useful color variations betweenD&E-processed images and standard H&E are evident. Areas
of liver cirrhosis were identified in both the D&E and H&E images (Fig 2G, 2H, 2I and 2J) and
robust collagen fibrosis in the liver sections appears more strongly on the D&E sections. The
D&E pseudocolor algorithm allows for increased contrast, as in the ductular reaction in liver

DRAQ5 and Eosin for Fresh Tissue Fluorescence Histology
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tissue (Fig 2G and 2H). Additionally, the lamellations of the corpora amylacea are highly pro-
nounced on the D&E as well (Fig 2K).
The pathologist also correctly identified all twenty-five D&E frozen tissue sections. Regions

of either morphological or pathological interest on frozen tissues were selected and are shown
in Fig 3. Renal medullary tubules are seen (Fig 3A and 3B) as well as normal colonic crypts (Fig
3C and 3D). In a single area of lung tissue, identification of important morphological features
including a pulmonary artery branch, terminal bronchiole and alveolar macrophages were all
clearly identified on D&E and confirmed in H&E (Fig 3I and 3J).
Similar to the fixed tissue images, color variations are observedbetweenD&E and H&E,

althoughmorphological (spatial) correspondence is preserved betweenmethods. Some useful
differences between the two staining methods exist, most notable of which is the emphasized
elastic lamina seen in bright pink in the D&E version (Fig 3E and 3G) compared to the H&E
version (Fig 3F and 3H) of the outer pleural surface of the lung. Typically, this structure is best
visualizedwith a special elastin stain and is used to stage pleural invasion in lung carcinomas.
The final and most important evaluation consisted of testing the capability for D&E to stain

fresh, uncut tissues and still provide the same diagnostic information as H&E. Staining and
imaging thick tissue is made more difficult by the need to control the stain penetration and
background signal of the thick tissue, and it requires the use of a fluorescencemicroscope capa-
ble of creating an optical section in lieu of a physical section. Three intact, 18 G core needle
simulated renal biopsies and one simulated prostate punch biopsy were fluorescently stained
and imaged with structured illuminationmicroscopy, which is an example of an emerging opti-
cal sectioningmicroscopy technique for ex vivomicroscopy [11, 13, 14]. Pathologist review of
the D&E images identified a healthy glomerulus in one biopsy and a sclerotic glomeruli pair,

Fig 1. Fluorescent eosin channel (A, B). Fluorescent DRAQ5 channel (C, D). Fluorescent composite of D&E (E, F, K).

Fluorescent D&E image pseudocolored to resemble H&E (G, H, L). The brightfield H&E of the corresponding histology (I, J,

M).

doi:10.1371/journal.pone.0165530.g001
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shown in Fig 4, which was confirmed in the H&E-stained FFPE section taken subsequent to
imaging.
The D&E (Fig 4A) staining and imaging allowed the entire surface of the biopsy to be

imaged in toto, compared to the fragmented appearance of the sectionedbiopsy post-H&E pro-
cessing (Fig 4B).
The area of the optical section in the biopsy D&E image is 20.5 mm2, whereas after physical

sectioning and H&E processing, the remaining tissue section comprises an area of only 6.7
mm2. Multiple “virtual sections” of the biopsy can be collectedwithout harm to the tissue
using the D&Emethod, by physically rotating the biopsy on the microscope slide and repeating
the imaging. Therefore, thorough coverage of the biopsy surface can be imaged with robust
concordance betweenD&E and H&E analysis. Increased differences between the D&E and
H&E images are apparent in the biopsy, but these can be attributed to the thickness of the tis-
sue being imaged in D&E and the loss of tissue during standard histopathology processing.We

Fig 2. D&E and H&E images from FFPE tissue sections. D&E (A) and H&E (B) of lung parenchyma and small pulmonary

artery branch with blood clot (arrow). D&E (C) and H&E (D) of bronchus with mucus plug (arrow). D&E (E) and H&E (F) of

thyroid follicles. D&E (G) and H&E (H) of cirrhotic liver showing ductular reaction. D&E (I) and H&E (J) of liver with a cirrhotic

nodule (arrow) and surrounding ductular reaction. D&E (K) and H&E (L) of prostate glands with corpora amylacea (arrow).

doi:10.1371/journal.pone.0165530.g002
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were able to identify normal glomeruli in the first biopsy, as well as a sclerotic glomeruli pair in
the second biopsy. The glomerulosclerosis seen in the second biopsy is characterized by a loss
of nuclei and the replacement of the round glomerulus with eosinophilic fibrosis, seen in both
the D&E and H&E images.
Clear cell renal cell carcinoma (CCRCC)was diagnosed in an intact 18G renal core biopsy,

shown in Fig 5. In both the D&E (Fig 5A) and H&E (Fig 5B) images there is a clear loss of nor-
mal renal architecture with replacement by a homogenous proliferation of neoplastic tumor
cells, encompassing the entire biopsy specimen. The homogenous nature, lack of tubules and
glomeruli, and light coloration of the eosin signal compared to the DRAQ5 signal (Fig 5C) are
all features indicative of the presence of a neoplasm, confirmed as clear cell renal cell carcinoma
on histology (Fig 5D).

Fig 3. D&E and H&E images from frozen tissue sections. D&E (A) and H&E (B) of renal medullary tubules. D&E (C) and

H&E (D) of colonic crypts. D&E (E, F) and H&E at (G, H) of outer pleural surface of lung with prominent elastic lamina (yellow

arrow). D&E (I) and H&E (J) of lung showing pulmonary artery branch (red arrow) with terminal bronchiole (green arrow) and

alveolar macrophages (black arrow).

doi:10.1371/journal.pone.0165530.g003
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Fig 6 provides an example of a simulated prostate biopsy containing adenocarcinoma. As an
example of the use of D&E for assessment of cancer biospecimen quality, we evaluated the
tumor content using each method; 10% tumor content was observed in the D&E image, match-
ing the 10% tumor content observed in the H&E section.Within the biopsy, areas of healthy
glandular structures (black arrows) are shown adjacent to areas of malignant adenocarcinoma

Fig 4. D&E (A) and H&E (B) of a healthy glomerulus from an intact kidney needle biopsy core. D&E (C) of an entire intact

kidney needle biopsy core, and (D) subsequent H&E section. D&E (E) and H&E (F) of sclerotic glomeruli from the kidney

biopsy.

doi:10.1371/journal.pone.0165530.g004
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gland infiltration (yellow box) in both D&E (Fig 6C) and H&E (Fig 6D) images. Tumoral con-
tent is comparable in both methods, supporting further the ability of D&E to be used as a non-
destructive tissue triagemethod for personalizedmedicine and downstreammolecular
analysis.

Discussion

In this report we demonstrate that the novel combination of fluorescent stains DRAQ5 and
Eosin Y (D&E) allows for time-efficient staining and rapid fluorescence imaging to create vir-
tual histologic images from fully-intact fresh core needle biopsy specimens. D&E staining was
first validated in fixed and frozen tissue sections, and in all conditions robustly recapitulated
the appearance of standard H&E histopathology. This validation study demonstrated the abil-
ity for a pathologist to correctly identify a variety of tissue types in both FFPE and frozen speci-
mens with no prior training using this dual-stain fluorescent method. Importantly, pathologist

Fig 5. D&E (A) of clear cell renal cell carcinoma in an intact 18G core needle kidney biopsy and (C) an area of higher

magnification showing loss of normal renal architecture. H&E (B) of a 4 υm section from the same kidney biopsy showing clear

cell renal cell carcinoma and (D) an area of an area of higher magnification showing loss of normal renal architecture.

doi:10.1371/journal.pone.0165530.g005
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review of the tissues found that diagnostically relevant morphological features were preserved
between the methods. By applying the pseudocolor process described by Gareau [5] to D&E
images, we were able to visualize the same morphological features as H&E. Both Figs 2 and 3
demonstrate the ability to identify histologically relevant features on D&E images, supported

Fig 6. D&E (A) of an intact prostate large core needle biopsy with adenocarcinoma and a 4 υm H&E (B) section from the same

tissue. D&E (C) and H&E (D) of infiltrating prostatic adenocarcinoma (yellow box) adjacent to normal prostatic glands (black

arrows).

doi:10.1371/journal.pone.0165530.g006
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by the H&E images of the same sections. Importantly, the use of D&E does not damage or oth-
erwise alter the tissue for future histopathology processing. Particularly significant is the dem-
onstration of D&E as a direct means to create H&E-like images non-destructively from intact
biopsy tissues, when combined with a form of fluorescence optical sectioningmicroscopy, as
evidenced in Figs 4–6. One positive consequence of imaging the tissue in the fresh state as
shown in Fig 4C and 4D is that the resulting optical sections are less susceptible to tissue frag-
mentation and oblique sectioning artifacts, potentially providing a more comprehensive assess-
ment of the biopsy in a single image. We have also shown the ability to accurately and rapidly
diagnose disease in thick, intact tissue without any cutting or additional processing, as shown
with clear cell renal cell carcinoma in Fig 5 and prostate adenocarcinoma in Fig 6. Therefore,
D&E can be paired with FSA and/or touch preparation for rapid on-site evaluation. Further
studies examining the ability for pathologists to diagnose wide varieties of tissues and the inter-
action of D&E with downstream analyses may prove D&E with optical sectioning to be an
alternative for FSA. The demonstration of rapid histologic imaging of fresh core biopsies could
have immense clinical significance, as this would allow for point-of-care evaluation of core nee-
dle biopsies not only for diagnosis, but also for robust evaluation of tumor content, cellularity,
and consequently DNA content for ancillarymolecular testing. Additionally, the modality
could also be utilized for medical renal biopsies with the evaluation of glomerular content for
the triage of tissues to electronmicroscopy, histology, and immunofluorescence.
The method describedhere is a high fidelity analog to traditional H&E. The DRAQ5 chan-

nel may better isolate nuclear-only features compared to computational segmentation of nuclei
fromH&E images using color deconvolution or other methods (S1 Fig), supporting quantita-
tive measurement of nuclear features with fewer required image processing steps (S2 Fig).
Although D&E provides an extremely high fidelity match to H&E in terms of spatial correla-
tion, we described a few variations between some non-nuclear structures in the D&E and H&E
images, primarily due to the increased sensitivity to eosin concentration caused by fluorescence
imaging rather than brightfield absorptive imaging. These variations were not considered to be
detrimental to diagnosis, and in fact they contained useful features that with further characteri-
zation could provide advanced diagnostic abilities not typically available in H&E. For example,
some structures with diagnostic relevance, such as the eosin-stained elastic lamina of lung
pleura (Fig 2G and 2H) were enhanced in the D&E image compared to H&E.While matching
the hue of the H&E image to the D&E image could render the elastic lamina of both indistin-
guishable, it is possible that the positive contrast and hue differences of D&Emay allow for eas-
ier visualization of highly-stained features compared to the negative absorbance contrast of
bright field microscopy. For staging non-small cell lung carcinoma, stains other than H&E are
often needed in order to fully examine the anatomical structures of the elastic lamina. With
increased invasion of the visceral pleura, these structures become increasingly difficult to iden-
tify [30]. The combined intense hue and intensity of D&Emay allow for this examination with-
out additional contrast agents; the H&E slides would need to be digitally enhanced to create
artificial intensity and contrast in order to match the differentiation afforded by D&E.
The methods used to apply eosin for D&E staining are different from those used in the typi-

cal pathology laboratory, but the application of DRAQ5 and eosin do not have a negative effect
on later H&E processing as shown in our results, where sections were stained for H&E after
D&E staining with no apparent detrimental effects on the resulting H&E appearance. In the
case of the clear cell carcinoma (Fig 5), the lack of eosin closely recapitulated the “clear cell”
nature of the cells on subsequent H&E, further validating the D&E technique as useful in
tumor analysis. Each histology lab has its own method of H&E staining and multiple subtle
color variations can be seen across these labs. A benefit to this pseudocoloringprocess is that
the hue of the resulting images can be adjusted to pathologist preference and maintained
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uniformly across samples. However, the RGBmapping coefficientsmay be adjusted to recreate
color differences in H&E sections that can result from variations in H&E staining intensity and
illumination white-balance in brightfield imaging systems. The pseudocoloredD&E sections
fall along this spectrumand resemble H&E closely enough that any pathologist on initial exam-
ination would be comfortable with accurate tissue evaluation.
We have previously demonstrated the ability to diagnose thick tissues using acridine orange

and SIM [28, 31]. While the pseudocoloringprocess can be used with fluorophores other than
DRAQ5 and Eosin, DRAQ5’s uniqueness as a DNA-selective, membrane permeant dye with
far-red spectral properties provides the potential for it to be paired with many different fluoro-
phores with little spectral interference [32]. DRAQ5 is also highly specific to DNA content in
live cells, which stains such as propidium iodide cannot match [33]. The protocol we developed
for DRAQ5 allows it to be used in a clinical setting in a relatively short time frame. Staining
time and concentration for DRAQ5 is variable in both the literature from the provider’s proto-
col, and more studies must be completed to characterize its use in fresh, intact tissue [25, 33,
34]. In this work, we held concentration (50 μM) and incubation time (3 minutes) in DRAQ5
constant regardless of tissue thickness. DRAQ5 protocols range in concentration from 1 μM to
500 μM with either immediate viewing or incubation times up to 30 minutes, with the provider
protocol stating a 5μM concentration and 10–30 minute incubation [32–35]. To the best of our
knowledge, no studies on the performance of DRAQ5 in thick, intact tissues have been com-
pleted. Exactly how previous use on cells in culture translates to thick, intact tissue has yet to be
described, but our own study shows no marked difference in DRAQ5’s performance on thin,
fixed tissue sections compared to imaging the surface of stained, uncut and unfixed biopsies. In
comparison, acridine orange is significantly less expensive than DRAQ5 with proven perfor-
mance on thick tissues. However, acridine orange’s propensity to stain cytoplasmic RNA as
well as other structures such as muscle fibers and collagenous stroma limits its utility as a direct
analogue to hematoxylin for nuclear-specific staining [20–22]. An in-depth comparison of
acridine orange to D&E in terms of contrast mechanism, optimal staining protocols, and cost
will be the subject of a future publication.
In this study, the use of D&E as a novel dual stain method is demonstrated as a rapid and effi-

cient means to obtain high quality histology-like images from fresh, unsectioned tissues. This
fluorescent stain and processing system creates a digital image that pathologists can quickly
review for diagnostic features, similar to an H&E slide, which is ideal as an alternative to standard
FSA to preserve tissue content and can easily be paired with standard processingmethods.
Although we used fluorescence structured illuminationmicroscopy in this work due to its high
imaging speed, we have also used confocalmicroscopy with D&E with excellent results. As this
paper was in revision, a study by Giacomelli et al. [36] was published describing a virtualH&E
color mapping model whichmore faithfully captures the physical differences between linear
luminous contrast in fluorescencemicroscopy and non-linear (exponential) absorptive contrast
in brightfieldmicroscopy, than the linear mapping model adopted in our work. The use of that
algorithm could eliminate the need for the nonlinear intensity adjustments used in our work
whilemaintaining its high dynamic range, and may be a highly usefulmethod for the stain com-
bination and application describedhere. In summary, fluorescence ex vivomicroscopy with D&E
may thus provide damage-free tissue evaluation and time-efficient turn-around at the point of
tissue acquisition in cases where time or tissue conservation is a limiting factor.

Supporting Information

S1 Fig. Comparison of cell nuclei segmentation betweenD&E (left column) and H&E
(right column).The D&E (A) and H&E (B) images from Fig 1L and Fig 1M are shown in the
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top row. The DRAQ5 channel corresponding to cell nuclei is shown in (C), whereas the cell
nuclei segmented from the H&E image using the standard ImageJ color deconvolution plugin
is shown in (D). Although the H&E image was collected at a higher magnification and resolu-
tion (20X, 1 μm resolution) than the DRAQ5 image (10X, 1.9 μm resolution), the close mor-
phological correspondence between the DRAQ5-labeled nuclei and the nuclei segmented from
the H&E image are apparent. The use of DRAQ5 may in fact offer a more accurate segmenta-
tion of nuclei in histologic images than the use of color deconvolution on H&E images, as
shown in the contrast-enhanced versions in (E) and (F). The use of color deconvolution to seg-
ment areas stained by hematoxylin results in extraction of image areas not associated with cell
nuclei (F), whereas the DRAQ5 channel is highly specific to the cell nuclei (E).
(TIF)

S2 Fig. Quantitative comparison of nuclear area betweenDRAQ5 channel and segmented
H&E. Cell nuclei in a single prostatic gland were manually outlined in ImageJ in the segmented
H&E image (A) and the DRAQ5 channel of the D&E image (B). Nuclei are observed to be
highly similar in size and shape and measured nuclear areas (C) were comparable between the
two methods–the slightly higher areas in the DRAQ5 channel may be attributed to the larger
pixel size and lower optical resolution of the D&E images compared to the H&E images.
(TIF)
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