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Machine learning and modeling approaches have been used to classify protein

sequences for a broad set of tasks including predicting protein function, structure,

expression, and localization. Some recent studies have successfully predicted whether a

given gene is expressed asmRNA or even translated to proteins potentially, but given that

not all genes are expressed in every condition and tissue, the challenge remains to predict

condition-specific expression. To address this gap, we developed a machine learning

approach to predict tissue-specific gene expression across 23 different tissues in maize,

solely based on DNA promoter and protein sequences. For class labels, we defined high

and low expression levels for mRNA and protein abundance and optimized classifiers

by systematically exploring various methods and combinations of k-mer sequences in

a two-phase approach. In the first phase, we developed Markov model classifiers for

each tissue and built a feature vector based on the predictions. In the second phase,

the feature vector was used as an input to a Bayesian network for final classification.

Our results show that these methods can achieve high classification accuracy of up to

95% for predicting gene expression for individual tissues. By relying on sequence alone,

our method works in settings where costly experimental data are unavailable and reveals

useful insights into the functional, evolutionary, and regulatory characteristics of genes.

Keywords: maize genetics, gene expression, protein abundance, mRNA abundance, machine learning

1. INTRODUCTION

In the era of big data, machine learning is increasingly becoming a valuable tool to model
biology and make powerful data-driven predictions, especially in genomics. Recent work has
provided insight and understanding on a wide range of biological problems (Yip et al., 2013;
Bastanlar and Ozuysal, 2014; Libbrecht and Noble, 2015; Eraslan et al., 2019; Avsec et al.,
2021). Some of these methods are sequence-driven while others use large sets of complementary
data that rely on the machine learning or deep learning approaches to identify the relevant
features. For example, some recent machine learning based approaches have been used for
gene annotation and classification in maize, which is a top production grain crop globally
and an organism of historical and cultural importance. The methods include a random forest
classifier based on methylation and histone modification patterns (Sartor et al., 2019), a
natural language processing method on cell regulatory functions (Mejía-Guerra and Buckler,
2019), and a deep learning method for gene expression prediction (Washburn et al., 2019).
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Sartor et al. (2019) proposed gene expression classifiers based
on sequence and chromatin information including DNA
methylation data, histonemodifications, and transcription-factor
binding sites. Mejía-Guerra and Buckler (2019) introduced a k-
mer grammar analysis model, which uses “bag-of-k-mers” and
“vector-k-mers” models to annotate regulatory regions in maize.
The “bag-of-k-mers” method focuses on k-mer frequency while
the “vector-k-mers” model considers the frequency of k-mer
pairs (co-occurrence of k-mer pairs). Washburn et al. (2019)
proposed “gene-family guided splitting” and “ortholog contrasts”
approaches for mRNA expression prediction.

Although early work has shown promise, an overgrowing need
still exists to identify, label, and classify the products of high
throughput genome sequencing into biological knowledge in a
fast and efficient way. There are two primary ways to measure
gene expression: (1) mRNA abundance using RNA-seq and
(2) protein abundance using mass spectrometry. Both methods
provide functional clues and can be used to associate genes to
functional characteristics, but the experimental determination
of protein function and regulation significantly lags far from
that of sequencing. This disparity is likely to continue for the
foreseeable future. Hence, protein assignment to a biological
functional label from sequences alone remains an important
and challenging problem in functional genomics (Eisenberg
et al., 2000; Hanson et al., 2009; Griesemer et al., 2018).
Machine learning approaches have been successfully used to
predict gene expression from sequence. To produce the best
gene expression predictors, information across the broad gene
regulatory structure is needed (Zrimec et al., 2020). Recent
work has used both coding and non-coding sequences inclusing
transcription factor (TF) binding sites (Holland et al., 2019),
chromatin accessibility (Zhang et al., 2016), interactions across
distal promotor sequences (Zrimec et al., 2020), and other
cis-regulatory regions in promoter regions (de Boer et al.,
2020). A challenge is to make the process quick, accurate,
versatile, scalable, and updateable for annotations of genomes
with limited experimental data. For this reason, new machine
learning approaches to produce such functional assignments are
still needed.

The k-mer approach has become a reliable way to represent
biological sequence data for quick and accurate predictors
across a broad set of classification tasks (Vinga and Almeida,
2003; Vervier et al., 2016; Shen et al., 2018; Wang et al.,
2018; Mejía-Guerra and Buckler, 2019; Alam and Chowdhury,
2020). The approach strikes a balance between accurate,
rapid, and easy-to-understand classification (Wang et al., 2020)
and can be paired with other deep learning techniques to
generate reliable classifiers (Shen et al., 2018). Although k-
mer methods perform well on various classification tasks,
the use of non-sequential data to build classification models
increases prediction performance. For example, in two of the
studies (Sartor et al., 2019; Washburn et al., 2019), epigenetics
and regulatory information were used to predict expression.
However, a more challenging problem is to create models
that scale to large genomics data or less supported genomes
that have minimal experimental data, such as open chromatin,

DNA methylation, histone modification, and transcription-
factor binding sites. Experimental data can be very costly
to produce in both time (growing plants, collecting tissues,
sequencing, analyzing, etc.) and cost. Scaling the research at a
pan-genomic scale exacerbates the cost by working on larger sets
of accessions. For this reason, we chose to focus on developing
a sequence-only-based approach with relatively simple models
(for example, Bayesian) that scale well and are constructed
and tested quickly. Our sequence-only-based approach has
the key advantages that it can work on any set of genome
annotations regardless of supporting data such as epigenetics and
regulatory information.

Our approach extends existing methods for predicting gene
expression (de Jongh et al., 2020) in three significant ways.
First, most methods treat “expression prediction” as a binary
problem—classifying genes as expressed or not based on a
single threshold value. This classification does not consider
where or under which conditions a gene is expressed or its
level of expression. Our method leverages the gene expression
tissue atlas data (Walley et al., 2016) to determine how well
tissue-specific mRNA and protein abundance can be predicted.
Second, our method looks at various ranges of expression.
We build different models based on 5% increments of the
top and bottom expressed genes in each tissue (e.g., top 95,
90, 85%, etc.). Third, in addition to using 5’ DNA promoter
sequences, our methods explore k-mer frequencies of the
translated protein sequences.

For this study, we defined the problem as building
classification methods to predict tissue-specific mRNA and
protein abundance based on sequential features. We set out to
develop transcriptome-level classifiers that can quickly identify
common features within genes that are predictive of the
expression in specific tissues. For our training data, we used
DNA promoter and protein (peptide) sequences from the maize
B73 reference genome (Schnable et al., 2009; Tello-Ruiz et al.,
2018). Class labels were defined by experimental mRNA and
protein abundance levels from an expression atlas of 23 maize
tissues (Walley et al., 2016). The labels were assigned to each
gene separate and independent of each other. To optimize
the classification models, a systematic approach was used to
evaluate performance across multiple k-mer lengths, inputs
(DNA promoter vs. protein sequence), class labels (mRNA vs.
protein abundance), and expression thresholds. A final classifier
was built using a two-phase approach by combining results
from sub-classifiers using different parameter combinations with
common machine learning methods (Quinlan, 1986; Cortes and
Vapnik, 1995; Friedman et al., 1997; Mucherino et al., 2009;
Smith and Frank, 2016) for each of the 23 tissues. The goal
of this study is predicting tissue-specific gene expression. A
gene can be expressed in multiple tissues, so we built classifiers
using classifications based on 5% expression increments for
both high and low expressed genes. These increments allow a
user to choose between high-confidence predictions vs. high-
coverage predictions. We demonstrate that our fast, highly
scalable approach accurately predicted tissue-specific gene
expression in maize. The performance of these experiments show
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FIGURE 1 | Framework of tNB(k) model. The approach for this paper is divided in two major parts. Phase I uses the NB(k) implementation of a k − 1 Markov model to

build classifiers that predict tissue-specific gene expression of genes based on k-mer subsequences of either DNA or protein. The results from each tissue-specific

classifier were used to generate a new feature vector that was in turn used as input to a Phase II classifier. For the Phase II classifier we showed results for 5 common

machine learning approaches, but other machine learning approaches could be applied in the second phase.

promise of applying these methods to other plant and crop
model species.

2. MATERIALS AND METHODS

This work focused on using maize as a model to develop
sequence-only based approaches from 5’ DNA promoter
sequences and translated protein sequences. The data was
downloaded through GenBank in FASTA format and re-
structured into an internal database. The gene expression tissue
atlas data (Walley et al., 2016) was used for data labeling for
gene and protein expression. The experiments were designed by
grouping genes into 12 different percentile groups based on (top
six and bottom six by increments of 5%) mRNA abundance (RA)
and protein abundance (PA) in 23 tissues. A gene is assigned
to either the high expressed or low expressed class by labeling
data per tissue. These class labels are used to build training and
test data sets for machine learning (Phase I) using the NB(k)
implementation of the k − 1 Markov model (Andorf et al.,
2007, 2013). The binary outputs from these classifiers were used
to form a feature-vector as input to a second stage (Phase II)
machine learning classifier. In the Phase II method, four classical
machine learning approaches (decision tree, Bayesian networks,
k-nearest neighbor, and support vector machine) were evaluated
(see Figure 1).

A challenge of evaluating a two-phase machine learning
approach is balancing the tradeoff between overfitting and
underfitting caused by using adequate data to build strong
models, yet using proper data to evaluate the respective models.
To use a standard set-aside validation framework for our
methods would require using validation data for each fold in
the cross-validation approach. This is needed because the second
stage is dependent on the output of the first stage. For example,
in a 10-fold cross-validation framework, 90% of the data is used
for training and 10% for testing. To evaluate using a validation
set, the first stage training would use the 10% second stage testing
set to build the first phase models. Therefore to validate 1% of
the data, only 9% of the total data would be used vs. the typical
90/10 ratio used in cross-validation. In this study, we focused on
a systematic approach to evaluate across thousands of parameter
combinations. Using only 9% of the data for first stage training
was inadequate to train proper models, so we maintained distinct
data representations for each stage to limit bias.

2.1. Data
To describe tissue-specific expression patterns, we considered
both mRNA and protein abundance which were measured by
RNA-seq data labeled with FPKM (Fragments per kilobase of
transcript per million) and protein abundance data labeled with
dNSAF (Distributed Normalized Spectral Abundance Factor)
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TABLE 1 | A table describing the developmental atlas of maize data set.

Tissue no. Tissue name Type
mRNA abundance Protein abundance

Gene count FPKM 95% cutoff Gene count dNSAF 95% cutoff

1 6–7 internode Internode 21,823 133.98 6,590 3,150.38

2 7–8 internode Internode 21,738 137.49 7,241 3,035.73

3 B73 mature pollen Pollen 9,075 231.50 4,346 4,440.14

4 Ear Primordium 2–4 mm Ear 21,932 106.30 7,047 3,079,12

5 Ear Primordium 6–8 mm Ear 22,472 101.76 8,129 2,577.80

6 Embryo 20 DAP Ear 22,281 117.30 8,306 2,606.36

7 Embryo 2038 DAP Ear 21,766 93.25 5,953 2,878.06

8 Endosperm 12 DAP Ear 20,382 134.28 6,743 3,227.58

9 Endosperm crown 27 DAP Ear 15,797 54.04 5,815 3,272.29

10 Female spikelet collected on day as silk Ear 22,478 151.33 6,876 3,099.21

11 Germinatin Kernels 2 DAI Ear 23,329 115.48 6,105 3,207.12

12 Leaf zone 1 (symmetrical) Leaf 21,199 104.13 8,194 2,603.29

13 Leaf zone 2 (stomatal) Leaf 21,369 99.13 8,879 2,517.95

14 Leaf zone 3 (growth) Leaf 21,933 110.77 9,108 2,378.23

15 Mature leaf 8 Leaf 21,397 108.48 5,687 3,038.26

16 Pericarp/Aleurone 27 DAP Ear 21,486 70.92 8,300 2,768.81

17 Primary root 5 days Root 22,011 142.62 6,753 3,214.04

18 Root—cortex 5 days Root 21,382 148.22 7,233 3,247.64

19 Root—elongation zone 5 days Root 19,649 174.17 7,512 3,012.97

20 Root—Meristem zone 5 days Root 20,009 145.86 7,575 3,164.69

21 Secondary root 7–8 days Root 22,117 144.15 6,041 3,532.52

22 Silk Silk 22,202 144.23 6,717 3,246.13

23 Vegetative Meristem 16–19 days Meristem 20,963 131.48 7,305 3,032.82

The data set is based on 23 tissues. We further grouped related tissues into 6 broad tissue types. The table shows the number of genes with either a FPKM or dNSAF for each tissue,

these values correspond to mRNA or protein abundance values, respectively. The 95% columns show the cutoff value used to subdivide the data into the top 5% for each expression

type.

units, respectively, in 23 different tissues. The original expression
data was from the gene expression tissue atlas data (Walley et al.,
2016). The data was remapped to B73 RefGen v4 (Jiao et al.,
2017) by (Walsh et al., 2020) and downloaded from MaizeGDB
(Portwood et al., 2019). Each gene had 23 value pairs of tissue-
specific RA and PA data. The RA data consisted of 39,324 genes
and each gene had at least one FPKM value for any of the
23 tissues and the PA data had at least one dNSAF value for
14,815 genes.

Using the expressions (RA and PA) data, we built multiple
models based on the top and bottom six percentiles of expression
cutoffs at 5% increments (e.g., top 5% and/or bottom 10%).
Table 1 shows the 95% cutoffs per tissue used in class labeling and
the total number of genes with the tissue-specific measurement.
See Supplementary Data 1 for full cutoffs information. A gene is
labeled as an expressed (positive class) if the expression measure
is greater than or equal to the cutoffs. Otherwise it is assigned
into an unexpressed class (negative class). Each tissue has its own
set of cutoff values per expression type (RA or PA). Using the
expression cutoff setup makes an unequal number of positive
and negative samples. Such an unbalanced data would causes
bias in our experiments. For this reason, we constructed balanced
datasets by randomly selecting an equal number of negative
examples per tissue.

2.2. Data Preparation
The core input for the models are sequence-based k-mers. The
frequency of k-mers in a given class was estimated by the
observed counts of the training data set. Two sets of sequences
were used. The first set was based on the translated protein
sequences. The k-mer frequencies were based on the counts
of amino acid, dimer, trimer, tetramer, etc. (k = 1, 2, 3, 4,
etc., respectively). The second set was the 5’ DNA promoter
sequences from the 5kb region upstream of a given gene model’s
start site. The k-mer values ranging from 3 to 7 were tested.
The k-mer frequencies for these two data sets were calculated
for each of the 23 tissues and stored in a relational database.
Supplementary Figure 1 shows the database schema of the key
tables that store the sequence data and RA/PA labeling data.

We used a simple encoding of DNA promoter and protein
sequences using the probability distribution of short (k-letter)
subsequences (k-mers) of either nucleotides or amino acids. In
our experiments, we reported results for k-values ranging from
3 to 7 for both protein and DNA promoter sequences. Larger
values of k were not considered, because there was insufficient
data to reliably estimate the model parameters. The number of all
possible cases of k-mers for DNA sequence is 4k because DNAhas
four bases, while there are 20 amino acids and a protein sequence
can have up to 20k k-mers. Based on classification performance,
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we identified the optimal window sizes of k = 3 for protein
sequence and k = 3, . . . , 7 for the DNA promoter sequences.

2.3. Phase I: k − 1 Markov Model
We propose k − 1 Markov model to extract features from maize
gene sequence and apply it to Naive Bayes model with k-mer
frequency data called k-mer Naive Bayes model, NB(k). The
simplest way to apply Naive Bayes classifier for gene sequence
data is to consider a single alphabet. Equation (1) shows classifier
for a given sequence S = s1, . . . , sn with class cj ∈ C.

cNB(S) = argmax
cj∈C

P(cj)
n∏

i=1

Pα(Si = si|cj) (1)

where C = {c0, c1} which correspond to unexpressed and
expressed, respectively. cNB classifier considers only one alphabet
to compute probability, and we extended this with the k-mer
model which covered frequencies based on k-mers. For advanced
feature extraction from gene sequence (protein and promoter),
we first computed the k-mer frequency for all k-mers for given
sequence S and applied Naive Bayes classifier with class c0 and
c1. However, consecutive k-mers share (k − 1) letters with each
and therefore are not independent of each other. Here, we used
the NB(k) classifier which reduces possible bias by dividing those
shared parts (k− 1-mers) as follows:

cNB(k)(S̄)

= argmax
cj∈C

P(cj)

∏n−k+1
i=1 Pα(Si = si, . . . , Si+k−1 = si+k−1|cj,k)

∏n−k+1
i=2 Pα(Si = si, . . . , Si+k−2 = si+k−2|cj,k−1)

(2)

and Supplementary Figure 2 shows the mechanism of the
NB(k) classifier.

2.4. Phase II: tNB(k): Two-Phase NB(k)
Classifier
The Phase I model uses single tissue data per prediction. We
wanted to extend this approach to consider other tissue data. The
two-phase approach combines predictions across tissues, taking
advantage of potential expression patterns. We constructed a
two-phase NB(k) approach called tNB(k). First, we built a
tissue-specific feature vector for each gene in the first phase
using the NB(k) classifier. The feature vector consisted of 25
elements corresponding to gene id, predicted gene expressions
by NB(k) classifier for 23 tissues, and assigned tissue. In the
second phase, the class labels are the same as the first phase
(binary labels specific to each tissue, C = {c0, c1}), and we
performed experiments in Weka 3.8 with several classifiers
(Bayesian networks, support vector machine, decision tree, and
k-nearest neighbor classifier).

The gene expression and protein abundance datasets had
at least one measured value of tissue for each gene, but
not all genes had 23 measured values corresponding to
23 tissues. Some of the tissue-specific vectors had missing
values, and we used mean imputation for missing values. See

Supplementary Datas 2, 3 for the performance comparison of
imputation vs. without imputation.

3. RESULTS AND DISCUSSION

To discover the relationship between sequence and tissue-
specific expression, we designed an approach based on the
observed frequencies over a range of DNA or protein k-mer
sequences in classes defined by mRNA and protein abundance
levels (see Section 2.1). We tested this approach with different
features: input type (promoter and protein sequences), tissue
type, expression level (upper or lower), k-mer size, and machine
learning algorithms. With these factors, we established eight
experiment groups. Each group has genes that are expressed
in the same tissue at similar levels. Table 2 summarizes the
experimental setup for each group. We used two classification
models: Phase I uses a simple Markov model for initial
classification, and Phase II builds classifiers trained on Phase
I predictions (see Section 2). Each phase has four experiments
based on the combination of using two different sequence
representations (protein or DNA promoter) and two class labels
(mRNA or protein abundance). The experiments build individual
classifiers for the 23 maize tissues with various k-mer sizes,
identifying the top and bottom 5–30% abundance for each
class type. The Phase II method builds classifiers with four
common machine learning techniques (decision trees, Bayesian
networks, k-nearest neighbor, and support vector machines).
In total, each Phase I experiment generated 5,520 classifiers,
and the Phase II experiments created 22,080 classifiers. Our
methodology used 10-fold cross-validation on balanced datasets
derived from 39,324 maize genes, and were evaluated with
standard metrics of accuracy, precision, recall, and F-measure.
See Supplementary Data 4 for a complete set of results for all the
experiments and classifiers.

3.1. k-mer Size Had an Effect on
Performance
In the k-mer model, k-mer size is one of the most important
parameters for feature extraction, and we focused on k-mer sizes
ranging between 3 and 7. This range is consistent with other
recent work using k-mers (Andorf et al., 2007). Figure 2 shows
the range of F-measures for each value of k across the Phase
I classifiers in predicting mRNA (RA) and protein abundance
(PA). Figure 2A is based on classifiers using protein-based k-
mer sequences and Figure 2B is based on DNA promoter-
based k-mers. When k = 3 nucleotide sequences had the
best performance for predicting both RA and PA with a sharp
decrease in performance when k = 7. This result was expected
as larger k-mer sizes create a full order (in terms of the alphabet
size) greater features that need to be estimated, thus causing
overfitting when not enough data is available. When using the
DNA promoter sequence, the performance had less variance
across k-mer sizes. The mean F-measure was between 0.55 and
0.60 for all k-mers in predicting both RA and PA with the
best k-mer size was 6 for RA and 4 for PA. For the Phase II
models, k-mer size had little effect on performance with little
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TABLE 2 | A table of the eight experiment types used in this paper.

Method Sequence representation Class labels Parameters

Phase I Protein sequence mRNA abundance

Protein abundance

k = 3, ..., 7

Expression cutoff: Top 5–30%; Bottom 5–30%

DNA promoter mRNA abundance

Protein abundance

k = 3, ..., 7

Expression cutoff: Top 5–30%; Bottom 5–30%

Phase II Protein sequence mRNA abundance

Protein abundance

k = 3, ..., 7

Expression cutoff: Top 5–30%; Bottom 5–30%

DNA promoter mRNA abundance

Protein abundance

k = 3, ..., 7

Expression cutoff: Top 5–30%; Bottom 5–30%

We use two methods (Phase I and II) to predict tissue-specific gene expression (mRNA and protein abundance) for genes using k-mer sequences (DNA promoter and protein). In total

there are eight experiments based on the combinations of method (Phase I or II), input type (DNA promoter or protein sequence), and output class (mRNA or protein abundance). Each

experiment uses a systematic approach for building classifiers with additional combinations of the following parameters: k-mer size ranging from 3 to 7 and 12 expression cutoffs based

on 5% increments of the genes with the top and bottom expression values.

change in performance with the different k-mer sizes (F-measure
near 0.85 across experiments). See Supplementary Figure 3 for
complete results.

3.2. The Two-Phase Method Outperformed
the One-Phase Approach
The Phase I method created classifiers that predicted most tissues
with an accuracy up to 60% with an F-measure between 0.5 and
0.7. The overall performance of predicting protein abundance
is similar to mRNA abundance, but the protein abundance
classifiers have a wider range of f-measures based on parameter
choices (see Supplementary Figure 4). To take advantage of
related tissues/conditions and genes co-expressed across different
tissues (Li et al., 2016), we created a two-phase approach that
uses the feature vector based on these 23 individual predictions.
This feature vector was then used as input to an additional
machine learning classifier (see Phase II method in Section 2).
Four machine learning algorithms were compared in the Phase
II method using Bayesian Network (BN), Decision Tree (DT),
k-nearest neighbor (kNN), and support vector machine (SVM)
classifiers. Figure 3 shows the performance by algorithm using
promoter sequences for each expression type in the Phase II
method. BN had the best performance across expression types
using a k-mer size of 5 (mean F-measure of 0.75 for mRNA
abundance and 0.73 for protein abundance ) and SVM had
the worst performance overall (mean F-measure of less than
0.57 for both expression types). We saw similar results when
using protein sequence as input (see Supplementary Figure 5).
Complete results for each of the machine learning approaches are
provided in Supplementary Data 4. The results demonstrate that
the BayesNet (BN) implementation had the best overall results.
Therefore, we will present results from the BN method for the
remaining sections when referring to Phase II results.

From the data shown in Figure 4 and Table 3, the results
from the Phase II method substantially outperformed the Phase
I method in predicting either mRNA or protein abundance.
Figures 4A–D display a side-by-side comparison of the Phase
I and Phase II results across all experiments using the best k-
value for each method. The figure shows the range of F-measures
for the top 5%–top 30% expression values across each of the

tissues for both mRNA (blue) and protein (orange) abundance.
Figure 4E has a histogram view of the results from the best
performing parameters (k = 3, Top 5% threshold, Bayesian Net).
Table 3 is a tabular view of the accuracy and F-measure for both
methods with the same fixed k-value (k = 3) and expression
cutoff (5%). The histogram and table demonstrate that the Phase
II methods outperformed Phase I regardless of input or class type
on all tissues except pollen.

The top two panels of Figure 4 show a range of F-measures
when using an input based on protein sequence (Figures 4A,C)
and the bottom two panels show performance based on
DNA promoter sequence (Figures 4B,D). When using protein
sequence as input, the Phase II approach had an average
improvement in accuracy of 16.8% (RA) and 20.0% (PA) and F-
measure improvement of 0.21 (RA) and 0.30 (PA). The Phase
II method showed similar improvements when using promoter
sequence as input. The average increase in accuracy was 31.2%
(RA) and 31.1% (PA) and increased the F-measure by 0.28 (RA)
and 0.28 (PA). The only tissue where Phase II performed worse
than Phase I was pollen. The prediction performance for Phase II
was superior to the Phase I method in classifying gene expression,
and therefore, we will present the rest of the results with a focus
on Phase II results using the Bayesian Net method.

3.3. Classifiers Trained From Protein
Sequences Outperformed Similar
Classifiers Based on Promoter Data
Our methods use training data from both DNA promoters and
translated protein sequences. Previous studies (Meyer et al., 2013;
Huminiecki and Horbanczuk, 2017; Mejía-Guerra and Buckler,
2019; N’Diaye et al., 2020; Schmidt et al., 2020; Avsec et al., 2021)
have focused on sequences from promoter regions which are
rich in regulatory regions associated with both gene enhancing
and silencing. These regions are important in determining if and
at what level a gene will be expressed. We built classifiers that
predicted tissue-specific gene expression and therefore wanted to
determine if protein subsequences could differentiate expression
patterns across tissues. The results of our study show that tissue-
specific predictions based on protein sequences consistently
outperformed promoter-based predictions across a broad set of
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FIGURE 2 | Box plot of F-measures for Phase I classifiers based on k-mer sizes of 3, 4, 5, 6, and 7. Each plot shows the interquartile range and mean of F-measures

across all tissues using the top 5–30% and bottom 5–30% of expression cutoffs. Each graph is divided by classifiers predicting mRNA (RA) and protein (PA)

abundance. Individual dots are outliers that are outside 1.5 times the interquartile range above the upper quartile or below the lower quartile. Panel (A) shows results

using protein sequence as input and panel (B) show results using DNA promoter as input.

different parameters. For example, Table 3 shows performance of
classifying genes with top 5% gene expression. The Phase I results
show that classifiers using protein sequences as input had the best
performance every time when predicting mRNA abundance and
61% of the time for protein abundance. For Phase II, protein
sequence based classifiers had the best performance on 91% of
the data for both mRNA and protein abundance data.

3.4. Classifiers Predicted Protein
Abundance Better Than mRNA Abundance
Gene expression is the main driver for cellular functions.
Many studies use RNA-seq data to measure protein abundance

in a tissue or under a certain condition. The original study
(Walley et al., 2016) from the maize expression atlas reported
that mRNA abundance does not always tightly correlate with
protein abundance. This result shows the importance of
separately predicting mRNA and protein levels to understand
gene function. Our results demonstrate that machine learning
classifiers can be used to predict both mRNA and protein
abundance across 23 different tissues. Figure 4 presents our
best results in predicting both types of expression. When using
promoter sequence as the input (Figure 4B), our methods
performed slightly better in predicting protein abundance in 15
out of the 23 tissues. The sets of tissues with better performance
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FIGURE 3 | Box plot of F-measures for Phase II classifiers based on two expression types (RA, mRNA abundance; PA, protein abundance). The input type was DNA

promoter sequence using a k-mer size of 5. Each plot shows the interquartile range and mean of F-measures across all tissues using the top 5–30% and bottom

5–30% of expression cutoffs. The x-axis is labeled by the implementation names of the four machine learning approaches (DT, Decision Tree; BN, Bayesian Network;

kNN, k-Nearest Neighbors; SVM, Support Vector Machine).

in predicting mRNA abundance were intermode, ear, kernel, silk,
and three out of the six root tissues.When using protein sequence
as input (Figure 4D), the results were very similar: 16 out of the
23 tissues had a higher F-measure for protein abundance.

3.5. Classifiers Performed Better at
Predicting High Expression Classes vs.
Low Expression
Figure 5 shows the overall performance of our methods
(Figure 5A) and performance broken down across the different
expression cutoffs (Figure 5B). Although performance decreased
as percentile value increased, our methods did well in predicting
genes with a high expression (i.e., between 70% and 95%,
denoted as T70 and T95, respectively. The models had a
mean accuracy of 87.8% and F-measure of 0.89 in predicting
the top 5% in mRNA abundance. In the top 5% of protein
abundance prediction, the mean accuracy is 87.1% and F-
measure is 0.88. The performance metrics decreased when
predicting low expression (B30–B05, B denotes “bottom”). The
mean accuracy was 65.0% with a F-measure of 0.67 for predicting
low expressing genes. Supplementary Data 4 has the complete
results including results on classifying combined features (e.g.,
high mRNA abundance with low protein abundance) and for
each cutoff value. Supplementary Figure 4A shows a box-plot
of the F-measure in predicting mRNA and protein abundance
in Phase I. Supplementary Figure 4B shows the performance
of different cutoffs: Top 5–30% (T95–T70) and Bottom 5–30%
(B05–B30). The figure shows a clear decline in performance as
the percentage increases. We hypothesize that there could be a

tissue-specific signal in the DNA promoter and protein sequences
that the machine learning classifiers can detect, but this signal
is not as strong or that the variance of expression levels might
be better explained by enhancers or other regulatory regions
that we are not including in our analysis. Also, the combined
feature classifiers did not perform as well as the high expression
classifiers. We hypothesize that this is mainly due to the small
and unbalanced nature of these subsets of data. For example,
there are very few cases of low mRNA abundance with high
protein expression.

3.6. The Two-Phase Method Could Reliably
Identify Genes With High Expression in
Most Tissues
The main aim of this study was to evaluate the effectiveness
of sequence-based machine learning approaches to identify
high/low transcript or protein levels across a wide range of tissues
in maize. We were able to achieve this aim and identify the best
features and parameters to construct tissue-specific classifiers.
The best performing classifiers used a k-mer size of 3 for both
protein sequences and DNA promoter sequences, expression
cutoff of top 5%, and a two-phase approach using Baysian
networks (see Table 3). Although the overall performance was
good, some tissue-specific classifiers performed better than
others. The classifiers based on internode data (tissues #1 and
#2) had F-measures of 0.926 and 0.934, respectively. The root
(tissues 17–21) classifiers had F-measures ranging from 0.869
and 0.939. Ear, embryo, and endosperm classifiers ranged from
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FIGURE 4 | Box plots and a histogram of the best performing Phase I and II classifiers across all experiments. The Phase II method is based on Bayesian Network.

Each plot shows the interquartile range and mean of F-measures across the top 5–30% and bottom 5–30% of expression cutoffs. The k-mer size used was 3 for

protein sequence (A,C) and 3 for DNA promoter sequence (B,D). The x-axis is labeled by tissue type (see Table 1 or Panel (E) for a full list of tissue names). Panels

(A,B) are plots based on the Phase I method and Panels (C,D) are based on the Phase II method. Individual dots are outliers that are outside 1.5 times the

interquartile range above the upper quartile or below the lower quartile. Panel (E) is a histogram of the best performing classifiers based on a fixed k-mer size of 3 and

expression cutoff of Top 5%. The x-axis is labeled by tissue type. Each tissue displays the f-measure of the eight experiments based on the combinations of method

(Phase I or II), input type (DNA promoter or protein sequence), and output class (mRNA or protein abundance).
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TABLE 3 | Our methodology generated thousands of classifiers to predict gene expression for 23 tissues.

Phase I Phase II

Input Promoter Amino acid Promoter Amino acid

Output RA PA RA PA RA PA RA PA

Tissue # FM AC FM AC FM AC FM AC FM AC FM AC FM AC FM AC

1 6-7 internode 0.60 0.57 0.61 0.58 0.69 0.74 0.56 0.68 0.94 0.94 0.91 0.92 0.95 0.95 0.91 0.91

2 7-8 internode 0.60 0.57 0.58 0.55 0.69 0.74 0.60 0.70 0.95 0.95 0.91 0.92 0.95 0.95 0.92 0.92

3 B73 Mature pollen 0.56 0.58 0.48 0.50 0.65 0.69 0.54 0.66 0.52 0.55 0.51 0.62 0.65 0.69 0.65 0.71

4 Ear Primordium 2–4 mm 0.59 0.57 0.58 0.55 0.69 0.73 0.60 0.70 0.94 0.94 0.94 0.94 0.95 0.95 0.94 0.94

5 Ear Primordium 6–8 mm 0.60 0.57 0.61 0.58 0.68 0.72 0.60 0.69 0.93 0.93 0.93 0.93 0.93 0.93 0.94 0.94

6 Embryo 20 DAP 0.58 0.56 0.60 0.57 0.66 0.72 0.61 0.70 0.87 0.88 0.86 0.87 0.87 0.87 0.88 0.88

7 Embryo 2038 DAP 0.57 0.57 0.54 0.56 0.68 0.72 0.52 0.66 0.85 0.86 0.86 0.87 0.86 0.87 0.88 0.88

8 Endosperm 12 DAP 0.60 0.59 0.61 0.58 0.69 0.74 0.63 0.72 0.86 0.87 0.89 0.89 0.88 0.89 0.89 0.90

9 Endosperm crown 27 DAP 0.57 0.56 0.56 0.54 0.59 0.66 0.49 0.64 0.82 0.83 0.78 0.80 0.81 0.83 0.82 0.84

10 Female spikelet collected on day as silk 0.59 0.57 0.59 0.57 0.65 0.72 0.60 0.70 0.92 0.92 0.92 0.92 0.92 0.92 0.93 0.93

11 Germinatin Kernels 2 DAI 0.59 0.56 0.57 0.56 0.70 0.74 0.49 0.65 0.90 0.90 0.86 0.87 0.90 0.90 0.86 0.86

12 Leaf zone 1 (symmetrical) 0.60 0.58 0.59 0.57 0.69 0.73 0.62 0.71 0.94 0.94 0.92 0.92 0.93 0.93 0.93 0.93

13 Leaf zone 2 (stomatal) 0.60 0.58 0.61 0.58 0.68 0.73 0.62 0.71 0.92 0.92 0.93 0.93 0.92 0.92 0.92 0.92

14 Leaf zone 3 (growth) 0.60 0.57 0.62 0.59 0.68 0.73 0.63 0.72 0.89 0.89 0.92 0.92 0.89 0.89 0.92 0.92

15 Mature leaf 8 0.56 0.55 0.59 0.57 0.61 0.67 0.53 0.67 0.64 0.70 0.57 0.65 0.72 0.74 0.69 0.74

16 Pericarp/aleurone 27 DAP 0.57 0.56 0.56 0.55 0.65 0.70 0.58 0.68 0.85 0.85 0.84 0.85 0.86 0.87 0.85 0.86

17 Primary root 5 days 0.60 0.57 0.61 0.59 0.71 0.76 0.60 0.71 0.96 0.96 0.89 0.89 0.96 0.96 0.92 0.92

18 Root—cortex 5 days 0.58 0.55 0.58 0.57 0.62 0.69 0.57 0.69 0.84 0.85 0.89 0.90 0.84 0.85 0.90 0.91

19 Root—elongation zone 5 days 0.61 0.58 0.59 0.56 0.70 0.76 0.58 0.69 0.93 0.93 0.92 0.92 0.93 0.93 0.93 0.93

20 Root—Meristem zone 5 days 0.60 0.57 0.56 0.53 0.71 0.76 0.58 0.69 0.90 0.91 0.90 0.90 0.90 0.91 0.92 0.92

21 Secondary root 7–8 days 0.60 0.57 0.60 0.57 0.71 0.75 0.58 0.69 0.95 0.95 0.93 0.94 0.95 0.95 0.92 0.92

22 Silk 0.60 0.57 0.60 0.57 0.64 0.71 0.60 0.70 0.86 0.87 0.84 0.85 0.87 0.88 0.85 0.86

23 Vegetative Meristem 16–19 days 0.60 0.57 0.60 0.58 0.67 0.73 0.61 0.71 0.92 0.92 0.90 0.91 0.92 0.92 0.90 0.91

The table shows the results of the best set of classifiers which was achieved using a fixed k-mer size of 3 and expression cutoff of Top 5%. Each tissue displays the F-measure (FM) and accuracy (AC) of the eight experiments based on

the combinations of method (Phase I or II), input type (DNA promoter or amino acid sequence), and output class (mRNA (RA) or protein abundance (PA).
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FIGURE 5 | Box plots of F-measures for Phase II classifiers based on two expression types (RA, mRNA abundance; PA, protein abundance). The x-axis is labeled by

tissue type (see Table 1 for a full list of tissue names). Panel (A) is a plot of interquartile range and mean of F-measures across the top 5–30% of expression cutoffs,

bottom 5–30% of expression cutoffs, and k-mer sizes of 3–7. Panel (B) is a similar plot with separate box plots for each expression cutoff (top expression: T95–T70

and low expression: B30–B05).

0.848–0.941. Leaf classifiers also had good performance of 0.903–
0.927 with the exception of tissue #15 (mature leaf 8). The three
classifiers with the worst performance were based on pollen
(tissue #3), mature leaf 8 (tissue #15), and endosperm crown 27
days after pollination (tissue #9) with F-measures of 0.582, 0.654,
and 0.810, respectively. See Table 1 for the information of tissue
type categories. Each of these three tissues are based on mature
samples. It is worth noting that the pollen classifiers consistently
performed significantly worse than any other tissue across all
experiments. Other studies including (Walsh et al., 2020) have
shown that as compared to other tissues, maize pollen has
fewer expressed genes, a higher rate of expressed transcription
factors, and that pollen mRNA abundance has low correlation

with protein abundance. The same study showed that out of the
same 23 tissues only “pollen” and “endosperm crown 27 days
after pollination” had higher expression in the non-dominant
subgenome of maize.

4. CONCLUSION

As sequencing technologies become increasingly affordable and
assembly and annotation methods mature, more whole-genome
assemblies and predicted gene sequences become available.
Identifying which genes/proteins are expressed and under what
conditions they are expressed is an important step to understand
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the functional and regulatory roles of the underlying genes and
their impact on traits and phenotypes.

Six major findings emerged from our study: (1) k-mer
size had an effect on performance; (2) the two-phase method
outperformed the one-phase approach; (3) classifiers trained
from protein sequences outperformed similar classifiers based on
promoter data; (4) classifiers predicted protein abundance better
than mRNA abundance; (5) classifiers substantially performed
better at predicting high expression classes vs. low expression;
and (6) our two-phase approach could reliably identify genes with
high expression in most tissues.

Our machine-learning approach demonstrated that it is
possible to reliably classify tissue-specific expression in maize.
Where other prediction methods use experimental data, our
computationally inexpensive approach is sequence-based and
therefore can be used even when experimental data is unavailable.
Our method performed well on predicting high-expression at
a tissue level (top 5% of genes), and declined as we broadened
the cutoff value of an expressed gene. These results suggest that
high-expressed tissue-specific signals are in the DNA promoter
sequence and/or the protein sequence), but the variance of
expression within that tissue might have a weaker signal or
be better explained by changes in other regulatory regions or
mechanisms. Additionally, our systematic approach showed the
roles of both input features (sequence type, sub-sequence size)
and output features (expression type, expression cutoffs) in
predicting gene expression. Our approach has strong potential
to provide important insights into plant genetics, evolution,
development and therefore expedite crop improvement and
improve human health.
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