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Machine learning models may be integrated into clinical decision support (CDS) systems to identify children at risk of specific
diagnoses or clinical deterioration to provide evidence-based recommendations. This use of artificial intelligence models in clinical
decision support (AI-CDS) may have several advantages over traditional “rule-based” CDS models in pediatric care through
increased model accuracy, with fewer false alerts and missed patients. AI-CDS tools must be appropriately developed, provide
insight into the rationale behind decisions, be seamlessly integrated into care pathways, be intuitive to use, answer clinically
relevant questions, respect the content expertise of the healthcare provider, and be scientifically sound. While numerous machine
learning models have been reported in pediatric care, their integration into AI-CDS remains incompletely realized to date.
Important challenges in the application of AI models in pediatric care include the relatively lower rates of clinically significant
outcomes compared to adults, and the lack of sufficiently large datasets available necessary for the development of machine
learning models. In this review article, we summarize key concepts related to AI-CDS, its current application to pediatric care, and its
potential benefits and risks.
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IMPACT:

● The performance of clinical decision support may be enhanced by the utilization of machine learning-based algorithms to
improve the predictive performance of underlying models.

● Artificial intelligence-based clinical decision support (AI-CDS) uses models that are experientially improved through training and
are particularly well suited toward high-dimensional data.

● The application of AI-CDS toward pediatric care remains limited currently but represents an important area of future research.

INTRODUCTION
The mass storage of health data continues to transform healthcare
delivery. To improve patient care, strategies that allow for the
extraction of information and insights from clinical data are
paramount. Computerized clinical decision support (CDS) systems
provide a way to translate research findings to real-time
interventions, promote quality improvement, and decrease varia-
tion in care.1 CDS may be coupled with machine learning (ML)
approaches, which use algorithms that leverage statistical
methods to learn useful patterns from data. The resulting artificial
intelligence (AI)-based CDS (AI-CDS) may allow for improved
predictive performance to identify patients with a higher or lower
likelihood of developing a disease, suffering a clinical deteriora-
tion, or who may benefit from a particular management strategy.
AI-CDS represents an exciting opportunity to further improve care
delivery. In this narrative review, we summarize key concepts
related to AI-CDS: the principles and current state of CDS and AI,
the role of AI-CDS in pediatric care, key concepts related to the

development and implementation of AI-CDS, the challenges
associated with AI-CDS, and future steps in the field.

“BIG DATA” IN HEALTHCARE
While some definitions of “big data” refer to the size of the dataset
(e.g., as too large to be stored or analyzed by conventional software
solutions), this definition is complicated by the ever-growing
capacity of computer systems to work with larger datasets.2

Another definition by Gartner describes “big data” as “high-volume,
high-velocity, and high-variety information assets that demand
cost-effective, innovative forms of information processing for
enhanced insight and decision making, and process automation”.3

While “volume” refers to the large size of the dataset, “velocity”
refers to the need to be able to rapidly grow. “Variety” refers to the
ability to use heterogeneous data, which in a healthcare context
may include medical recordkeeping, billing, genomics, social
determinants of health, patient-reported outcomes, and genomics.
There are increasing efforts to leverage big data for purposes
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beyond recordkeeping to improve the delivery of patient care.4 AI,
defined as a field of study that focuses on how computers learn
from data and the development of algorithms that make this
learning possible, provides one important way to utilize these
technologies to better improve practice.5

CLINICAL DECISION SUPPORT
CDS may be defined as “computer systems designed to impact
clinician decision making about individual patients at the point in
time that these decisions are made.”6 CDS generally encompasses
three steps: (1) acquiring patient data, (2) summarizing data, and
(3) suggesting an appropriate course of action.7 CDS may include
alerts, reminders, order sets, drug-dose calculations, care summary
dashboards, and point-of-care information retrieval systems.8

Within pediatrics, CDS has been used in a variety of applications,
including traumatic brain injury (TBI),9,10 asthma,11 urinary tract
infections (UTIs),12 screening for developmental disorders,13

ventilatory support,14,15 and antibiotic selection.16

A systematic review evaluating the impact of CDS tools from
148 randomized controlled trials (primarily from adults) demon-
strated that CDS improved outcomes when used for performing
preventive services (odds ratio [OR], 1.42; 95% CI 1.27–1.58),
ordering clinical studies (OR, 1.72; 95% CI, 1.47–2.00), and
prescribing therapies (OR, 1.57; 95% CI 1.35–1.82) compared to
care provided without CDS.8 Few studies, however, have
evaluated the balancing measures, including unintended con-
sequences or adverse effects such as false negatives or increased
physician workload burden.17 In pediatrics, traditional rule-based
CDS is routinely used to improve patient care but is frequently
limited by poor model specificity, often resulting in false positive
alerts.18 These can result in physician dissatisfaction, contribute to
burnout, and result in patient harm. One study of drug alerts in
the primary care setting demonstrated a decline in the utilization
of an alert-based CDS with additional reminders for the same
patient.19 In turn, ignored alerts from a CDS can result in adverse
consequences. In one report from a pediatric intensive care unit,
clinicians repeatedly overrode alerts in an EHR drug allergy
alerting system resulting in the deterioration of a patient over
time, emphasizing the potentially harmful effects that can arise
from alarm fatigue.20

AI AND PREDICTIVE MODELING
The use of AI may overcome some limitations attributed to
traditional CDS. If perceived as ineffective or intrusive, users may
ultimately view CDS as a burden toward effective patient care.21,22

In addition, CDS may result in inaccurate or poorly individualized
recommendations. Prior qualitative work, for example, has cited
important concerns with CDS, including inaccuracy of predictions
leading to false positive and negative results.23 AI-CDS represents
an important evolution in the development of CDS models.
AI-CDS systems are sometimes called “non-knowledge” based AI,

as they differ from the “if/then” rules that define rules-based (or
“knowledge”) based CDS because the predictions are based on
statistical or ML algorithms.24 ML, considered a domain of AI, is a set
of methods for inferring useful relationships in large datasets for
which the assumptions and techniques of traditional statistics may
be poorly defined. While the validity of traditional statistics comes
from attempting to put conservative error bounds on inference, the
validity of ML is generally defined with respect to out-of-sample
predictive usefulness. ML has origins in statistics but evolved along
an independent trajectory as computing power rapidly advanced,
fostering the development of computational methods for the
analysis of larger and larger datasets. Instead of traditionally used
“hard-coded” algorithms or prediction rules, ML algorithms instead
experientially improve through training, often entailing dimension
reduction steps that particularly suit these methods to high-
dimensional data.25,26 Supervised ML is generally used for predictive
modeling (e.g., likelihood of an event happening). In contrast,
unsupervised ML is generally used to find natural groupings or
clusters in the data (e.g., phenotypes of a disease or syndrome).5

In supervised ML, models undergo a period of training in which
the ML algorithm is provided with input data in addition to the
predefined outcome measure (such as the presence of a disease),
to identify relationships between the outcome of interest and the
features (or predictors) (Fig. 1).27 Outcome data may be
categorical (called “classification”), such as in-hospital mortality
or intensive care unit hospitalization. Alternatively, a “regression”
ML task is when a continuous outcome is required (such as
hospital length of stay). Hundreds of algorithms for supervised ML
have been described. Common methods used in the context of
classification include logistic regression, k-nearest neighbors,
naïve Bayes, decision trees, random forests, neural networks,
and support vector machines. Other algorithms have been
described which combine the strengths of base learners. Details
of specific ML algorithms are summarized elsewhere.5

To date, most predictive models in children have been derived
using more classical ML algorithms. For example, models to identify
patients at risk of UTIs,12 pneumonia,28 bacterial meningitis,29

clinically important TBI,9 serious bacterial infections,30 septic
arthritis,31 or intra-abdominal injury32 have been derived using
readily understandable logistic regression or decision trees. Such
approaches can offer familiarity and interpretability to clinicians by

Data acquisition
Data cleaning and

preprocessing
Feature extraction

and selection

75–90% of data used
to train model

10–25% used for
validation

Model development

Internal validation

External validation

Fig. 1 Development of a supervised machine learning algorithm. Datasets frequently require cleaning and/or preprocessing (such as “one-
hot” encoding of categorical variables). Following this, initial analyses are performed to identify distinct variables with the strongest
association with the study outcome. A portion of the data may be used as a holdout cohort for internal validation. The remainder is used for
model training. Following internal validation, the model may be tested in distinct datasets.
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design and have a track record of relatively robust predictive
performance in some settings. When models perform similarly, the
simpler, more applicable, and transparent model should be
considered over the more complicated one.
Within the pediatric acute care setting ML models have been

reported for a variety of pediatric indications. Some of these
demonstrate superior potential compared to classic ML models.
Some examples are provided below:

1. Prediction of children with clinically important TBI: investi-
gators used optimal classification trees to identify children
at risk of clinically important TBI and compared it to a
frequently utilized model developed through classification
and regression trees (CART).33 The models demonstrated
comparable sensitivity to the originally published CART
model, but with higher specificity, potentially allowing for a
reduction in unnecessary CT scans.

2. Emergency department testing: Singh et al. reported an ML
model to predict the need for frequently performed clinical
testing (urinary dipstick testing, electrocardiogram, abdom-
inal ultrasonography, testicular ultrasonography, bilirubin
level testing, and forearm radiographs) among children
presenting to a pediatric emergency department.34 Using an
outcome of testing ordered in triage, the model demon-
strated high area under the receiver operating characteristic
curve (AUROC) (0.89–0.99, across individual use cases for
clinical tests including urinary dipstick testing and electro-
cardiograms) with a high positive predictive value
(0.77–0.94) with results available by a mean time of
165min. The investigators were further able to characterize
model explainability using Shapley Additive Explanation to
ensure their clinical relevance.

3. Sepsis prediction: given its complexity with diagnosis, the
presence of multiple overlapping diagnoses and the
interaction of variables with each other, the early identifica-
tion of pediatric sepsis may be one that is particularly well
suited to an ML application to guide CDS. Several recent
studies have demonstrated that ML methods may accurately
identify children with sepsis.35–37 One recent multicenter
study that was trained to identify children with septic shock
(defined as systolic hypotension and vasoactive use or
≥30ml/kg of crystalloid administration within 24 h) using
data limited to 2 h of presentation, for example,

demonstrated an AUROC of 0.83–0.85 between the two
included validation datasets.37 This study, which utilized
least absolute shrinkage and selection operator with 10-fold
cross-validation, demonstrated a specificity of 62% when
using a pre-selected sensitivity of 90%. The model was
trained on demographic data, chronic conditions, prior visit
data, emergency department visit data, clinical (e.g., vital
signs), and laboratory data.

4. Prediction of infants with significant intra-abdominal injury:
several investigators have developed ML models to identify
children presenting following abdominal trauma who are at
risk of intra-abdominal injury requiring intervention, includ-
ing injuries that resulted in death, therapeutic angiography
or laparotomy, blood transfusion, or admission for hospita-
lization for ≥2 nights to receive intravenous fluids.38,39 In
one study, the random forest, support vector machine, and
generalized linear modeling algorithms demonstrated high
predictive performance to identify patients at low risk of this
outcome, potentially resulting in a decreased requirement
for imaging in this cohort.39

Other models have been described to broadly classify pediatric
diagnoses,40 identify young infants with serious bacterial infec-
tions,41 and assist with ventilator support.42 Nearly all models in
pediatric practice have not been externally validated in a peer-
reviewed setting.

ROLE OF AI-CDS
The integration of computers to assist in medical decision making
was first discussed as a possibility in 1959, when the authors
postulated that computers may be able to perform complex
reasoning tasks, collect and process clinical information, and
remind the physician of overlooked diagnoses.43 As described,
several studies constructing or evaluating AI models in children
have been reported, suggesting that AI-CDS may have the
potential to improve care. Despite this avid interest, less work
has been done to externally validate these models, construct CDS
tools using these AI models with relevant stakeholder groups, and
evaluate their role in implementation.
A template for an AI-CDS model is provided in Fig. 2. Clinical

data may be collected from both structured and unstructured
data. Structured data exists within predefined fields, such as vital

Data entered into
system (structured,

unstructured, imaging)

AI-CDS generates predictions
using previously developed
machine learning algorithm

Prediction exceeds pre-defined
threshold

AI-CDS provides actionable
recommendations to healthcare

provider

Fig. 2 Functioning of an artificial intelligence clinical decision support (AI-CDS) tool. Electronic health data exists in a variety of formats,
including structured (in discrete fields) or unstructured (such as in narrative notes). The machine learning algorithm may then be applied to
these test data. When a desired threshold of disease probability is reached, a best practice alert may be provided to the treatment team.
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signs, laboratory results, or diagnosis codes. Unstructured data are
less organized and more subject to irregularities, such as
information contained within clinician notes and imaging reports.
To assist with the interpretation of unstructured data from notes,
natural language processing (NLP), a branch of AI concerned with
computational interpretation and production of human language,
may allow for the translation of free text into results that may be
used in risk prediction models.44 Neural network and deep
learning models have also been used to automate the interpreta-
tion of unstructured imaging data, the results of which may also
feed into a CDS model and have been used for pediatric
pneumonia detection from chest radiographs.45,46

One recent study demonstrated a role for an NLP-based tool in
the interpretation of chest radiographs for pneumonia. Using data
from a single center, the authors used NLP-extracted features
following a random forest-based ML classifier. The model
demonstrated high accuracy (with an AUROC of 0.95). The authors
subsequently deployed the model in a CDS tool within the EHR.
Chest radiographs with a high probability of pneumonia triggered
an interruptive best practice advisory.47

Another recent implementation study evaluated the role of AI-
CDS in the management of asthma in children in a randomized
control study that included 184 participants. For one group, AI-
CDS summarized relevant clinical information, provided a predic-
tion of the risk of asthma exacerbations over the following year,
and suggested asthma management plans. The AI-CDS was
compared to a group managed with usual care. Both groups
showed similar declines in asthma exacerbations (12% for the
intervention group and 15% for the control group). However, use
of the AI-CDS resulted in significant decreases in time spent
reviewing medical charts and time to follow-up, and reduced the
cost of care compared to the usual care group.48

DEVELOPMENT AND IMPLEMENTATION OF AI-CDS
The process of AI-CDS development extends from initial model
derivation and validation to implementation, study, and dissemi-
nation (Fig. 3). Model development is best performed by an
interdisciplinary team of stakeholders, including clinicians and
other potential end users, data scientists, clinical informaticians,
and implementation scientists. For the development and report-
ing of prediction models, the Transparent Reporting of a
multivariable prediction model for Individual Prognosis or
Diagnosis (TRIPOD) provides a rubric for best practice reporting
approaches.49 In addition, the minimum information about clinical
artificial intelligence modeling (MI-CLAIM) criterion provides
considerations specific for AI.50 MI-CLAIM emphasizes the need
to perform benchmarking, clearly define input data types, and
describe preprocessing data steps (e.g., transformations).

In addition to evaluating a model’s overall performance,
consideration should be provided to other metrics, including
those related to cost, resource utilization, and other balancing
measures. Pediatric-specific considerations for balancing measures
may include those in the Pediatric Patient Reported Outcomes
Measurement Information System rubrics, including those pertain-
ing to physical, mental, and social wellness.51 Others include those
related to painful procedures (i.e., venipuncture), radiation
exposure, unnecessary exposure to medications, and harm to
the family.
After model development and validation, the next step is for the

AI-based algorithm to be implemented in the form of a CDS tool.
Models may further be scaled, including through full integration
into the EHR using EHR-vendor-specific modules, via application
programming interfaces through standards like the Fast Health
Interoperability Resources, or as standalone systems.52 When
addressing implementation, interoperability standards within
EHRs must be considered.53 Following local deployment, models
require proactive and continued monitoring to evaluate changes
in performance over time, retraining the model with additional
targeted and augmented data, and identifying barriers and
facilitators toward the use of the model by clinicians.54 Continued
vigilance is required after local implementation of a model to
evaluate for other balancing effects and a decline in performance
over time. CDS tools should have systems in place to report
problems and provide feedback.55,56

An AI-CDS that performs well locally may indicate the potential for
generalizability. Traditional and emerging methods of clinical
investigation can be used to evaluate whether the AI-CDS tool
results in improved patient-centered outcomes across several
centers. Randomized, controlled trials comparing the use of the
AI-CDS to existing standards of care are essential to ensure that costs
of scaling, implementing, and maintaining a tool more broadly are
warranted and to ensure that dissemination does not have
unintended effects that might negatively impact patient care.
Methods of pragmatic clinical investigation that meld quality
improvement techniques such as patient care unit or institution-
level process standardization with randomization, such as clustered,
stepped-wedge designs, or approaches involving EHR-embedded
trial elements, such as randomization at the point-of-care, should be
considered in the trial design to aid in the overall efficiency of
conducting trials in this space.57,58 An AI-CDS tool should only be
disseminated after it has demonstrated generalizable value through
rigorous clinical investigation.
A recent editorial published by Shortliffe on AI-CDS identified

important priorities which must be considered during implemen-
tation.59 First, the reasoning behind the AI decision should be
transparent in order for the clinician to comprehend the rationale
behind the decision. In other words, the “black box” algorithms of
AI (in which a decision is made by an algorithm that lacks

Identify key stakeholders to
define problem (frontline
providers, analysts, payors,
leadership)

Model construction Validation Implement Demonstrate Disseminate

External validation on distinct
data sources
Inspect inaccurate predictions
for systemic errors
Evaluation of model on
potentially vulnerable subgroups

Development of a AI-CDS using
human factors
Single-center pilot
implementation
Evaluate uptake among
providers
Evaluate balancing measures
Evaluate statistical, clinical and
economic validity
Compare to standard of care

Compare to standard of care
across multiple centers

Disseminate academically,
commercially
Integrate model into EHR
systems or as standalone
models
Recalibrate models to local
practice patterns

Evaluate patient-centered
outcomes
Traditional randomized,
controlled trial versus embedded
pragmatic trial
Share results

Evaluate existing evidence
Develop model using statistical
and AI-based techniques with
internal or cross-validation using
retrospective or prospective
data sources

Fig. 3 Steps involved in the development of artificial intelligence clinical decision support. Stakeholders should be recruited early in the
process to evaluate existing models, identify key priorities and develop a machine learning model. Models should then externally validated
with specific consideration to balancing measures, including false positives and negatives and the performance of the model on minorities
and/or socioeconomically disadvantaged subgroups. Models may then be implemented into the electronic health record with subsequent
evaluation. Models should be studied and compared to standard of care, and if proven favorable, may then be disseminated.
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interpretability, such as deep learning models) is inadequate for
clinical contexts where transparency and clinician trust in the
models is paramount. Second, CDS should promote additional
efficiency and blend seamlessly with a clinical environment. Third,
CDS tools should be intuitively constructed and simple to use so
that no major training is required for their use. Fourth, a CDS
should reflect an understanding of the pertinent domain and
answer clinically relevant questions. Fifth, advice should be
offered in a way that recognizes the knowledge of the user to
augment—but not replace—decision making. Finally, a CDS tool
should be constructed on a rigorous, peer-reviewed scientific basis
to establish its reliability and generalizability.

CHALLENGES OF AI-CDS IN CHILDREN
Though AI-CDS tools may have advantages compared to rule-
based CDS in many situations, their use may result in additional
challenges. One review of qualitative research on the use of AI in
the clinical context that included clinicians, consumers, healthcare
executives, and industry professionals, reported positive percep-
tions about its use, though also identified many reservations
including wariness about liability from AI-mediated errors, need
for training, reputational harm, worsening communication, privacy
concerns, lack of proof regarding efficacy, and a lack of
explainability.60

Some limitations lie in the development and implementation of
AI-CDS carrying greater importance to research in children. These
include a need for large datasets, challenges relating to
unbalanced data, challenges of generalizability, lack of evidence-
based care, maturational variation in children, and ethical issues.

1. Need for large, high-resolution datasets: high-resolution
datasets, which contain demographic data combined with
detailed clinical data (including relevant data from a
patient’s past medical history, physical examination, vital
signs, monitor data, laboratory results, and outcome data)
are ideal for ML applications. From the standpoint of model
development and prediction, an important limitation for
pediatric research lies in the lack of large datasets. Children
account for a smaller proportion of healthcare resources,61

and datasets in children (either derived from the EHR,
prospective, or administrative data) are frequently smaller.
For ML to be successful, granular data are required, yet such
data are commonly unavailable in administrative datasets
(defined as data collected for administrative or billing
purposes)62 and the procurement of more detailed datasets
can be expensive. When using smaller datasets, advanced
ML methods may offer no advantage or only a slight
advantage over classic linear models.63,64

2. Imbalanced datasets: pediatric AI research may be chal-
lenged by the presence of imbalanced datasets, a term used
to describe when one of the categorical outcome variables
(such as the lack of a disease state) occurs substantially
more commonly than the other (the presence of a disease
state). For example, only 0.1% of children presenting to the
ED will ultimately be diagnosed with sepsis, making its
prediction a challenge.65 A number of techniques have been
described to handle imbalanced datasets. Among these,
undersampling (in which the amount of majority class
instances is reduced), oversampling (in which the amount of
minority class instances is inflated using bootstrapping or a
similar approach), or combinations of the two66 may
overcome the limitations of imbalanced datasets and are
particularly relevant in ML for pediatric applications. An
additional challenge with imbalanced datasets is appro-
priate measurements of results. Classic performance mea-
sures like AUROC may be inappropriate in these cases given
that the performance may be overestimated by a model

that tends to over-predict a majority class. Alternative
approaches, such as the area under the precision-recall
curve (AUPRC) may be more appropriate in this context
given that the interpretation of the AUPRC is based on the
prevalence of the outcome and represents the relationship
between sensitivity and positive predictive value, which are
arguably the most important performance measures for rare
event prediction.67

3. Generalizability: models derived from one hospital system may
poorly generalize to another. One recently reported example
was the Epic Sepsis Model, a proprietary sepsis prediction
model to predict adults with sepsis study that was developed
across three health systems. In an external validation of this
model in a different hospital system, it demonstrated a decline
in performance in a different hospital system, with an AUROC
of 0.63 (compared to AUROCs of 0.76–0.83 as originally
reported).68 In addition, challenges exist with interoperability
of definitions between EHR systems which need to be
reconciled prior to their use.

4. Lack of evidence-based guidelines and variation in care: CDS is
most effective when the detection of disease can serve as a
prompt to promote evidence-based care. However, a large
evidence-base does not currently exist for the optimal
management of many common pediatric conditions. As such,
the role of a CDS in providing recommendations may be
affected by substantial practice pattern variations in care, both
between individual providers and across institutions.

5. Developmental variation in children: pediatric AI models must
account for the physiologic changes and changes in disease
risk that occur through early childhood. Vital signs need to be
adjusted for age.69 ML tools for developmental disorders
similarly need to adjust for maturational changes.70 The
automated interpretation of radiographs similarly must
account for maturational changes in children, differing
appearances of common pathologies, and broader differential
diagnoses, which can all create challenges associated with
their automated interpretation.71

6. Ethical issues: many important ethical challenges have been
raised regarding the use of AI-CDS to augment the care of
children. Efforts to demonstrate the benefit of AI-CDS among
pediatric patients can be expected to encounter a set of
challenges already faced by other clinical investigators aiming
to conduct trials enrolling pediatric patients. Waived or
deferred consent is relatively uncommon in pediatric clinical
trials in the United States. This poses a potential challenge
during regulatory reviews of the design of embedded,
pragmatic studies that seek to evaluate the use of AI-CDS
nested within usual care workflows. Other ethical issues
surrounding the deployment of AI-CDS relate to the
determination of acceptable performance standards for
models, questions of whether “black box” tools should be
relied on in high-stakes clinical care, the potential infringement
of data protection rights of individuals, and whether the use of
AI-CDS must be disclosed to patients and their caregivers.72,73

7. Disparities in care: some studies have suggested that socio-
economic and racial disparities in care may be improved
through the standardization in care provided by a CDS
system.74,75 However, AI models have been demonstrated to
potentiate systemic racism in healthcare models.76 Similarly,
crisis standards of care during the COVID-19 pandemic have
commonly relied on rubrics incorporating regression-based
sequential organ failure assessment (SOFA) scores to guide the
allocation of scarce critical care resources. Recently highlighted
racial disparities in SOFA scores77–79 have cast substantial
doubt on the use of SOFA-based CDS for patients with COVID-
19. Similarly, the potential for inequity was noted in a popular
web-based system for the identification of young infants at risk
of UTI used a dichotomized variable of race,12 prompting
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criticism that such a model may delay the identification of
Black children with UTI.80

8. Medicolegal issues: the implementation of an AI-guided CDS
to partially assist or automate decision making carries
medicolegal implications, such as in patients who have a poor
outcome due to inaccurate predictions or CDS recommenda-
tions. Others have raised concerns about patient privacy or
that such a system may be exposed to hacking. In response to
stakeholder feedback, the United States Food and Drug
Administration proposed a regulatory framework in 2021 to
describe a potential approach for the review of AI/ML-driven
software modifications, in which AI software would be
considered a “medical device”.81 In it, the FDA described
priorities, including a need for “best practice” model develop-
ment, the importance of a patient-centered approach,
consideration of biases, and for continual monitoring of a
software product through its post-market life to enable the
FDA to have a reasonable assurance of safety and effectiveness
as a model continues to iteratively improve over time.

9. Limitations of CDS at large: many limitations associated with
CDS system implementation also apply to AI-CDS. One study
performed in the primary care setting, for example, noted that
providers were likely to use prompts when provided as a
means of support and choice, and were resistant when such
prompts were perceived as a means of enforcement.82

Other issues with AI-CDS that have been proposed include
impact on user skill (e.g., human skill deterioration over time),
need for continued maintenance, and challenges with data
quality.24 Finally, AI-CDS are expensive to develop and maintain
over time.83

FUTURE STEPS
A well-validated and implemented AI-CDS tool may allow for the
improved care of patients at the bedside through the delivery.
However, for AI-CDS to benefit children, several critical steps are
required. Situations that may benefit from improved predictive
performance need to be identified. To construct predictive models,
large datasets are needed. These may be potentially generated via
the construction of larger, federated datasets, defined as datasets
that are mapped from subsidiary datasets that may be inter-
connected across computer systems.84 These data may be derived
either retrospectively (from hospital medical records) or through
prospective trials for use in ML applications. These models need to
be published in accordance with reporting guidelines and
externally validated in distinct populations and settings. Impor-
tantly, more effort is required to ensure generalizability by
assessing the performance of models on distinct patient cohorts.
Prior to and in conjunction with data collection and modeling

efforts, continued engagement is needed with key stakeholders,
including physicians and other healthcare providers, payors,
computer scientists, and regulators to identify ways in which AI-
CDS models may be most effectively implemented. Critically,
patients and their families are a frequently overlooked stakeholder
group, though they have an important voice in the conversation
about AI-based technologies in healthcare. Two previous studies
have suggested that parents may generally be receptive toward
the use of AI,85 though there may be differences in trust by race
and age.86 More data are needed to assess their baseline comfort
with the use of AI in the development of healthcare predictions
and recommendations: while the public at large appears to have a
favorable perspective on the role of AI applications in health-
care,87–92 important concerns have emerged, such as a loss of
humanism in medicine.93 Other studies have identified racial
disparities with respect to the comfort in the role of AI in
medicine.88 Little has been reported on the opinions of caregivers
on the role of AI in medicine.

The role of AI in CDS continues to evolve. More work is needed
to compare AI-CDS tools to conventional CDS or routine practice,
for which little has been reported. There is a growing interest in
explainable AI, which is more transparent, allowing the user to
evaluate how predictions are constructed.94 Models that do not
require periodic tuning, and that can instead improve over time
when exposed to new data, a term called adaptive CDS, also
represent an important opportunity for growth.95

CONCLUSION
Applied in the appropriate clinical context, AI-CDS may provide an
opportunity to seamlessly provide evidence-based and individua-
lized care to children. Given the novelty of ML-based models in
clinical practice, its current use in any healthcare domain currently
remains limited, including in the care of children. AI-CDS may be
able to overcome some of the limitations frequently ascribed to
CDS, though more research is required. For AI-CDS to positively
impact the care of children, a diverse group of stakeholders is
required to promote the development of validated tools from
high-resolution datasets, with high predictive accuracy, that are
transparent and easy to use, and that complement the existing
knowledge base of the clinician.
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