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Abstract: Lipoprotein disorders are a major risk factor for atherosclerotic neuro-cardiovascular dis-

ease (ACVD) and are heavily influenced by lifestyle, including alcohol drinking. Moderate drink-

ers have a lower ACVD risk than abstainers due to their higher levels of high-density lipoprotein

(HDL) cholesterol, an important protective factor against ACVD. On the contrary, heavy drinking

increases  ACVD risk.  According to  an extensive literature  body,  ethanol  intoxication modifies

lipid serum profile and induces endothelial dysfunction. Single nucleotide polymorphisms may in-

fluence the relationship between alcohol drinking, HDL cholesterol level, and atherosclerotic risk.

The risk of ACVD in heavy drinkers seems enhanced in patients with apolipoprotein E4 allele, in-

terleukin-6-174  polymorphism,  and  cholesteryl  ester  transfer  protein  TaqIB  polymorphism.

Apolipoprotein E4 is a known risk factor for ACVD, while apolipoprotein E2 has mixed effects.

Therefore, even if a “protective role” may be attributed to moderate drinking, this effect cannot be

extended to everyone.
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1. INTRODUCTION
Lipoprotein's primary function is to transport cholesterol

and triglycerides. Insoluble in water, from the liver and intes-
tine to peripheral tissue, it return lipids and cholesterol to the
liver for clearance and recycling [1]. Lipoproteins are com-
plex  particles  composed  of  a  central  hydrophobic  core  of
non-polar  lipids  (triglycerides  and cholesterol  esters),  sur-
rounded by a hydrophilic membrane and consisting of phos-
pholipids, free cholesterol, and apolipoproteins (Apo) (Fig.
1) [2].

The Apo amphipathic properties allow them to surround
the lipids, creating a water-soluble particle. Lipoproteins are
classified according to their increasing density in chylomi-
crons, very-low-density lipoprotein (VLDL), intermediate-
density  lipoprotein  (IDL),  low-density  lipoprotein  (LDL),
and high-density lipoprotein (HDL) [3, 4].

The  main  functions  of  Apo  are  stabilizing  lipoprotein
structure and solubilizing lipid fraction,  acting as a  ligand
for lipoprotein receptors and serving as activators  or inhibit-
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ors of enzymes involved in the metabolism of lipoproteins
[1, 5, 6]. There are various classes of Apo and several sub-
classes.  Apolipoprotein  E  (ApoE)  is  a  component  of  chy-
lomicrons, chylomicron remnants, VLDL, IDL, and a sub-
group of HDL, which promotes the hepatic clearance of trig-
lyceride-rich lipoproteins owing to the binding to the low-
density lipoprotein receptor (LDLR) [7, 8]. ApoE was initial-
ly described as a lipid transport protein and major ligand for
LDL receptors  (mediated via  clathrin-coated vesicles)  [9].
There are three genetic variants of ApoE: ApoE2, ApoE3,
and ApoE4 [10]. Patients who are homozygote for APO Ɛ2
gene display the worst affinity for LDLR and higher plasma
cholesterol levels, leading to type III hyperlipidemia in hu-
mans [11]. Whereas, ApoE4 is associated with an increased
risk of Alzheimer’s disease and an increased risk of atheros-
clerosis [12]. Taken together, this may open new therapeutic
and nutraceutical, including moderate alcohol drinking, ap-
proaches to reduce apoE4 pathology in both and atheroscle-
rotic cardiovascular diseases (ACVD), neurovascular disor-
ders, and Alzheimer’s disease.

ACVD is a large group of atherosclerosis-related diseas-
es, including coronary heart disease, myocardial infarction,
infarction, an ischemic or hemorrhagic stroke of the brain or
the spinal cord, and peripheral arterial disease (carotid and
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legs atherosclerosis) [13-17]. Lipoprotein disorders are one
of the main risk factors for ACVD [18-20]. High levels of
LDL and triglycerides and low levels of HDL are the most
important  players  in  the  process  of  atherogenesis  [21-24].
Furthermore, an incorrect diet and lifestyle may enhance the
risk:  high  cholesterol  and  high  glucose  diets,  as  well  as
smoking and heavy alcohol drinking may contribute to in-
creased ACVD risk [25-28]. Several case-control and cohort
studies  have  described  a  J-  or  U-shaped  relationship  be-
tween alcohol intake and ACVD: abstainers and heavy drink-
ers show greater ACVD risk than moderate drinkers [29-34].
The limit between moderate and heavy drinking is not estab-
lished. According to the indications of the National Institute
of Alcohol Abuse and Alcoholism (NIAAA) and the British
Society of Cardiology, we considered “at-risk” people drink-
ing up to 4 drinks per day or 14 per week for men (in Italy 1
drink = 12 g of  alcohol),  more than 3 drinks  per  day or  7
drinks per week for women [35-38]. NIAAA defines heavy
drinking as 5 or more standard drinks in a day for a man and
4 or more standard drinks for a woman. However, women
should  avoid  alcohol  consumption  during  gestation  and
breastfeeding [39-43]. Furthermore, it is difficult to define a
drink  since  alcoholic  beverages  can  significantly  differ  in
their  alcohol  content  even  within  the  same  type  of  drink
(e.g. beer, wine, or distilled spirits) [37]. Drinking patterns
may be a confounding factor as well [44-46]. Binge drinking
increases  cardiovascular  risk,  while  many  studies  suggest
that alcohol consumed in moderation is beneficial for the car-
diovascular system [47-49]. Also, red wine presents protec-
tive effects due to its antioxidant effect and the combination
of  ethanol  with  better  nutrition.  Phenolic  compounds  as
resveratrol in the red wine are thought to be responsible for
the protective effects as shown in humans and animal mod-
els [50-64]. Considering all these observations, it is not sur-
prising that several studies regarding alcohol consumption
and ACVD did not report consistent results.

2. POLYMORPHISMS AND LIPID METABOLISM IN
ALCOHOL DRINKERS

2.1. Positive Effects
The S447X polymorphism results in the premature trun-

cation of lipoprotein lipase (LPL), a fundamental enzyme of
lipid metabolism [65]. In Asia, the S447X allele of the LPL
gene is frequent, and S447X carriers have a low level of trig-
lycerides in the plasma and a high level of HDL cholesterol.
In this population, the S447X allele seems to be associated
with a less atherogenic lipid profile [66]. In Korea, the effect
of the S447X allele was higher in men and women who con-
sumed moderate levels of alcohol [67].

2.2. Negative Effects
Patients with ApoE4, an isoform of the APOE gene in hu-

mans, display increased plasma LDL cholesterol levels and
lower  HDL  cholesterol  plasma  levels.  Therefore,  ACVD
risk seems to be enhanced [68-72]. As for the Interleukin-6
(IL-6) genotype, drinkers and smokers with CC IL-6-174 po-
lymorphism or the CG IL-6-174 polymorphism have a high-
er risk of coronary artery diseases [73, 74].

2.3. Mixed Effects
Alcohol-dehydrogenase enzymes (ADH) encoded by the

ADH1A, ADH1B, and ADH1C genes are mainly responsible
for  oxidizing  ethanol  to  acetaldehyde  [75,  76].  Moderate
drinkers  who  are  homozygote  for  the  slow-oxidizing  AD-
H1C2 allele have higher HDL levels and a lowered risk of
myocardial infarction. However, conflicting results are re-
ported by others [77-79].

Fig. (1). Scheme of one molecule LDL, a particle with a diameter
of 22 nm surrounded by a single lipid layer composed of around
800 phospholipids and 500 unesterified cholesterol molecules ac-
companied by one apolipoprotein B100 (ApoB-100) molecule and
by minor apolipoproteins like apolipoprotein E (ApoE). In the core
of the LDL particle are stored 1500 molecules of esterified choles-
terol and about 170 triglycerides. LDL particles are a high-risk fac-
tor for developing cardiovascular disease. Modified from ref. [3].

ApoE is a circulating glycoprotein with a central role in
lipid metabolism, promoting the clearance of residues of trig-
lyceride-rich lipoproteins from the circulation into the liver
[80]. Regarding ApoE polymorphisms, APOE ε2 heterozy-
gotes are associated with increased ApoE levels, lower lev-
els of cholesterol, lower LDL cholesterol levels, and higher
triglycerides levels, when compared with APOE ε3 homozy-
gotes [81, 82]. Whereas, ApoE4 heterozygotes are correlat-
ed with higher levels  of  cholesterol,  LDL cholesterol,  and
triglycerides [82, 83]. Of these two, the ε4 isoforms are asso-
ciated with higher coronary and carotid atherosclerosis risk
and higher cardiovascular risk in diabetes mellitus [68, 84,
85].

Considering  TaqIB  polymorphism  at  cholesteryl  ester
transfer protein (CETP) locus, it has been shown that the B2
allele has increased HDL cholesterol level in moderate drink-
ers  and  higher  levels  in  heavy  drinkers  with  decreased
atherogenic risk [86, 87]. On the contrary, the B1B1 geno-
type seems to be a genetic risk factor for ACVD [88].
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Fig. (2). Effects of alcohol abuse on atherosclerotic plaque formation. Excessive alcohol consumption is a risk factor for atherosclerotic dis-
ease. In particular, exposure of the endothelium to ethanol (EtOH) increases the production of reactive oxygen species that oxidize low-densi-
ty lipoproteins (LDL) to oxidized LDL. The subsequent phagocytosis of ox-LDL by macrophages in the intima leads to the accumulation of
foam cells, chronic inflammation of the intima, and the formation of atherosclerotic plaque. Over time, this hemodynamic alteration results
in coronary artery disease, stroke, peripheral artery disease, kidney problems, heart attack, and aneurysm.

3. ALCOHOL DRINKING AND ACVD RISK

3.1. Mechanisms
Alcohol can be beneficial or harmful to the cardiovascu-

lar system, depending on the amount consumed, the charac-
teristics  of  the  consumer,  and  the  quality  of  the  alcohol.
Most of the beneficial effect of moderate alcohol drinking
against the atherosclerosis risk seems due to the increased
HDL  cholesterol,  reduced  triglycerides,  total  cholesterol,
and  LDL cholesterol  [89-91].  Moderate  alcohol  consump-
tion may enhance the cardioprotective function of HDL by
upregulating the capacity of removing cholesterol, esterifica-
tion of cholesterol, and the transfer of cholesteryl ester from
HDL to the liver [92, 93]. Also, the elevation in HDL choles-
terol levels may be due to increased hepatic production or in-
creasing transport rate of apoA-I and apoA-II [91, 94, 95].
Lipoprotein lipase (LPL) is a fundamental enzyme responsi-
ble for the hydrolysis and transport of triglycerides [96]. Al-
cohol  could  also  protect  the  cardiovascular  system  by  in-
creasing  LPL activity  which  in  turn  decreases  the  triglyc-
erides concentration in those subjects who consume a low
quantity of alcohol [90].

Of  note,  the  plasma  level  of  adipokine  adiponectin,  a
sanogenic  protein  produced  by  the  adipocytes  [25],  in-
creased in moderate drinkers [97, 98]. Adiponectin may ex-
ert anti-inflammatory and anti-atherogenic effects; it, there-
fore, plays a protective role against neuro-cardiovascular in-
juries [99, 100].

The  relation  between  alcohol  consumption  and  HDL
cholesterol  is  mediated  by  the  effect  of  alcohol  on
cholesteryl ester transfer protein (CETP) activity. The trans-
fer of cholesteryl ester from HDLs to triglyceride-rich lipo-
proteins in exchange for triglycerides is driven by CETP: the

increase  in  CETP  activity  reduces  HDL  cholesterol  level
and promotes atherosclerosis [101, 102]. On the contrary, al-
cohol  drinking  tends  to  deplete  CETP  activity,  enhancing
HDL cholesterol levels [103, 104].

While  moderate  drinking  seems  to  have  a  protective
role, heavy drinking is associated with endothelial and adi-
pose dysfunction, increased atherosclerosis progression. Be-
sides, a wide cluster of hemodynamic and vascular abnormal-
ities indicate an unfavorable lipid profile and atherosclerotic
risk  even  in  former  alcoholics  who  are  disease-free
[105-109]. Several studies show that heavy alcohol drinking
alters  lipid  blood  profile,  causing  hypertriglyceridemia,  a
risk factor for the development of atherosclerosis [110]. This
alteration  is  due  to  increased  levels  of  chylomicron  and
VLDL due to types of lipoproteins rich in triglycerides [111,
112].

Another mechanism by which alcohol abuse induces en-
dothelial dysfunction and atherosclerosis is the alteration of
oxidative  stress  and  antioxidant  defense  [113].  Oxidative
stress is defined as an imbalance between the oxidant and an-
tioxidant system, causing an increase of reactive oxygen spe-
cies (ROS) [114, 115]. Acetaldehyde, a product of alcohol
metabolism, modifies the structure of the mitochondrial caus-
ing  high  production  of  ROS  and  lower  synthesis  of  ATP
[116].  Oxidative  stress  is  a  well-studied  component  of
atherosclerosis pathogenesis, occurring in parallel with in-
flammation [114]. The excessive production of ROS is re-
sponsible for LDL oxidation [115]. Due to such modifica-
tions, LDL becomes atherogenic and accumulates in specific
areas of the vascular wall. The subsequent internalization of
LDL oxidized into macrophages gives rise to the foam cells,
which is a hallmark of the early atherosclerotic lesion (Fig.
2) [117, 118]. Recent findings showed that resveratrol and
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polyphenols extracted from the olives could counteract the
oxidative stress induces by alcohol abuse throughout also a
modulation of neurotrophins [50, 52-54].

4. GENETIC POLYMORPHISMS, ALCOHOL DRINK-
ING, AND ACVD RISK

4.1. APOE Polymorphisms
ApoE lipoproteins  rich  in  triglycerides  are  recycled  in

the liver from which HDL enriched in Apo E are secreted
[119, 120]. The  main  APOE  alleles are Ɛ2,  Ɛ3, and Ɛ4.
 These  three  alleles  lead  to  different  metabolic  properties
and different atherosclerosis risks [121, 122]. The distribu-
tion of these alleles is not the same between different popula-
tions, even though Ɛ3 is the most widespread, followed by
Ɛ2 and Ɛ4 [123, 124].

The allele Ɛ4 is the ancestral  form in humans and pre-
sents  two arginines  at  positions  112 and 158 of  the  ApoE
amino  acid  sequence  [80,  121,  125].  The  affinity  of  these
lipoproteins for the hepatic LDLR varies with the ApoE iso-
form [68, 126]. The recycling of ApoE4 lipoproteins by the
liver is reduced, and causes intracellular cholesterol accumu-
lation, lower HDL-receptor expression and HDL cholesterol
plasma level, reduced expression of LDLRs, and increasing
plasma LDL cholesterol level [68, 69, 126]. All together, th-
ese alterations may increase atherosclerosis risk [70]. Fur-
thermore, in ApoE4 non-obese postmenopausal women, al-
cohol drinking is  associated with hypertension,  which is  a
significant risk factor for the development of atherosclerosis
[127, 128]. Moreover, ApoE4 is the major genetic risk fac-
tor for Alzheimer's disease as this carrier is less efficient in
transporting lipids from astrocytes to neurons than other iso-
forms [129, 130].

The Ɛ2 allele is the second most widespread allele and
presents a cysteine and an arginine at positions 112 and 158
of the ApoE amino acid sequence [80, 121, 125]. Subjects
with this  polymorphism have reduced affinity for  LDLRs,
leading to low LDL cholesterol and high HDL cholesterol
levels, accumulating triglyceride-rich lipoprotein containing
ApoE2 in plasma, and elevation of triglycerides level [131].
Moreover,  a  combination  of  Ɛ2  with  the  mutation  Ɛ1
Arg142Ser seems to be associated with severe type III hyper-
lipoproteinemia  in  patients  with  familial  hypocholes-
terolemia [132]. Regarding Alzheimer’s disease, ApoE2 pro-
tects the brain by accumulating less amyloid β in the brain
than other isoforms [133, 134].

Different studies report that alcohol may exert a positive
action, but heavy drinking is responsible for atherosclerotic
risk having a negative action on the release of nitric oxide
by the endothelium [135, 136]. This leads to vascular oxida-
tive  stress  and  reduces  nitric  oxide  production,  which  are
key events in the development of atherosclerosis [137, 138].
The different ApoE isoforms can exert different antioxidant
effects resulting in more or less atherogenic [139, 140]. In
heavy drinkers, the oxidative stress and the HDL levels are
increased: so the differences in atherogenic effect due to the
various ApoE isoforms may be further enhanced [137, 141,
142].

4.2. IL-6-174 Polymorphism
Heavy  alcohol  drinkers  with  CC  IL-6-174  polymor-

phism have higher levels of IL-6 and a higher risk of devel-
oping coronary artery diseases [73,  143].  On the contrary,
moderate alcohol drinking is correlated with lower levels of
IL-6, lower levels of C-reactive protein, and reduced carotid
intima-media thickness progression [144-146]. These results
strongly suggest that inflammation is one of the mechanisms
by which alcohol  intoxication triggers  the phenomenon of
atherosclerosis, as also suggested by the close relationship
between atherosclerosis and IL-6, the upstream inflammato-
ry cytokine [147, 148].

4.3. TaqIB Polymorphism and Cholesterylester Transfer
Protein

Transfer  of  cholesteryl  ester  from  HDLs  to  triglyc-
eride-rich lipoproteins in exchange for triglycerides is pro-
moted by CETP: this transfer is increased in ACVD patients
causing lower levels of HDL cholesterol [149, 150]. Instead,
CETP deficiencies are associated with high HDL cholesterol
serum levels and marked variations in the size and lipid com-
position [151, 152]. TaqIB, a CETP polymorphism, is associ-
ated  with  high  plasma  HDL  cholesterol  levels,  and  the
TaqIB  B2B2  genotype  shows  the  highest  levels  of  HDL
cholesterol [153, 154]. The use of CETP inhibitors, alone or
in combination with a statin, could be a valid option for pa-
tients  with  atherosclerotic  disease  as  these  drugs  showed
promising results in increasing HDL cholesterol levels [155,
156].

4.4. Gender Effects
The association  between  plasma lipids  and  alcohol  in-

take  depends  on  a  context  defined  by  gender,  age,  body
mass  index,  and  ApoE  genotype  [157-160].  As  far  as  we
know, the incidence of ACVDs in pre-menopausal women is
virtually non-existent: so it is hypothesized a cardio-protec-
tive role of ovarian hormones achieved through a more favor-
able lipid profile [161, 162]. In postmenopausal women, it
appears that a beneficial effect of moderate alcohol consump-
tion can be obtained on cardiovascular risk but with lower al-
cohol intake than men as women metabolize alcohol differ-
ently [163, 164]. Alcohol catabolism is impaired in women
due to smaller body size, larger body adipose tissue mass (al-
cohol is less soluble in body fat than in body water), and low-
er alcohol-dehydrogenase activity with decreased first-pass
metabolism of alcohol in the stomach before arriving in the
systemic circulation [165-168].

In a Chinese population, men with small artery occlusion
who consume alcohol show the worst outcome, greater risk
factors, and high LDL cholesterol plasma levels concerning
women [169]. In APOE Ɛ4 carriers, plasma LDL cholesterol
level, and ACVD risk were significantly higher in drinking
than  in  non-drinking  men,  whereas  in  women,  no  differ-
ences were found [170]. Compared to women, men are more
exposed to atherosclerotic risks [171]. The anti-atherogenic
property  of  estrogens  is  mediated  via  at  least  two  mech-
anisms: firstly by affecting plasma lipoprotein profiles pro-
moting  high  levels  of  HDL  and  low  levels  of  LDL;  se-
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condary  by  downregulating  the  expression  of  adhesion
molecules  of  the  vessel  wall  after  the  exposure  to  athero-
genic stimuli [172-174].

4.5. Age Effects
Among elderly postmenopausal women (over 65 years),

ApoE4 carriers were found a negative effect of alcohol drink-
ing  concerning  abstainers  [175].  In  non-obese  postmeno-
pausal women, alcohol consumption is associated with early
systolic and diastolic hypertension in APOE genotype ɛ3/3
compared to ɛ4 carriers [122]. Furthermore, ApoE4 aged pa-
tients abusing alcohol display lower cognitive abilities [176,
177].

Similar results were obtained for ischemic stroke risk in
elderly subjects: in the ApoE4 negative subjects, moderate
drinking was associated with a lower risk than in abstainers,
whereas in ApoE4 patients, the risk among moderate drink-
ers was higher than abstainers. In this study of older adults,
the  association  of  alcohol  use  and  risk  of  ischemic  stroke
was U-shaped, with a modestly lower risk among consumers
up to 6 drinks per week. However, ApoE genotype may mod-
ify this association, and even moderate alcohol intake may
be  associated  with  an  increased  risk  of  ischemic  stroke
among  ApoE4-positive  older  adults  [178].

Despite the substantial scientific evidence linking moder-
ate alcohol use to lower risk of coronary heart diseases, the
shape of the dose-response relationship between alcohol in-
take and coronary risk remains less consistent. No relation-
ship was found between ApoE genotype and risk of myocar-
dial infarction or coronary death in subjects over 65 years
[179].

CONCLUSION
Many studies indicate that the ACVD risk in heavy drink-

ers is increased by genetic factors. An important goal is to
provide  genetic  information  for  improving  our  ability  to
identify individuals with increased atherosclerosis risk, thus
increasing our skill  in the development of  prevention pro-
grams.

ACVD risk in drinkers may be modulated by different
polymorphisms  well  documented  as  ApoE,  IL-6-174,
S447X,  TaqIB,  and  ADH1C.  However,  we  focused  on
ApoE SNPs due to the relationship between alcohol drink-
ing, ApoE single nucleotide polymorphism, and ACVD. In
the primary prevention of alcoholism, people should be ad-
vised that heavy drinking may increase the atherosclerosis
risk and that this risk may be further enhanced by specific ge-
netic personal traits. At the present time, there is little aware-
ness of these problems, and it could be quite useful to spread
such  information  mainly  among  family  doctors  and  other
health and social professionals providing primary care.

The results  relating to the risk of neuro-cardiovascular
diseases  in  ApoE4  patients  are  worrisome  since,  in  Cau-
casians, this isoform is present in approximately 13-25% of
the general population. As a clinical strategy, the ApoE SNP
should be routinely assessed, and the data should be consid-
ered for the treatment: in fact, the ACVD risk is enhanced
for  drinking  ApoE4  people.  This  strategy  would  raise  the
cost  of  prevention  since  skillful  operators  and  expensive

equipment  are  needed.  However,  the  relationship  between
cost/benefit may be favorable. As the prevalence of ApoE4
carriers is high in Caucasians and cardiac ischemic disease
and ischemic stroke, that are the most worrisome ACVD out-
comes heavily affect the individuals and society in terms of
human suffering, loss of productivity, and health costs.

When a heavy drinker results in ApoE4-positive, a more
careful clinical evaluation is needed to detect clinical symp-
toms and signs (if any) of ACVD. Furthermore, the patients
should be advised that their risk of ACVD is increased due
to both drinking habits and genetic patterns, and they should
quit  drinking.  In  alcohol-dependent  subjects,  abstinence
should be supported by psychological and/or pharmacologi-
cal treatments in specialized units.

Since most of the literature evidence that moderate alco-
hol  drinking  decreases  ACVD  risk  and  that  ACVD  is  the
main cause of death in Western countries, moderate use of al-
cohol could be hypothetically recommended to decrease mor-
tality in these countries. However, clinicians should not rec-
ommend moderate  drinking to  prevent  coronary heart  dis-
ease based on this evidence alone as current NIAAA guide-
lines suggest a limit of one drink per day in adults [95, 180].

When we consider the age effect, it should be noted that
in older people (over 65 years), the relationship between al-
cohol-ischemic stroke and alcohol-carotid thickness is modi-
fied by the ApoE genotype. Some results show that the risk
among moderate drinkers is lower than abstainers ApoE4-
negative subjects. However, the risk among moderate drink-
ers  is  higher  than  abstainers  among  ApoE4-positive  sub-
jects. These data are worrisome and, if confirmed by further
research  in  more  extensive  series  and  different  countries,
they can make alcohol abstinence mandatory for all elderly
ApoE4 carriers.

The identification of ApoE genotypes may be important
for pharmacological treatment. ApoE genotypes have been
associated with the response of plasma lipids to lipid-lower-
ing drugs, as statins are known to decrease LDL cholesterol
levels and ACVD risk. Although the effect of Apo E gene
polymorphism on the response to treatment with statins has
been  studied,  the  results  are  conflicting.  Age  and  gender
were found to influence low-density lipoprotein cholesterol
response to a similar extent as the most pronounced genetic
effects.  Among  SNP  tested  with  an  allele  frequency  of  at
least 5%, only those in ApoE significantly influence statin re-
sponse [181-183]. Beneficial effects of statin treatment were
found in ApoE4 carriers by most authors [183-186]. Mixed
or negative effects were found in a few studies [187, 188].
ApoE genotype had no significant effect on the response to
treatment with atorvastatin in patients with heterozygous fa-
milial hypercholesterolemia [188].

In  the  future,  gene therapy could be  the  best  approach
for  ACVD  prevention  and  cure.  Severe  hypercholes-
terolemia  and  atherosclerosis  were  successfully  treated  in
ApoE deficient mice (ApoE -/-) and transgenic animals ex-
pressing an ApoE defective gene [189-191]. Promising re-
sults were also obtained using a  gene  therapy  based  on a
 viral vector expressing apolipoprotein A-1, which reduced
atherosclerotic lesion growth in mice fed with a high-fat diet
[192]. Furthermore, gene editing using the CRISP/Cas9 tech-
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nique showed substantial improvements in the atherosclero-
sis  condition  in  a  mouse  model  of  hypercholesterolemia
[193].

LIST OF ABBREVIATIONS

ACVD = Atherosclerotic Neuro-Cardiovascular Diseases

ADH = Alcohol-Dehydrogenase Enzymes

ApoE = Apolipoprotein E

CETP = Cholesteryl Ester Transfer Protein

HDL = High-Density Lipoprotein

IDL = Intermediate-Density Lipoprotein

IL-6 = Interleukin-6

LDL = Low-Density Lipoprotein

LDLR = Low-Density Lipoprotein Receptor

LPL = Lipoprotein Lipase

VLDL = Very-Low-Density Lipoprotein
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