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Neuroimmune signaling is increasingly identified as a critical component of neuronal
processes underlying memory, emotion and cognition. The interactions of microglia
and astrocytes with neurons and synapses, and the individual cytokines and immune
signaling molecules that mediate these interactions are a current focus of much research.
Here, we discuss neuroimmune activation as a mechanism triggering different states that
modulate cognitive and affective processes to allow for appropriate behavior during and
after illness or injury. We propose that these states lie on a continuum from a naïve
homeostatic baseline state in the absence of stimulation, to acute neuroimmune activity
and chronic activation. Importantly, consequences of illness or injury including cognitive
deficits and mood impairments can persist long after resolution of immune signaling. This
suggests that neuroimmune activation also results in an enduring shift in the homeostatic
baseline state with long lasting consequences for neural function and behavior. Such
different states can be identified in a multidimensional way, using patterns of cytokine and
glial activation, behavioral and cognitive changes, and epigenetic signatures. Identifying
distinct neuroimmune states and their consequences for neural function will provide a
framework for predicting vulnerability to disorders of memory, cognition and emotion
both during and long after recovery from illness.
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INTRODUCTION

Behavioral states or brain states are defined as co-ordinated patterns of activity in the brain.
Whether that state is a ‘‘feeling’’ (philosophical, Oosterwijk et al., 2012), a systems/circuit activation
(Quilichini and Bernard, 2012), or a pattern of kinase activity (Tronson et al., 2012; Mucic et al.,
2015), brain states can be thought of as a snapshot of what is happening in the brain in that
moment. By adjusting to the precise current conditions of the animal’s environment, changes in
state are essential for efficient processing of information relevant to that place and time, and as
such, are accompanied by changes in information processing in the hippocampus (Anderson et al.,
2014) and cortex (Tsuno and Mori, 2009). In this review, we discuss neuroimmune activity as a
continuum of states—including a baseline homeostatic state, acute activation, chronic low-grade
activation and a ‘‘vulnerable’’ state that persists long after a major illness or injury—that interact
with neural function and cognition.
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THE IMMUNE SYSTEM: A PRIMER

In the periphery, the immune system is divided into two
interrelated but separable systems—the innate immune system
and the adaptive immune system. The innate immune system
enacts the rapid response to infectious agents and injury via
specialized receptors that recognize viruses (double stranded
RNA), bacteria (e.g., lipopolysaccharides, LPS), or nuclear and
cytosolic proteins that are released during cellular damage.
The innate immune response is characterized by an expansion
and subsequent resolution of cytokine production. The initial
response includes cytokines (e.g., interleukins IL-1β, IL-6; tumor
necrosis factor α (TNFα), interferon γ (IFN γ)) and chemokines
(e.g., CX3CL1, CSF1-3) that recruit additional immune cells, and
increase transcription and production of cytokines. This also
increases production of regulatory cytokines (e.g., IL-4, IL-10)
that, together with intracellular signaling proteins (e.g., SOCS,
suppressor of cytokine signaling; PIAS1) suppress cytokine
production and immune cell recruitment, thereby resolving the
immune response (Wang and Campbell, 2002; Colton, 2009;
Schmitz et al., 2011; Becher et al., 2017; Prieto and Cotman,
2017). The adaptive immune system is, in turn, activated by the
innate immune response, with a slower response and resulting in
the generation of antibodies to the infectious pathogen (Janeway,
2001).

Neuroimmune processes are activated during peripheral
illness due to vagal nerve activity and immune signals that cross
the blood brain barrier (McCusker and Kelley, 2013), and as a
consequence of neural injury or infection. The neuroimmune
response in the brain is predominantly considered an innate
immune response, however components of the adaptive immune
system in the meningeal compartment, including T-cells, are
critical for normal neural function (Kipnis et al., 2012), cognitive
function, and production of cytokines in the brain during
illness or injury (Marin and Kipnis, 2017). Acute activation of
neuroimmune processes function to both heal neural injury and
attack infection in the brain (Kreutzberg, 1996; Berczi et al., 2009;
Kawabori and Yenari, 2015; DiSabato et al., 2016; Sochocka et al.,
2017), and as an important adaptive process, triggering sickness
behaviors and physiological responses that allow the peripheral
immune system to perform at optimal levels (McCusker and
Kelley, 2013).

NAÏVE HOMEOSTATIC BASELINE STATE

Although we commonly refer to illness or injury as triggering
‘‘activation’’ of the immune and neuroimmune systems, the
naïve homeostatic baseline is not the absence of neuroimmune
signaling or activity. Instead, astrocytes and microglia constantly
interact with neurons and play active roles in regulation of neural
function and synaptic plasticity. Astrocytes provide energy and
regulate glutamate during synaptic transmission and plasticity
(Suzuki et al., 2011; Gold, 2014; Nortley and Attwell, 2017;
Alberini et al., 2018). Microglia provide continuous surveillance,
synaptic pruning, and regulation of synaptic plasticity via
complement and cytokine interactions (Nimmerjahn et al., 2005;
Wu et al., 2015; Lenz and Nelson, 2018; Pósfai et al., 2018).

Importantly, neurons produce and have receptors for ‘‘immune’’
proteins including cytokines, chemokines and complement,
thereby providing a basis for ongoing communication with glial
cells (Freidin et al., 1992; Veerhuis et al., 2011; McCusker and
Kelley, 2013; Paolicelli et al., 2014).

Cytokines and chemokines are also produced during this
baseline state and during non-inflammatory stimulation such
as learning and induction of long-term plasticity (Jankowsky
et al., 2000; del Rey et al., 2013). These cytokines play both
permissive (e.g, IL-1β; (Goshen et al., 2007); IL-4 (Gadani et al.,
2012)) and suppressive (e.g., IL-1β (Avital et al., 2003; Goshen
et al., 2007); IL-6 (Balschun et al., 2004)) roles in synaptic
plasticity and memory formation during adulthood. Rather
than the (neuro)immune system as existing as either ‘‘off’’ or
‘‘on,’’ it is more accurately conceptualized as a continuum of
activity from a homeostatic baseline state, through undetectable
response to cellular stress, up through low-grade activity,
and occasionally a fully active disease or acute inflammatory
state (e.g., Chovatiya and Medzhitov, 2014; Marques et al.,
2016). In accordance with this view and consistent with the
growing evidence for a critical role of immune cells and
signaling in normal memory, affective and cognitive processes,
the neuroimmune system is not inactive in the absence of
inflammatory stimulation, but instead engages in ongoing
interactions with synapses, neurons and circuits in the brain
(Capuron and Miller, 2011; McCusker and Kelley, 2013; Donzis
and Tronson, 2014; Wu et al., 2015; Tronson and Collette, 2017;
Dantzer, 2018).

Nevertheless, the levels of cytokines (Erickson and Banks,
2011; Biesmans et al., 2013; Speirs and Tronson, 2018) and
cytokine expression (Skelly et al., 2013) in the brain during
non-stimulated conditions are very low, often at concentrations
that are barely detectable (Erickson and Banks, 2011; Biesmans
et al., 2013). During activation by LPS, for example, whereas
cytokines in serum can be hundreds or thousands fold higher
than baseline, in the brain, these changes are limited to
1.5–10 fold range (Erickson and Banks, 2011; Biesmans et al.,
2013; Speirs and Tronson, 2018) with occasional chemokines
showing hundreds of fold increases (e.g., CXCL10, CSF3; Speirs
and Tronson, 2018). The difficulty in measuring immune
signaling in the brain (and in the periphery, Chovatiya and
Medzhitov, 2014) in the baseline state therefore makes it difficult
to assess the precise roles in these baseline processes.

ACUTE NEUROIMMUNE ACTIVATION
STATE

Acute immune activation, whether by illness, injury, or
experimental administration of LPS or other immune trigger,
results in the induction of broad networks of cytokines and
immune molecules, including complement, IL-1β, IL-6 and
TNFα, followed by the regulatory cytokines (IL-10, IL-4) and
downstream signaling pathways (Donzis and Tronson, 2014).

That the activation of the neuroimmune system drives
a unique brain and behavioral state is clear from the
distinct consequences of illness on behavior, cognition,
emotion and learning and memory (Dantzer et al., 1998;
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Yirmiya and Goshen, 2011; Donzis and Tronson, 2014). The
roles of cytokines and immune molecules in the modulation
of memory has been a particular point of recent interest
(Pugh et al., 1998; Marin and Kipnis, 2013; del Rey et al.,
2013). Elevations of IL-1β results in disruption of memory
and synaptic plasticity (Cunningham et al., 1996; Ross et al.,
2003; Goshen et al., 2007; Gonzalez et al., 2013); and IL-6
activation acts as a brake on plasticity (Balschun et al., 2004;
Sparkman et al., 2006). In addition to cytokines, other immune
signaling pathways including complement signaling are critical
for neuroimmune activation (Jacob et al., 2007), physiological
effects including fever (Boos et al., 2005) and synaptic plasticity
(Boulanger, 2009; Bitzer-Quintero and González-Burgos, 2012;
Zhang et al., 2014). For example, the complement proteins are
produced by neurons and microglia during infection, triggering
microglial infiltration and activation, loss of hippocampal
synapses and spatial memory impairments during West Nile
Virus infection, effects prevented by knockout of the C3 or
blockade of C1qa complement production (Vasek et al., 2016).
Immune signaling molecules are therefore a defining feature,
and drive outcomes of, the acute neuroimmune activation
state.

Morphological and transcriptional changes of microglia
and astrocytes are also indicative of neuroimmune activation.
Activated microglia show a shift in morphology from a
ramified, surveying state to an ameboid state by withdrawing
long, thin processes and extending short, thick, phagocytic
processes towards the source (Stence et al., 2001). Similarly,
astrocytes have several distinct ‘‘reactive’’ transcriptional profiles
in response to immune stimulation (Zamanian et al., 2012;
Liddelow and Barres, 2017). Activated microglia are a primary
source of cytokine and chemokine production during immune
events (Colonna and Butovsky, 2017), and thereby alter
neuronal-glia communication (Tremblay et al., 2011; Paolicelli
et al., 2014). Indeed, inhibition of microglial activity prevents
immune challenge-induced impairments in memory, suggesting
a requirement for these neuroimmune cells in cognitive deficits
during acute neuroimmune activity (Yang et al., 2015; Vasek
et al., 2016; Wang et al., 2016; Wadhwa et al., 2017).

The role of a small number of cytokines, notably IL-1β,
IL-6 and IL-4, in modulating behavior, cognition and memory
processes is well established. Nevertheless, the functional
role of specific immune signaling molecules depends on the
current immune milieu and the specific immune challenge.
For example, IFNγ can enhance immune signaling as observed
in models of cerebral malaria and after LPS, or downregulate
inflammatory responses in the brain, as in experimental allergic
encephalomyelitis (Heremans et al., 1989). Similarly, the role
of IL-1 in the brain differs between neurodegenerative and
neuroinflammatory states, and depends on the subsets of
immune cells and cytokines present (Becher et al., 2017).
The precise activation state and transcriptional profile of
immune cells also differs depending on the type of immune
stimulation, with different immune triggers resulting in
different patterns of gene expression and cytokine signaling
(Chovatiya and Medzhitov, 2014; Becher et al., 2017;
Prieto and Cotman, 2017). This means that in considering

the individual roles of cytokines in modulation of neural
processes, we also need to bear in mind the broader context
of what other cytokines and immune cells are concurrently
present.

A special subset of neuroimmune activation is chronic
inflammation. As with acute immune activation, chronic
inflammation is defined by persistent activation of cytokines and
glial cells, and results in changes in behavior and neural function.
In models of sepsis, for example, microglial activation persists
for weeks or months after surgery, presumably contributing
to persistent cognitive deficits (Weberpals et al., 2009; Singer
et al., 2016; Olivieri et al., 2018). Similarly, after traumatic brain
injury, there is long-term inflammatory activity (Gentleman
et al., 2004). In patients of arthritis and periodontal disease,
chronic low-grade inflammation is associated with cognitive
deficits, depression and increased risk for Alzheimer’s disease
(Kamer et al., 2008; Chou et al., 2016; Simos et al., 2016),
and animal models suggest a causal link between chronic
inflammatory conditions and altered cognitive function and
increased depression-like behaviors (Brown et al., 2018; Ding
et al., 2018). Long-term increases in cytokine levels in the brain
likely result in a notably different cytokine network and therefore
a brain states that is distinct from acute neuroimmune activation
states.

Collectively, these studies point to neuroimmune activation as
being crucial for determining the profile and function of neural
activity that mediates changes in behavior, cognition, affect and
memory. Furthermore, the importance of specific patterns of
immune signaling on cognition and behavior suggests that acute
neuroimmune activation is not one, but multiple distinct brain
state, depending on the specific immune trigger and, as described
below, previous immune experience.

PERSISTENT CHANGES IN BRAIN STATE
AFTER IMMUNE CHALLENGE

A defining feature of the peripheral immune system is that acute
activation results in permanent changes to immune function
that persist after resolution of inflammatory signaling. The
best-known example of this is the adaptive immune system,
which becomes able to produce new antibodies after exposure
to a pathogen (Janeway, 2001). Independently, the innate
immune system also shows ‘‘trained’’ immunity, in which a
transient immune challenge results in increased responsiveness
to subsequent immune stimuli (Netea and van der Meer, 2017).
Such long-lasting changes may be thought of as a distinct, shifted
baseline state that results in functional adaptation for subsequent
illnesses. If the innate immune system in the periphery encodes
experiences as long-lasting changes in function, it is likely that
persistent changes are also encoded in the neuroimmune system.

Permanent changes in neuroimmune function have been
observed after prenatal or early life immune challenge in and
effect termed ‘‘microglia priming.’’ Here maternal immune
challenge during pregnancy or early life immune challenge result
in increased responsiveness of microglia to immune challenge
during adulthood (Schwarz and Bilbo, 2012; Bilbo, 2013; Haley
et al., 2017). More recently, several studies demonstrate similar
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priming effects after immune challenge in adults, with changes
in microglial and astrocytic function and behavior (Fenn et al.,
2014; Norden et al., 2015; Muccigrosso et al., 2016; Liddelow
and Barres, 2017; Olivieri et al., 2018; Wendeln et al., 2018).
Importantly, these effects persist even when the pathogenic
process is eliminated long before. By altering interactions
between neurons and glial cells and the quantity and specific
patterns of cytokines produced (ŠiŠková and Tremblay, 2013;
Wendeln et al., 2018), prior illness has a lasting impact on the
effect of subsequent acute immune challenge. For example, an
LPS challenge results in altered gene expression and increased
cytokines in response to stroke at least 6 months later,
suggesting persistent changes in neuroimmune function even
when animals have shown a full recovery (Wendeln et al.,
2018).

Long-lasting functional changes are mediated by epigenetic
modifications triggered by immune activation. In the periphery,
methylation of histone H3 mediates increased innate immune
responses (Kleinnijenhuis et al., 2012). Similarly, in the brain,
acetylation and methylation of H3 are associated with altered
astrocyte and microglial function after immune challenge
(Schaafsma et al., 2015; Haley et al., 2017; Wendeln et al.,
2018). Together, these findings demonstrate that a prior immune
challenge causes persistent changes in neuroimmune function,
or neuroimmune ‘‘training,’’ and results in vulnerability to later
immune events.

One question arising from these lasting changes in
neuroimmune function is whether there are also changes in
the homeostatic baseline state of the brain. If so, transient
illness may cause not only the initial acute immune state, but
also a new permanently altered brain state. There are several
pieces of evidence that support changes in brain function
that persist long after the resolution of immune challenge. In
addition to altered neuroimmune reactivity, peripheral illness
can result in decreased neuronal connectivity, synaptic spines
and plasticity (Kondo et al., 2011; Maggio et al., 2013; Huerta
et al., 2016). Alternatively, long-lasting increases in permeability
of blood-brain barrier may also contribute to persistent changes
in baseline homeostatic state of the brain (Saunders et al., 2008;

FIGURE 1 | Neuroimmune activation occurs along a continuum from the naïve
(homeostatic) baseline (A), to an active inflammatory state (B) or chronic
inflammation (C). We propose that resolution of inflammatory signaling does
not result in return to the original baseline, but rather results in persistently
altered homeostatic baseline (D) mediated by epigenetic changes in the brain.
Figure adapted from Chovatiya and Medzhitov (2014).

Strbian et al., 2008). Consistent with these data, we have recently
observed memory impairments that emerge and persist months
after an immune challenge (Tchessalova and Tronson, 2018).
Changes in neuronal connectivity, neuroimmune function,
and their interactions mediate what and how information is
processed, and contribute to persistent changes in cognitive
function, mood and memory observed after illness or injury.

Collectively, these data suggest that rather than returning
to the original homeostatic baseline state after resolution of an
immune challenge, the brain reaches a new homeostatic state
with different neuronal connections, a ‘‘trained’’ neuroimmune
system, and epigenetic modifications that lead to dysregulated
gene expression (Figure 1). A shift in baseline state and neuronal
connectivity could result in changes to neural and neuroimmune
responses to environmental stimuli, including immune and
other sensory information, and thus altered cognitive processes
and vulnerability to memory, affective and neurodegenerative
disorders.

DISCUSSION AND CONCLUSIONS

The work reviewed here clearly demonstrates that neuroimmune
activation modulates neural and cognitive function both acutely
and with effects that persist long after recovery from illness and
the resolution of a transient immune response. There is growing
evidence for the role of neuroimmune signaling in both normal
and pathological memory, cognitive and affective processes. In
particular, the role of individual cytokines in the regulation
of synaptic plasticity and memory, and the dysregulation
during an immune response, has been highlighted by recent
research. Importantly, activation of neuroimmune signaling is
more complex than single effectors. Instead, the neuroimmune
response includes activation of glial cells, cytokines and many
other immune signaling molecules in a co-ordinated manner
(Schmitz et al., 2011; Becher et al., 2017; Prieto and Cotman,
2017), which in turn causes a distinct set of regulatory cytokines
and signaling molecules that mediate resolution of the response
(McCusker and Kelley, 2013). This activation and resolution
cycle further results in long lasting epigenetic modifications
and changes in neuronal connectivity that persist and modulate
cognitive function and behavior long after the end of the immune
challenge. We therefore propose that neuroimmune activation
can be viewed as a continuum of states in the brain: from acute
or chronic activation, to resolution, to persistent changes in
baseline homeostatic state(s), each with distinctive patterns of
glial cell activation, cytokine and immune signaling, epigenetic
modifications, and behavioral change (Figure 1).

How to Define Neuroimmune “States”?
An important unresolved question is how to define
neuroimmune states? In general, neuroimmune activation
is commonly defined by behavioral changes, by the activation
of microglia, or by increased level or expression of immune
molecules, in particular cytokines and chemokines (Dantzer
et al., 1998; McCusker and Kelley, 2013; del Rey et al., 2013;
Becher et al., 2017). Behavioral changes, notably sickness
behaviors and associated febrile response and weight loss,
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are commonly used to assess immune (and neuroimmune)
activation. Yet sickness responses are not specific to immune
trigger—as noted by McCusker and Kelley (2013), ‘‘symptoms
are commonly expressed by sick animals despite the broad
spectrum of possible pathogens.’’ Therefore, sickness behaviors
are not sensitive enough to the precise neuroimmune state of
the brain beyond ‘‘on’’ and ‘‘off’’. Morphological changes of
microglia are useful for defining when the neuroimmune system
is active but is likely not sufficient for identifying changes in
homeostatic baseline or other long lasting, low-grade changes.
Alternatively, identifying the precise patterns of cytokines
expressed and neuroimmune cells recruited after an immune
challenge allows for a detailed definition of different active
states. The two disadvantages of this being the sole approach
to identifying state, however, are: (1) that levels of cytokines at
baseline are very low, thus it is difficult to clearly identify what
is happening in the absence of acute neuroimmune activation;
and (2) if broad patterns of cytokines define a state it is not

sufficient to simply measure a small number of cytokines, and
this approach rapidly becomes cumbersome and expensive.
Thus, in order to use cytokines and immune signaling to define
states, it will be critical to identify a smaller cluster of key
proteins distinct for each state. Importantly, behavior, glial
activity and cytokine levels are expected to revert to very low
baseline (or close to baseline) levels after a transient immune
challenge, even if there is a shift in the homeostatic baseline state
(Figure 1).

Alternatively, defining an epigenetic landscape or signature
has been one approach for defining states (Bonasio et al., 2010;
Tronson et al., 2012; Nicol-Benoit et al., 2013). Here, unique
epigenetic signatures of histone acetylation, phosphorylation
and methylation and DNA methylation during different forms
of neuroimmune activation, and that persist after resolution
of immune signaling will better define the multiple acute and
long-lasting brain states that can be induced by neuroimmune
signaling (Figure 2). Indeed, epigenetic modifications and the

FIGURE 2 | Distinct neuroimmune states. Each state is a unique snapshot of behavior, immune signaling, cellular changes, active cytokine networks and epigenetic
signature at that time. Early- and late- acute immune states are distinguished by activation of different cytokine networks (represented by ball-and-stick figures);
microglia show activated morphologies only during acute and chronic activation states; persistent changes are indistinguishable from naïve baseline in the absence
of additional stimulation. Learning and memory may also be considered distinct neuroimmune (and epigenetic) states. Figure adapted from Waddington (1957).
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resulting changes in gene expression profiles likely both define
the state and drive the distinct patterns of signaling, behavior and
cognitive changes that mediate.

Implications of “Neuroimmune States” for
Cognition and Behavior
There are several advantages to defining immune activation and
post-activation as brain states. This view provides a framework to
go beyond the idea of neuroimmune system as ‘‘on’’ or ‘‘off,’’ and
towards an understanding of multiple active immune states such
as those mediating different behavioral outcomes of bacterial or
viral infections and provides a way to conceptualize sustained
changes that persist long after resolution of acute neuroimmune
activity.

There is clear evidence for roles of individual cytokines on
cognition, memory and affective processes. Indeed, the activation
of specific cytokine networks during learning suggests that, in
addition to acute, chronic, and persistent states, neuroimmune
signaling during learning and other cognitive tasks may be
unique states themselves (Figure 2) that result in distinct
epigenetic changes that mediate memory storage (Li et al., 2013).
In addition, acute neuroimmune activation critically modulates
memory and plasticity, yet depending on circumstances, it
can either impair (Pugh et al., 1998; Goshen et al., 2007;
Cross-Mellor et al., 2009; Cloutier et al., 2012) or enhance
(Goshen et al., 2007; Mori et al., 2014; Delpech et al., 2015)
memory and cognitive function. One important factor here

is that the impact of immune signaling on cognition and
behavior depends on the context of the specific immune milieu
at this time (Becher et al., 2017). Indeed, in the periphery,
determining the precise immune state can aid in minimizing
side effects of immunologic treatments for systemic disease
(Morel et al., 2017). By identifying distinct neuroimmune
states, we will be better able to predict the effects of illness,
immune activation, and specific cytokines on neuronal-glia
interactions, plasticity and functional changes in cognition and
behavior.

Finally, identifying persistent changes and shifts in the
homeostatic baseline state as a consequence of illness or injury
will provide a predictive marker for vulnerability or resilience to
stress (Fonken et al., 2018), immune challenges (Norden et al.,
2015; Muccigrosso et al., 2016), and neurodegeneration (Perry
and Holmes, 2014; Hoeijmakers et al., 2016; McManus and
Heneka, 2017) later in life. This is a particularly important avenue
for research into individual differences and sex differences in
susceptibility to immune-related disorders of cognition, memory
and emotion (Perry et al., 2016; Snyder et al., 2016; Tronson and
Collette, 2017; Choleris et al., 2018; Fisher et al., 2018; Speirs and
Tronson, 2018).
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