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Abstract: The transcriptional regulator peroxisome proliferator activated receptor gamma coactivator
1A (PGC-1α), encoded by PPARGC1A, has been linked to neurodegenerative diseases. Recently
discovered CNS-specific PPARGC1A transcripts are initiated far upstream of the reference promoter,
spliced to exon 2 of the reference gene, and are more abundant than reference gene transcripts in
post-mortem human brain samples. The proteins translated from the CNS and reference transcripts
differ only at their N-terminal regions. To dissect functional differences between CNS-specific
isoforms and reference proteins, we used clustered regularly interspaced short palindromic repeats
transcriptional activation (CRISPRa) for selective endogenous activation of the CNS or the reference
promoters in SH-SY5Y cells. Expression and/or exon usage of the targets was ascertained by
RNA sequencing. Compared to controls, more differentially expressed genes were observed after
activation of the CNS than the reference gene promoter, while the magnitude of alternative exon
usage was comparable between activation of the two promoters. Promoter-selective associations
were observed with canonical signaling pathways, mitochondrial and nervous system functions
and neurological diseases. The distinct N-terminal as well as the shared downstream regions of
PGC-1α isoforms affect the exon usage of numerous genes. Furthermore, associations of risk genes
of amyotrophic lateral sclerosis and Parkinson’s disease were noted with differentially expressed
genes resulting from the activation of the CNS and reference gene promoter, respectively. Thus,
CNS-specific isoforms markedly amplify the biological functions of PPARGC1A and CNS-specific
isoforms and reference proteins have common, complementary and selective functions relevant for
neurodegenerative diseases.

Keywords: PPARGC1A; PGC-1α; CNS-specific transcripts and isoforms; CRISPR; RNA sequencing;
RNA expression; exon usage; neurodegenerative diseases
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1. Introduction

Alternative splicing and/or promoter usage occur in the great majority of mammalian
genes and are key mechanisms in transcriptional regulation and generation of protein
diversity [1–3]. Peroxisome proliferator activated receptor gamma coactivator 1A (PGC-1α),
encoded by PPARGC1A, is a versatile transcriptional coactivator that participates in the
regulation of many transcriptional programs [4–6]. In addition to co-activating numerous
transcription factors, PGC-1α is also involved in alternative splicing [7]. Moreover, several
PGC-1α isoforms that result from alternative splicing have been characterized. N-terminal
truncated (NT)-PGC-1α is one such isoform that displays functional differences in com-
parison to the full-length protein [8–10]. Tissue-selective PGC-1α isoforms resulting from
alternative promoter usage have been identified as well. Two novel promoters in the skele-
tal muscle that are differentially regulated in response to fasting and exercise are located 14
kbp upstream of the reference promoter [11,12]. In the human liver, transcription from an
alternative promoter located in intron 2 of the reference gene (RG) [13] generates a 75 kDa
protein that shows subtle differences in co-activation selectivity compared to the reference
protein [14]. We discovered CNS-specific PPARGC1A mRNAs that are transcribed from a
novel promoter located ~583 kbp upstream of the reference promoter. These transcripts are
more abundant than RG mRNAs in human post-mortem brain samples and are partially
conserved in rodents [10].

Functional studies in animal or cell culture models implicate PGC-1α in clinically
distinct neurodegenerative diseases including Huntington’s disease (HD), Parkinson’s
disease (PD), Alzheimer’s disease (AD), and amyotrophic lateral sclerosis (ALS) [15–19].
Immune-mediated CNS disorders such as multiple sclerosis have been linked to PGC-1α
as well [20,21]. RNA sequencing and genetic studies in humans also suggested that the
PPARGC1A locus modulates the risk of AD, HD, PD, and ALS [10,22–28]. As some of
these associations included the CNS-specific region of the PPARGC1A locus, CNS-specific
isoforms and/or their control may be involved in these disorders.

We recently compared the regulation of the CNS and RG PPARGC1A promoters in
human neuronal cell lines and identified similarities, but also substantial differences in the
signaling pathways that converge at the two promoters [29]. To characterize the function
of CNS-specific isoforms, we studied qualitative and quantitative differences in mRNA
expression that result from selective endogenous activation of the CNS or RG promoters
in SH-SY5Y cells. We used an application of the versatile gene-editing system clustered
regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated pro-
teins (Cas) [30], which activates transcription and has been termed CRISPRa [31,32]. The
method relies on a Cas9 variant termed dCas9. The variant enzyme harbors two amino
acid substitutions (D10A and H840A) causing inactivation of endonucleolytic activities,
but its capacity to bind to the target DNA based on the complementarity of sgRNA se-
quences is retained. dCas9 has been functionalized by fusion with transcriptional activator
domains that induce the expression of genes by sgRNAs targeting sequences near their
transcription start sites [33]. Noteworthy, the induction of endogenous genes via promot-
ers in their native context provides insight into naturally occurring splice variants and
cis- and trans-regulatory effects on transcription and translation. We report here that the
selective activation of the CNS and RG promoters and hence their resulting repertoire of
PGC-1α isoforms generates overlapping as well as substantially divergent gene programs
in SH-SY5Y cells.

2. Results
2.1. Endogenous Activation of RG and CNS PPARGC1A Promoters

We used an effective transcriptional activation system consisting of dCas9 fused to
a potent tripartite activator called VPR encoding herpes simplex virus protein 16 (VP64),
the activation domain of the p65 subunit of nuclear factor NF-κB and the replication
and transcription activator (RTA) of the γ-herpesvirus family [33]. To verify lentiviral
transduction of SH-SY5Y cells, dCas9-VPR encoding transcripts were amplified by qRT-
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PCR from total RNA. Sequencing of amplicons revealed the dCas9-VPR fragment, as
expected (data not shown). Clonal SH-SY5Y cell lines expressing dCas9-VPR were obtained
by puromycin selection followed by single cell sorting and culture. Out of 96 wells, we
observed cell growth in 25 wells. Three clones termed SH-SY5Y-dCas9-VPR-v1 to –v3 were
further characterized. Clonal lines v1-v3 showed similar levels of dCas9-VPR transcripts
(Figure S1).

We next focused on the selectivity of CNS and RG promoter activation by sgRNAs.
The distance between the two promoters is 583 kbp, which approximates 6-fold the size of
the RG. Transcripts generated from the two promoters differ in that CNS-specific transcripts
contain exons B1, B4 and/or B5, which are spliced to exon 2 of the RG (Figure 1a, Figure S2).
Locations of sgRNAs used, their sequences, specificity scores and potential homologies with
0 to 3 sequence mismatches are shown in Figure 1a, Tables S1 and S2a,b. We scrutinized the
specificities of sgRNAs by comparing expression levels of off-target genes after transfections
with scrambled and CNS or RG directed sgRNAs (Table S2a,b). Among the potential off-
targets with two mismatches of RG sgRNAs, an upregulation of LDLR relative to scrambled
sgRNA was noted (log2-fold increase 0.219, adjusted p = 0.014), but a similar upregulation
was observed with CNS promoter directed sgRNAs. For all other mismatches of RG
sgRNAs, the expression changes were associated with comparable changes induced by
sgRNAs targeting the CNS promoter. Similarly, among the potential off-targets of CNS
promoter directed sgRNAs, altered expression was also noted after activation of the RG
promoter with the exception of FGFR3 mRNA which showed a nominal decrease after
activation with CNS sgRNAs (log2-fold change 0.0423, adjusted p = 0.01). Thus, the up- or
down-regulation of the respective genes by activation of either promoter makes off-target
effects unlikely.

Transfections of sgRNAs were optimized for plasmid DNA amount and volume of
transfection reagent. Time course experiments showed the highest expression levels of
CNS-specific and RG transcripts 38 h after transfection with the respective sgRNA mixtures
(data not shown). To determine transfection efficiency, the six plasmids each co-expressing
one sgRNA targeting the RG or the CNS promoters and EGFP were used. Transfection
efficiencies of SH-SY5Y-dCas9-VPR-v1 or –v2 cells were similar for plasmids encoding
scrambled, RG or CNS-specific sgRNAs as judged by the number of cells expressing EGFP
and ranged between 18 and 25% (Figure S3).

Individual plasmids encoding sgRNAs or mixtures thereof were transfected into
SH-SY5Y-dCas9-VPR-v1 and the expression levels of CNS-specific B1B4 and RG-specific
E1E2 transcripts were determined. These studies indicated high specificity of the selected
sgRNAs for their respective promoter. Synergistic effects were noted for mixtures of two
or three plasmids encoding sgRNAs (all p-values < 0.001) targeting their corresponding
promoters (Figure 1b,c). We next quantified the PPARGC1A transcripts encoding the
isoforms shown in Figure 1a after activation of RG or CNS promoters. In SH-SY5Y cells
the RG transcript levels were higher than CNS transcript levels (Figure 1d). We aimed
to activate the RG and CNS promoters to a similar extent (800 to 1000-fold) as judged
from the increase in levels of cells transfected with scrambled sgRNAs. Transfections with
a mix of plasmids expressing all three sgRNAs targeting the RG promoter substantially
increased the RG transcript E1E2 and transcripts encoding the two splicing variants NT-
PGC-1α and E3extended, but failed to induce B1B4 and B5E2 transcripts. To activate the
CNS promoter ~1000-fold, only two plasmids encoding distinct sgRNAs were required.
These transfections resulted in increases of the CNS-specific transcripts B1B4 and B5E2,
and smaller increases of transcripts encoding the two splicing variants NT-PGC-1α and
E3extended, while the level of the RG transcript E1E2 was not increased (Figure 1d). Thus,
transcripts encoding the two splicing variants are generated from both promoters.
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Figure 1. The CNS and reference gene (RG) promoters are selectively activated by specific single guide RNAs (sgRNAs) designed to target them. (a) Schematic 
representation of the PPARGC1A locus showing the CNS and RG promoters (top), locations of sgRNAs used for transfections; CNS-specific exons B1, B4 and B5 in 
color; the structure of the RG is displayed on the right; CNS-specific transcripts and RG transcripts are shown below; pink or red lines refer to alternatively spliced 
transcripts encoding stop codons in exon 7A or in an extension of exon 3, respectively. (b,c) Selective effects of individual sgRNAs targeting the RG or CNS promoters 
on transcription initiation; individual sgRNAs or their mixtures were transfected into clonal SH-SY5Y cells expressing CRISPR-associated deactivated (dCas9) 
protein fused to the tripartite transcriptional activator VPR and levels of E1E2 and B1B4 transcripts selective for RG or CNS promoter activation were measured by 
qRT-PCR 36 h after transfection. Log-fold levels are expressed relative to transcript levels of the clonal cells transfected with scrambled sgRNA. Interactions of all 
sgRNA mixtures shown were significant (p < 0.001) when the use of three, two, or one sgRNA was compared. (d) Effects of sgRNA transfections on CNS-specific 
and RG transcript levels and levels of transcripts encoding truncated isoforms and initiated at either promoter. 

Figure 1. The CNS and reference gene (RG) promoters are selectively activated by specific single guide RNAs (sgRNAs)
designed to target them. (a) Schematic representation of the PPARGC1A locus showing the CNS and RG promoters
(top), locations of sgRNAs used for transfections; CNS-specific exons B1, B4 and B5 in color; the structure of the RG is
displayed on the right; CNS-specific transcripts and RG transcripts are shown below; * pink or red lines refer to alternatively
spliced transcripts encoding stop codons in exon 7A or in an extension of exon 3, respectively. (b,c) Selective effects of
individual sgRNAs targeting the RG or CNS promoters on transcription initiation; individual sgRNAs or their mixtures
were transfected into clonal SH-SY5Y cells expressing CRISPR-associated deactivated (dCas9) protein fused to the tripartite
transcriptional activator VPR and levels of E1E2 and B1B4 transcripts selective for RG or CNS promoter activation were
measured by qRT-PCR 36 h after transfection. Log-fold levels are expressed relative to transcript levels of the clonal cells
transfected with scrambled sgRNA. Interactions of all sgRNA mixtures shown were significant (p < 0.001) when the use of
three, two, or one sgRNA was compared. (d) Effects of sgRNA transfections on CNS-specific and RG transcript levels and
levels of transcripts encoding truncated isoforms and initiated at either promoter.

Immunocytochemistry was used to estimate the levels of PGC-1α proteins. To deter-
mine the selectivity of antibodies, SH-SY5Y-dCas9-VPR positive clonal cells were trans-
fected with plasmids encoding E1-7A-EGFP, B4-7A-EGFP, and B5-13-EGFP fusion proteins.
The first two plasmids encode the NT-forms of the RG and CNS-specific B4 protein, while
the last plasmid encodes the full-length CNS-specific B5 protein [10]. Among several anti-
bodies tested, a commercial mouse monoclonal antibody (#ST1202, Calbiochem) against the
N-terminal region (amino acids 1–120) of reference PGC-1α was selected, which showed
positive immunochemical reactions for both the reference and CNS-specific isoforms which
contain the amino acids of the reference protein encoded by exon 2 (starting at amino
acid residue 19) (Figure S4). SH-SY5Y-dCas-VPR cells were transfected with plasmids
co-expressing EGFP and scrambled sgRNAs or sgRNAs targeting the RG or CNS pro-
moters for 40 h. Cy5 fluorescence intensities and average levels of gray in regions of
interest (ROIs) harboring EGFP expressing transfected cells and adjacent mock-transfected
cells were compared. Examples of confocal scans for transfections with scrambled and
CNS or RG promoter targeting sgRNAs are shown in Figure 2a,c,e. Transfections with
sgRNAs targeting the RG or CNS promoters resulted in a significantly higher level of
fluorescence intensities in the nuclei in comparison to mock-transfections (Figure 2g),
while no differences were observed between cells mock-transfected or transfected with
scrambled sgRNAs. We also counted the number of spots with a fluorescence intensity
> 30 levels of gray in these cells (Figure 2b,d,f). Such spots are likely nuclear speckles
known to be involved in various nuclear functions including splicing [34]. Again, no effect
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was observed for scrambled sgRNA, but higher counts were obtained for cells transfected
with sgRNAs targeting the RG or CNS promoters than in the respective mock-transfected
cells (Figure 2h). Thus, activated RG and CNS promoters induced the expressions of the
respective PGC-1α isoforms. However, the increase at the protein level was likely much
lower than the increase at the transcript level, even though the methods used do not allow
absolute quantification. Numerous mechanisms may account for this difference [35].
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Figure 2. Targeted activation of the RG or CNS promoters increases the expression of PGC-1α 
proteins in sgRNA transfected clonal SH-SY5Y cells expressing dCas9-VPR. (a,c,e) From top left to 
bottom right: fluorescent signal of cellular nuclei counterstained with 4′,6-diamidino-2-
phenylindole (DAPI), EGFP, Cy5 (antibody directed against the N-terminal region of 
reference/CNS PGC-1α) and the corresponding merged image in cells transfected with scrambled 
sgRNA or sgRNAs targeting the RG and CNS PPARGC1A promoters, respectively. Numbers in 
the lower left section of panels refer to the fluorescence intensity of Cy5 (levels of gray) 
determined in regions of interest (ROIs) corresponding to the nucleus of adjacent transfected 
(EGFP-expressing, ROI1) and mock-transfected (not expressing EGFP, ROI2) cells. ROIs depicted 
outside the cells (ROI3) served to determine the background fluorescence. The fluorescence 
intensity scale shown in (a) also applies to (c,e). (b,d,f) Magnification of the lower left section of 
panels (a), (c), and (e); the nuclear spots with a fluorescence intensity > 30 levels of gray in adjacent 
transfected (white arrowhead) and mock-transfected cells are circled. (g) Mean fluorescence 
intensity and (h) number of nuclear spots per nucleus in cells transfected with scrambled sgRNAs, 
RG- and CNS specific sgRNAs and mock-transfected cells. Means (SE),* p < 0.001, two-tailed, 
paired Student’s t test; n corresponds to the number of adjacent transfected and mock-transfected 
cell pairs; n.s., not significant.  

2.2. RNA Sequencing 
2.2.1. Effects of Selective Promoter Activation on RNA Expression Levels 

Exploratory analysis by multidimensional scaling (MDS) revealed separation of the 
leading biological coefficient of variation (BCV) for the activation of the CNS and the RG 
promoters and controls transfected with scrambled sgRNAs (Figure S6). Furthermore, as 
already established previously by PCR analyses, the sequencing data showed that 
activation of the RG promoter induced transcripts starting at exon 1, while activation of 
the CNS promoter induced transcripts initiated at exon B1 and spliced to B4 and/or B5 

Figure 2. Targeted activation of the RG or CNS promoters increases the expression of PGC-1α
proteins in sgRNA transfected clonal SH-SY5Y cells expressing dCas9-VPR. (a,c,e) From top left to
bottom right: fluorescent signal of cellular nuclei counterstained with 4′,6-diamidino-2-phenylindole
(DAPI), EGFP, Cy5 (antibody directed against the N-terminal region of reference/CNS PGC-1α) and
the corresponding merged image in cells transfected with scrambled sgRNA or sgRNAs targeting
the RG and CNS PPARGC1A promoters, respectively. Numbers in the lower left section of panels
refer to the fluorescence intensity of Cy5 (levels of gray) determined in regions of interest (ROIs)
corresponding to the nucleus of adjacent transfected (EGFP-expressing, ROI1) and mock-transfected
(not expressing EGFP, ROI2) cells. ROIs depicted outside the cells (ROI3) served to determine
the background fluorescence. The fluorescence intensity scale shown in (a) also applies to (c,e).
(b,d,f) Magnification of the lower left section of panels (a,c,e); the nuclear spots with a fluorescence
intensity >30 levels of gray in adjacent transfected (white arrowhead) and mock-transfected cells
are circled. (g) Mean fluorescence intensity and (h) number of nuclear spots per nucleus in cells
transfected with scrambled sgRNAs, RG- and CNS specific sgRNAs and mock-transfected cells.
Means (SE),* p < 0.001, two-tailed, paired Student’s t test; n corresponds to the number of adjacent
transfected and mock-transfected cell pairs; n.s., not significant.
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To evaluate the metabolic activity of cells, we used the MTT assay. After 24 and 40 h of
transfection, cells transfected with CNS- and RG-specific sgRNAs showed higher activities
in the MTT assay compared with cells transfected with scrambled sgRNA (Figure S5).
Hence, toxic effects resulting from CNS or RG promoter activation were unlikely.

2.2. RNA Sequencing
2.2.1. Effects of Selective Promoter Activation on RNA Expression Levels

Exploratory analysis by multidimensional scaling (MDS) revealed separation of the
leading biological coefficient of variation (BCV) for the activation of the CNS and the RG
promoters and controls transfected with scrambled sgRNAs (Figure S6). Furthermore,
as already established previously by PCR analyses, the sequencing data showed that
activation of the RG promoter induced transcripts starting at exon 1, while activation of the
CNS promoter induced transcripts initiated at exon B1 and spliced to B4 and/or B5 and
exon 2, but lacking exon 1. Thus, the transcripts generated included B1B4B5E2-, B1B5E2-,
and B1B4B5E2-(Figure 3a, Figures S7 and S8). Levels of PPARGC1A RG transcripts were
~4 times higher than PPARGC1A CNS-specific transcripts. This finding is consistent with
the lower basal CNS-specific transcript levels in SH-SY5Y and a similar fold-activation of
the two promoters. The top 20 most differentially expressed genes (DEGs) after RG or CNS
promoter activation are highlighted in Volcano (Figure 3b,c) or MA plots (Figure S9).
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Figure 3. RNA sequencing confirms the predicted structure of transcripts generated by activation of the RG or CNS
promoters and reveals differentially expressed genes (DEGs) for either promoter activation. (a) Sashimi plots of PPARGC1A
transcripts generated by transfection of clonal SH-SY5Y cells expressing dCas9-VPR with sgRNAs activating the RG or the
CNS promoters or with scrambled sgRNAs, each merged from three biological replicates; read densities across exons are
normalized to obtain comparable measures of expression above the x-axis and normalized single-end junction reads are
shown as arcs below the x-axis; structure of visualized exons is shown at the bottom. (b,c) Volcano plots of DEGs in cells
with RG or CNS activated promoters, respectively, in comparison to cells transfected with scrambled sgRNAs. The top 20
most DEGS are highlighted.
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In comparison to SH-SY5Y-dCas-VPR cells transfected with scrambled sgRNAs, cells
transfected with CNS or RG directed sgRNAs exhibited differential expression of 6409
or 4281 genes, respectively, at an adjusted p-level <0.05. Further restriction of cutoffs to
0.263 log2-fold changes in expression levels relative to the expression levels after transfec-
tions with scrambled sgRNAs resulted in altered expression levels of 1745 genes (872 up-
and 873 down-regulated) and 3600 genes (1792 up- and 1808 down-regulated) after acti-
vation of the RG and the CNS promoters, respectively (Figure 4a). From the 1792 genes
upregulated by CNS promoter activation, 391 also were upregulated by RG promoter
activation. From the 1808 genes downregulated by CNS promoter activation, 471 were
also downregulated by activation of the RG promoter. Thus, 862 genes were co-regulated,
while 56 genes were contra-regulated, i.e., upregulated by activation of one, but repressed
by activation of the other promoter. Expression changes of several genes were verified by
PCR (Figure S10).
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Figure 4. Differentially expressed genes resulting from activation of the RG or CNS promoters reveal promoter selectivity
with partial overlap. (a) Venn diagram of differentially expressed genes (DEGS) produced by transfection of clonal SH-SY5Y
cells expressing dCas9-VPR with sgRNAs activating the RG or the CNS promoters are compared with cells transfected with
scrambled sgRNAs. (b,c) Top canonical signaling pathways for DEGs after RG or CNS promoter activation, respectively.
(d) Top nervous system signaling pathways for DEGs after CNS promoter activation; red lines refer to adjusted p-values
of 0.05; z-scores > 2.0 or <−2.0 are significant and indicate the direction for the expected entity; n.a, not available; B-H,
Bernini-Hochberg adjusted p-values for multiple testing.

2.2.2. Associations of Selective Promoter Activation on Pathways

The top 10 canonical ingenuity signaling pathways associated with DEGs resulting
from RG or CNS promoter activation are shown in Figure 4b,c. The four RG promoter
associated pathways that maintained a level of p < 0.05 after adjustment for multiple com-
parison included mitochondrial dysfunction, TCA cycle II, the sirtuin signaling pathway
and oxidative phosphorylation. Unexpectedly, these pathways revealed no or only weak
associations with CNS promoter activated genes. Importantly, the latter genes included
axon guidance signaling (Figure 4c). To further characterize the differential effects of RG
and CNS promoter activation, the genes that were co- or contra-regulated by the CNS and
RG promoters were excluded. Enrichment analyses of the reduced gene sets revealed that



Int. J. Mol. Sci. 2021, 22, 3296 8 of 24

the top five pathways did not change for either promoter activation, thereby reinforcing the
concept of target selectivity for the reference and CNS-specific PGC-1α proteins. The genes
differentially expressed by CNS promoter activation revealed significant associations with
pathways relevant for neurobiology and nervous system signaling (Figure 4d), while no
such associations were observed with RG promoter activation after adjustment for multiple
testing.

As the absence of associations between CNS promoter activated DEGs and classical
mitochondrial pathways was unexpected, we interrogated the activation/repression of
mitochondrial genes (mito-genes) in greater detail (Figure 5a). Mito-genes were enriched
in both the CNS and RG promoter activated gene sets (p < 0.00001), but the proportion of
mito-genes was higher in the RG than in the CNS promoter activated genes (12 vs. 8.5%,
p = 0.0103, two-tailed). Activation of RG or CNS promoters tended to reduce the proportion
of mito-genes in the repressed gene sets (4.9% vs. 6.8%, p = 0.0865). Among CNS promoter
activated genes, expression levels of 11 genes encoded by mitochondria (MT-genes) of
complex I, II, and IV increased, while levels of MT-ATP8 decreased. Among RG promoter
activated genes, MT-ND4L, MT-ND5, and MT-N6 of complex I increased, while MT-ATP6
and MT-ATP8 of complex V were repressed (Table S3). Enrichment analyses of the 152
CNS and the 105 RG upregulated mito-genes showed associations of both gene sets with
the reactome pathway of respiratory electron transport, ATP synthesis by chemiosmotic
coupling and heat production by uncoupling proteins. Interestingly, the association with
metabolism was much stronger in CNS than in RG promoter activated mito-genes, while
the opposite was true for the citric acid cycle. Significant associations with mitochondrial
import, mitochondrial translation terms, cristae formation, and carnitine metabolism were
only noted in RG promoter activated mito-genes, while associations with gluconeogenesis,
glucose metabolism, metabolism of amino acids and derivatives and related pathways
were only found in CNS promoter activated genes (Figure 5b,c).

CNS-PPARGC1A transcripts in humans are expressed nearly exclusively in the CNS [10].
We therefore analyzed associations of gene sets in the ingenuity function ontology cat-
egory “Nervous System Development and Function”. The number of genes included
in this category divided by the number of DEGs was higher for the CNS than the RG
promoter activated gene sets (0.210 vs. 0.1816, p = 0.0218, two-tailed). Removal of the
overlapping DEGs showed similar results (0.2158 vs. 0.1721, p = 0.0102). Furthermore, the
top associations of CNS and RG activated genes with functional terms ranked by their
adjusted p-value did not correlate (p = 0.230, Spearman test). Indeed, the relative strengths
of CNS and RG promoter activated gene associations showed major differences for the
development of CNS and neurons as well as for the morphogenesis of neurons. Moreover,
high z-scores (>2.0) were observed for the development of neurons in CNS promoter acti-
vated genes, while z-scores for terms comprising proliferation, growth, and branching of
neurons, neurites, and dendrites were high in both CNS and RG promoter activated gene
sets suggesting the expected activating effects within the respective entity (Figure 6a).
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Enrichment analyses of CNS and RG promoter activated gene sets with entries in-
cluded in the ingenuity ontology subset “Neurological Diseases” revealed associations
with several broad terms such as cognitive impairment or movement disorders that include
a number of diseases as well as narrow terms such as Huntington’s Disease (Figure 6b). The
negative z-scores for movement disorders in both gene sets suggest an inhibitory effect on
the disease phenotypes. Associations of disease terms and CNS or RG promoter activated
gene sets ranked by p-values showed only a weak correlation (p = 0.0231, Spearman test).

To gain insight into physical interactions of proteins encoded by the gene sets defined
in Figure 4a, we used the STRING database [36]. All but one gene set predicted more
protein–protein interactions among themselves than random similar sized sets drawn from
the genome. Thus, the proteins within our gene sets would be expected to be partially
biologically connected. In addition, protein interactions of PGC-1α with other proteins
also appeared to differ among the gene sets, but this observation needs to be cautiously
interpreted, as STRING does not distinguish between the reference and other PGC-1α iso-
forms. Moreover, predicted local network clusters (STRING) showed no overlap between
the gene sets that resulted from activation of the RG and CNS promoters (Table S4a–c).
Finally, overall striking differences in network appearance were noted between the gene
sets predicted for RG and CNS promoter activation (Figures S11–S14). One may therefore
speculate that altered exon usage of PPARGC1A has a major impact on predicted protein
networks.

2.2.3. Associations of CNS or RG Promoter Activation with Neurodegenerative Disease Genes

Prompted by studies suggesting a role of reference- and/or CNS-PGC-1α in neu-
rodegenerative diseases, we determined whether activation of the RG or CNS promoters
modulated the expression of genes implicated in the genetic landscape of these diseases. A
poly-glutamine tract of variable length that is encoded by CAG repeats in the HTT gene
is the main cause of HD [37] and its length accounts for 70% of the variability in disease
onset. Activation of the RG promoter resulted in upregulation of HTT (log2-fold change
0.375, adjusted p = 5.99 × 10−7), while the effect of CNS promoter activation did not reach
significance (log2-fold change 0.115, adjusted p = 0.1415).

For ALS, AD, and PD, we analyzed effects of CNS and RG promoter activation on
genes that were inferred to harbor risk loci identified by genome wide association studies
(GWAS) or other converging evidence. DEGs with adjusted p-values <0.05 and cutoffs of
0.070 log2-fold changes were used. From 58 ALS risk genes [38–42], 12 were not or were
only minimally expressed in SH-SY5Y cells [43]. Upon activation of the CNS promoter,
36 risk genes were differentially expressed (p = 0.0013, Fisher Exact Test, two-tailed). The
respective gene count was 20 for activation of the RG promoter (p = 0.0171). For AD,
24 of 73 risk genes [44–46] were not expressed in SH-SY5Y cells. The analysis for CNS
promoter activation was nominally significant (p = 0.0311). From 141 PD risk genes [47–49]
26 were not expressed in SH-SY5Y cells and 55 (p = 0.0456) or 48 (p < 0.0001) risk genes
were differentially expressed by activation of the CNS or RG promoter (Table 1). Thus,
the associations of CNS and RG promoter activated/repressed genes with ALS and PD,
respectively, remained intact after the Bonferroni correction. Gene lists and log2-fold
expression levels are shown in Tables S5–S7.

2.2.4. Effects of Selective Promoter Activation on Exon-Usage

As PGC-1α isoforms have been reported to selectively regulate multiple splicing
events in the skeletal muscle [50], we studied the possible effects of CNS and RG promoter
activation on differential exon usage relative to cells transfected with scrambled sgRNA.
To enhance stringency, we used adjusted p-levels < 0.0001 and log2-fold changes of 0.5 for
any exon as suggested [51]. The activation of RG or CNS promoters selectively affected
exon usage of 2018 exons in 759 genes or 2136 exons in 811 genes, respectively, and
alternative splicing was shared by activation of the two promoters in 3270 exons of 2215
genes (Figure 7a). Comparison of shared exons and genes indicated that 39 of the 2215
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shared genes harbored one or more promoter selective changes in addition to the exon
usage changes common for both promoters. For example, SQSTM1, which has been
linked to ALS [52,53] showed very similar changes in the downstream exon bins for the
comparisons between RG or CNS promoter activation with transfections of scrambled
sgRNA. However, upstream exon bins were relatively increased in CNS promoter activation
in comparison to controls (suggesting stimulation of an upstream promoter), while RG
promoter activation and controls showed similar readouts in this region (Figure 7b,c,d).
Examples of similar and distinct effects of CNS and RG promoter activation on exon usage
are shown in Figures S15 and S16.

Table 1. Associations between risk genes of neurodegenerative diseases and differentially expressed
genes induced by CNS or RG promoter activation.

Disease Risk Genes CNSPA Genes 1 p RGPA Genes 2 p

Amyotrophic lateral
sclerosis 58 36 0.0013 20 0.0171

Alzheimer’s disease 63 29 0.0311 15 0.1892
Parkinson’s disease 141 55 0.0456 48 <0.0001

Expression changes: adjusted p-value < 0.05 and fold change-ratio > 1.05; 1 CNS promoter activated, 2 RG
promoter activated; 8, 14, or 26 risk genes of ALS, AD, or PD, respectively, were not or at a very low level
expressed in SH-SY5Y cells.
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Figure 7. CNS-specific and reference PGC-1α proteins affect exon usage via distinct and similar mechanisms. (a) Venn diagram
showing the number of genes (left) or exons (right) alternatively spliced after activation of the RG or the CNS promoters in
comparison to cells transfected with scrambled sgRNAs. Exon usage of SQSTM1 after RG and CNS promoter activation reveals
similar changes to transfections of scrambled sgRNAs (control) and additional differences between each other; comparison
between (b) CNS and RG promoter activation, (c) RG promoter activation and control and (d) CNS promoter activation and
control; different exon usage between pairwise comparisons is indicated by purple boxes representing the affected exon bins;
significant differences (p < 0.0001) are highlighted by stars; * and **, regions different between RG or CNS vs. scrambled;
***, region, different between CNS vs. RG or scrambled. The black lines refer to differences in any comparison.

3. Discussion

Previously, we observed substantial differences in the regulation of the CNS and the
RG promoters [29] and show now that the transcriptomes generated by selective activation
of these promoters in a human cell model reveal marked differences. Importantly, CNS-
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specific isoforms most likely broaden the signaling response and protein diversity of
PPARGC1A in the CNS. Our studies provide novel gene expression data that are relevant
for neuronal functions and the pathogenesis of neurodegenerative diseases. Hence, the
dataset will help to generate novel and testable hypotheses of biological and medical
relevance.

As the CNS-specific transcripts are only partially conserved in rodents [10], we used
undifferentiated SH-SY5Y cells that express, albeit at low levels, the transcripts encoding
full-length CNS-specific isoforms [29]. The suitability of undifferentiated SH-SY5Y cells
for experimental studies in neurodegenerative diseases is strongly supported by a recent
disease-specific network approach [43]. To ascertain differences in gene programs, we used
endogenous promoter activation by CRISPRa rather than ectopic expression of individual
proteins. The former approach is expected to better reflect the in vivo situation and induces
up-regulation of all promoter-specific transcripts (both known and perhaps yet unknown)
concurrently. Even though aberrant transcription is generally not considered to be a
large problem of the CRISPRa procedure [32,33], our comprehensive analysis made off-
target effects unlikely. Endogenous activation of the CNS and RG promoters is expected
to produce transcripts encoding full-length proteins and truncated isoforms. Proteins
generated from the two promoters have distinct N-terminal regions, but are identical
downstream of exon 2. Hence, the differences between the gene activation and repression
programs can be attributed to their N-terminal domains, but the respective truncated
isoforms may contribute to overall transcriptome differences. Our results are consistent
with other studies showing distinct functions of PGC-1α isoforms [8,9,54].

In comparison to RG promoter activation, CNS promoter activation resulted in a
greater number of DEGs, even though the level of CNS-specific PPARGC1A transcripts
attained was lower than the level of PPARGC1A transcripts initiated at the RG promoter.
An upstream open reading frame (uORF) located in the 5′ untranslated region of RG
transcripts that represses translation may have contributed to the larger gene spectrum
resulting from CNS promoter activation [55]. An uORF is also present in B1B4B5 transcripts
encoding the isoform B5-PGC-1α, but not in B1B5 transcripts encoding the same protein or
B1B4 transcripts encoding the more abundant B4-PGC-1α isoforms (Soyal S, Patsch W, in
preparation). While some overlap among the CNS and RG promoter activated or repressed
genes was observed, most genes differed. This conclusion is highlighted by the distinct
associations with canonical signaling pathways, mitochondrial pathways and physiological
functions. Interestingly, transcript expression levels of MT-genes such as MT-N2, MT-N3,
and MT-CO3 appeared to differ upon activation of CNS and RG promoters. However,
cautious interpretation of these data is necessary, as the contribution to mitochondrial
translation appeared to differ as well.

The gene programs induced by CNS and RG promoter activation also include alter-
native splicing. Aberrant splicing has been linked to several neurodegenerative disor-
ders [56,57]. As a large portion of splicing changes appeared to be shared by CNS and
RG proteins, common structural features and/or effects of common downstream genes
may be invoked. The C-terminal region of full-length PGC-1α isoforms harbors motifs
characteristic of splicing factors including two arginine/serine-rich (RS) domains and an
RNA recognition motif (RRM) [58]. RS domains interact with components of the spliceo-
some [59], and the RRM motif is present in many proteins involved in almost all aspects of
RNA processing [60]. Deletion of these domains alters the splicing activity of PGC-1α on
endogenous and synthetic minigenes [7,61]. However, another large portion of splicing
events was selectively associated with the activation of the RG or CNS promoters. Hence,
the underlying mechanism must be related to the discriminatory N-terminal sequences of
reference and CNS-specific proteins. Current concepts suggest that pre-mRNA process-
ing occurs co- rather than post-transcriptionally [62–64] and differential recruitment of
nuclear co-activators likely plays a role in the selection of alternative splice sites of target
genes [65]. The mechanisms involved may include distinct interactions of the CNS-specific
and reference proteins with the spliceosome or effects of downstream genes that are up- or
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downregulated and/or alternatively spliced. Interestingly, the alternatively spliced genes
that are selectively associated with either CNS or RG promoter activation differ in their
ontologies, even though nucleic acid binding proteins are markedly overrepresented in
both groups (data not shown). In a previous study, ectopic expression of reference PGC-
1α and various skeletal-muscle specific isoforms termed PGC-1α2, -α3 and α4 in mouse
primary myotubes resulted in significant differences in the gene programs induced [50].
Noteworthy, the N-terminal protein domains accounted for the diversity of gene programs.
The latter study revealed that transduction of PGC-1α isoforms was associated with pro-
nounced differences in the splicing pattern of many genes including Ddx27, Ndrg4, and
Osbpl1a. Our current data show that the human homologs of these genes are expressed in
SH-SY5Y cells. While no alternative splicing of OSBPL1A was noted, activation of CNS
and RG promoters displayed nearly identical effects on the splicing pattern of NDRG4
and DDX27 (Figures S17 and S18). These contrasting observations are in keeping with the
specific effects of isoforms and tissue-specific effects [66].

Transcriptional co-regulators act at the amplification step of gene expression and may
serve to integrate multiple transcriptional programs. Hence, only minor imbalances be-
tween co-regulatory expression or activity levels resulting from allelic variations, aberrant
post-translational modification or altered generation of variant transcripts may contribute
to the pathogenesis of various disease phenotypes. Sporadic forms of ALS, PD, and AD
are thought to be multifactorial in that exogenous factors and a variable number of risk
genes are thought to contribute to their pathophysiology. However, the overlap of risk
genes among AD, PD, and ALS is low, while several studies suggest a modulatory role
of PGC-1α isoforms in all three diseases. Hence, it is conceivable that the pathways or
interactions whereby PGC-1α and its isoforms contribute to these disorders are distinct.

Our studies in a human cell line may not reflect the in vivo conditions in humans,
and relationships to diseases are based on associations which do not imply causality. Nev-
ertheless, previously established links of PPARGC1A with neurodegenerative disorders
are supported by our current findings. DEGs resulting from both CNS and RG promoter
activation showed associations with the ingenuity neurological disease classes Huntingon’s
disease and chorea. CAG-expansions of HTT are thought to confer toxic gains of func-
tion [36] and clinical trials of lowering mutant huntingtin by antisense oligonucleotides
are in progress [67]. Our studies also show that wild-type HTT, known to be important
for multiple cellular functions including synaptic homeostasis [68,69], is upregulated by
activation of the RG promoter. Mutant huntingtin represses transcription from the RG
promoter by interfering with the CREB/TAF4-dependent transcriptional pathway, while
ectopic expression of PGC-1α in the striatum provided neuroprotection in transgenic HD
mice [15]. Whether CNS promoter activity is also repressed by mutant huntingtin, remains
to be determined.

A role for PGC-1α in ALS has been suggested by several previous studies [19,70,71]
and bioinformatics identified PPARGC1A as an upstream regulator of ALS related pro-
teins [38]. Our enrichment analyses showed strong associations of CNS and, to a lesser
extent, RG promoter activation with ingenuity classes neuronal development and func-
tions. Furthermore, a large fraction of GWAS ALS genes was regulated by CNS promoter
activation. The interpretation of the latter studies must be qualified, as the risk ratio differs
for individual SNPs and genes and additional risk genes may be discovered. Nevertheless,
one key example shows that ANXA11 transcripts encoding Annexin A11 were strongly
increased by both CNS and RG promoter activation (Table S5). As many proteins are trans-
lated in axons rather than in the cell soma, RNA must be transported for long distances.
ANXA11 mediates the transport of, and tethers RNA granules to lysosomes via phase-
separating and membrane binding domains [72,73]. Mutations in either domain impair the
transport and can cause or increase the risk of ALS [73,74]. Sporadic ALS is characterized
by large phenotypic and genetic heterogeneity, most likely reflecting a role of multiple
cellular processes [39]. However, cytoplasmic aggregations of the RNA-binding protein
TDP-43 (encoded by TARDBP) are present in the majority of ALS patients [75,76] and their
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propagation correlates with clinical symptoms and severity of the disease [77]. Aberrant
location of TDP-43 in the cytoplasm results in its loss of function and impaired splicing
repression in multiple genes including STMN2, an essential regulator of axon regeneration.
Reduced binding of TDP-43 to STMN2 intronic sequences generates short dysfunctional
STMN2 transcripts at the expense of full-length transcripts. Significantly, rescue of STMN2
expression restored axonal regenerative capacity [42,78]. Our data show that activation of
the CNS promoter upregulates full-length STMN2 transcripts (Supplementary Material
Tables S5 and S7), which might be beneficial for ALS, if alternative splicing activity becomes
saturated.

In a meta-analysis of eight PD postmortem brain transcriptome studies, STMN2 was
also identified as a key regulator of functionally connected PD risk genes, and Stmn2-
knockdown caused dopaminergic neuron degeneration [79]. Therefore, in addition to
ALS, an increase in STMN2 transcription via CNS PGC-1α may also be beneficial for PD.
Our current data reveal axon guidance signaling as the top canonical ingenuity signal-
ing pathway in CNS promoter activated genes. Importantly, modeling of SNPs in axon
guidance genes of a GWAS dataset predicted PD susceptibility (p = 4.64 × 10−38), survival
free of PD (p = 5.43 × 10−48), and PD age of onset (p = 1.68 × 10−51) [80]. CNS and RG
promoter activated genes showed strong associations with the ingenuity neurological
disease ontology terms movement disorders and disorders of basal ganglia, and their
respective negative z-values suggest a protective effect for these diseases. The central
role of PGC-1α in mitochondrial biology and function also suggests a link to PD, even
though the mitochondrial hypothesis for common neurodegenerative disorders has been
challenged, as reduced oxidative phosphorylation and ATP synthesis repeatedly described
in PD may be a secondary phenomenon [81]. However, mutations of PINK1, PARKIN, DJ1,
and VPS13C, all involved in mitochondrial quality control or mitophagy, cause familial
forms of PD. Furthermore, the production of new mitochondria at the periphery of the
axonal tree depends on PGC-1α and is essential for axonal growth [82]. Thus, functions of
CNS-specific isoforms and the reference protein may be complementary in several path-
ways. This hypothesis is supported by cross-talk shown to occur via co-activation of each
other’s promoter [29]. Polygenic risk scores for sporadic PD, generated in large scale GWAS
data from common variants of genes implicated in mitochondrial function, showed small,
but additive effects on PD risk [83]. Furthermore, Mendelian randomization indicated
potentially causal associations of 14 novel mitochondrial function genes with PD risk.
Some of the newly identified genes were linked to known PD pathways such as lysosomal
dysfunction and autophagy, while others pointed towards a novel role of mitochondrial
ribosomes. Interestingly, our analyses of mitochondrial genes revealed enrichment of RG
promoter activated genes involved in mitochondrial translation initiation, elongation, and
termination. These results support common and distinct roles of CNS-specific and RG
PPARGC1A isoforms in mitochondrial biology with relevance to PD.

Associations of PPARGC1A with cognitive decline [84], schizophrenia, [85], tremor [86],
sense of smell [87], and AD [22] have been described in GWAS. Enrichment analyses dis-
closed a link of CNS promoter activation with several neuronal signaling pathways and
ontologies of neuronal diseases such as cognitive impairment, all of which are relevant
for AD (Figure 6b). A recent study showed that the deletion of synaptotagmin-2 (Syt2)
from excitatory parvalbumin positive neurons in cerebellar nuclei produced asynchronous
transmitter release and action tremor in mice [88]. Pgc-1α has been implicated in the tran-
scriptional regulation of synchronous neurotransmitter release and SYT2 expression [89].
We have previously observed a high expression level CNS-specific Ppargc1a transcripts in
the cerebellum of mice [23] and our current data show an upregulation of SYT2 (log2-fold
change 0.589, adjusted p = 2.90 × 10−6) by activation of the CNS promoter, but no effects of
RG promoter activation. Hence, CNS-specific isoforms may play a role in tremor disorders.
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4. Material and Methods
4.1. Cell Culture

SH-SY5Y cells were obtained from ATCC and cultured in DME (D6046)/F12 1:1
(Sigma-Aldrich, Munich, Germany) supplemented with 0.21% NaHCO3. HEK293T cells,
obtained from ATCC were cultured in Dulbecco’s modified Eagle’s medium/Ham’s F-12F
(Merck, Kenilworth, NJ, USA). All media were supplemented with 10% fetal bovine serum
(FBS, Gibco, Carlsbad, CA, USA) and 1% penicillin/streptomycin (Sigma-Aldrich). Cell
densities of 80 to 90% were used to split and harvest cells using AccutaseR (Sigma-Aldrich).

4.2. Generation of Stable CRISPRa Cell Lines

For the stable integration of dCas9-VPR into the genome of cell lines, pLenti-EF1a-
dCas9-SAM plasmids (ABM) along with the trans-complementation plasmids pMD2.G
expressing VSV-G envelope and phCMV-8.91 expressing GAG/POL were transfected
into HEK293T cells using jetPEI or Xfect transfection reagents (Polyplus TransfectionT or
Clontech, Mountain View, CA, USA) in serum and antibiotic free medium. Virus-containing
supernatants were harvested up to 72 h post transfection and cleared by centrifugation
and filtration through 0.22 µm sterile filters. SH-SY5Y cells at a confluency of 60 to 70%
were spinoculated at 600× g for 90 min at 37 ◦C with a range of virus concentrations in the
presence of polybrene (5 µg/mL) and subsequently incubated for 8 h. Cells were washed
with PBS and incubated with complete medium. dCas9-VPR positive cells were selected by
culture with puromycin (5 µg/mL) for 14 days. After validation of dCas9-VPR transcript
expression in cells, single cells were sorted into 96-well plates using the BD FACS Aria III
system (BD Biosciences, Franklin Lakes, NY, USA). At confluency, single cell derived clones
were split into duplicate 96-well plates. Cells from one plate were lysed using the ExCellent
Lysis Kit (ABM, New York, NY, USA) and cDNA was generated from lysates using the
all in-one RT master mix (ABM). Quantitative real-time PCR (qRT-PCR) was performed
to discriminate between dCas9 positive and negative clones using GoTaq qPCR Master
Mix (Promega, Madison, WI, USA) and primers designed for the detection of dCas9-VPR
transcripts (Table S8).

4.3. Single Guide (sg)RNA Design and Cloning

To target the dCas9-VPR protein to the CNS and RG promoters, single guide (sg)
RNAs were selected from the track “CRISPR Targets” embedded in the UCSC Genome
Browser [90]. This track shows potential sgRNAs within 10,000 bp of transcribed regions
in the human genome (hg 19) that are color coded according to predicted specificity
(uniqueness in the genome) and efficiency (on-target cleavage) by algorithms such as the
MIT Specificity Score [91] and the Doench Score [92] using the tool CRISPOR [93]. Three
sgRNA target sequences predicted with high MIT-Specificity and Doench Scores as well as
high specificity scores predicted by an additional web-based tool, CRISPRspec [94], were
chosen within 260 bp of the transcription start sites of both promoters (Table S1). Regarding
the CRISPRa system, the specificity scores are most relevant since the sgRNAs guide the
dCas9 enzyme to the appropriate targets, but there is no cleavage. Nevertheless, we took
all scores into account for selecting sgRNAs. Potential off-targets incorporating up to three
mismatches as well as their associations with DEGs are shown in Table S2a,b.

pCRISPR-SG01 vectors expressing the designed sequences were obtained from
GeneCopoeia. To estimate transient transfection efficiencies of sgRNAs, the gene en-
coding the enhanced green fluorescence protein (EGFP) was excised from the pEGFP-N1
vector (Clontech) and cloned into the sgRNA expressing plasmids. Enzyme sites KasI
and NaeI (or BstZ17I) were chosen to replace the SV40 promoter and the hygromycin
resistance cassette in the sgRNA plasmids with the cytomegalovirus promoter and the
EGFP encoding gene. All plasmids were verified by sequencing (Microsynth).
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4.4. Transient Transfections

SH-SY5Y cells were transfected with plasmids expressing sgRNA and/or EGFP using
DNAfectin Plus (ABM) or Lipofectamine LTX with Plus reagent (Thermo Fisher, Waltham,
MA, USA). Cells were plated in 6- or 24-well plates and transfected after reaching 70%
confluency. Optimal transfection conditions were identified and used in subsequent
experiments.

4.5. Confocal Microscopy and Immunocytochemistry

To determine the proportion of cells expressing EGFP after transient transfection with
plasmids expressing both sgRNAs and EGFP, cells were detached using AccutaseR solution
(Sigma-Aldrich) 24 h after transfection and were seeded on 30 mm borosilicate glass slides
(thickness No. 1.0 VWR) coated with poly-L-lysine hydrobromide (Sigma-Aldrich). After
16 h, the cells were washed repeatedly with Hank’s balanced salt solution (HBSS, Sigma
Aldrich), incubated with Hoechst 34580 (1 µg/mL, Sigma-Aldrich) for 30 min at room
temperature, washed again with HBSS and transferred to the POCmini-2 chamber system
(LaCon, Erbach-Bach, Baden-Württemberg, Germany). Images were collected using a Leica
TCS SP5II AOBS confocal microscope (Leica Microsystems, Wetzlar, Germany) equipped
with an HCX PL APO 63x/1.20 lambda blue water immersion objective and controlled
with the Leica Application Suite Advanced Fluorescence (LAS AF) software. Hoechst 34580
was excited with a diode laser (405 nm) and emission was detected between 430 and 470
nm. EGFP was excited with the 488 nm line of the Argon laser and emission was detected
in the 500 to 560 nm range.

To localize PGC-1α and estimate its cellular amount, we tested several antibodies
directed against epitopes near the N-terminus. We interrogated their selectivity in transient
transfections of SH-SY5Y cells with plasmids encoding EGFP fused to C-terminus of vari-
ous PGC-1α isoforms. Based on these experiments, we selected a monoclonal anti-PGC-1α
antibody, directed against N-terminal epitopes (Calbiochem, #ST1202). Transfected cells
were transferred to round glass slides (12 mm diameter, thickness No. 1.0, VWR), grown
overnight, fixed with 4% paraformaldehyde for 30 min at room temperature, permeabilized
with 0.2% Triton X-100, blocked in 3% bovine serum albumin (BSA) for 1 h and incubated
with the primary antibody diluted with HBSS and 0.1% BSA overnight at 4 ◦C. Cells were
washed three times with HBSS and incubated with the secondary antibody (Goat Anti-
Mouse IgG, Cy5 conjugate, Millipore) diluted 1:400 with HBSS and 0.1% BSA for 1 h at room
temperature. Nuclei were counterstained with 0.1 µg/mL 4′6-diaminidino-2phenylindole
(DAPI, Sigma-Aldrich) and slides were mounted in Mowiol/DAPCO. Images were col-
lected by sequential acquisition with a Leica TCS SP5II AOBS confocal microscope (Leica
Microsystems) equipped with an HCX PL APO 63x/1.4 oil immersion objective and con-
trolled by the LAS AF SP5 software (Leica Microsystems). DAPI was excited with a diode
laser (405 nm) and emission was detected between 430 and 480 nm. EGFP was excited with
the 488 nm line of the Argon laser and emission was detected in the 500 to 560 nm range.
Cy5 was excited with the HeNe laser (633 nm) and emission was detected in the 645 to 780
nm range. Samples were imaged using 3x zoom and a line average of 3.

4.6. RNA Extraction and qRT-PCR

QIAZOL Lysis Reagent and RNeasy Lipid Tissue Mini Kit (QIAGEN, Hilden, Ger-
many) were used for extraction of RNA [23]. RNA concentration and integrity were
measured using a Nanovue Spectrophotometer (GE Healthcare) and the QIAxcel Ad-
vanced Instrument (QIAGEN), respectively. DNase I-treated total RNA (1 µg/reaction)
was reverse transcribed with the QuantiTect Reverse Transcription (RT) kit (QIAGEN),
using a mix of random hexamer and oligo-dT primers, as described [95]. cDNAs were
amplified in duplicate by real-time PCR using Maxima SYBR Green (Thermo Scientific) or
GoTaq™ qPCR Master Mix (Promega), the LightCyclerTM480 (Roche) or Rotor-GeneTMQ
(QIAGEN) instruments. For transcripts encoding PGC-1α isoforms, we used primers tar-
geting exons B1 and B4 or B5 and exon 2, to quantify the two main CNS-specific PPARGC1A
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transcripts. RG transcripts were quantified using primers targeting exon 1 and exon 2.
Primers targeting exon 5 and exon 7A or exon 2 and the extended part of exon 3 were used
to measure the transcripts encoding the class of NT-PGC-1α isoforms or a short, dominant
negative isoform termed E3extended, respectively (Table S1 for primer sequences). To
directly compare measurements of PPARGC1A transcripts, gene segments containing the
sequences targeted by the respective transcript-specific assays were cloned and used for
the construction of standard curves. The accuracy of the assays was verified by sequencing
amplicons. Primers used to estimate RNA levels of genes encoding other transcripts are
shown in Table S8. Relative mRNA levels were calculated using the comparative threshold
cycle method (∆CT). Constitutively expressed RPLP0 (Ribosomal Protein, large, P0) RNA
was used for normalization of mRNA abundance, as described [95]. Changes in RPLP0
transcripts resulting from activation of the CNS or RG promoters were taken into account.

4.7. Cell Viability Assay

To quantify viable cells, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT, Sigma-Aldrich) assay was used according to the protocol of the manufacturer.

4.8. RNA Sequencing

Sequencing libraries of three biological replicates were prepared using NEBNext Ultra
II Directional Kit (New England Biolabs, Ipswich, MA, USA) In brief, 200 to 300 ng total
RNA was used as input in the polyA enrichment module protocol. Enriched samples were
fragmented and transcribed into cDNA. Following universal adapter ligation, samples
were barcoded using dual indexing primers. Samples were sequenced to 30 to 50 million
single-end 75 bp reads on the Illumina Nextseq 550 sequencer (Illumina).

4.9. RNA-Seq Bioinformatic Analysis

The raw sequencing reads were preprocessed with Trimmomatic (v 0.36) [96]. Briefly,
adapters (ILLUMINACLIP: AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC-:2:30:10:3)
and low-quality (leading and trailing bases with Phred quality < 3 with subsequent sliding
window of four consecutive bases with average Phred quality < 5 from the 3′) ends were
trimmed. Reads shorter than 35 bp after the preprocessing were discarded. Quality of the
reads was continuously monitored with FastQC (v0.11.5) [97]. CNS-specific isoforms of
the PPARGC1A gene (RefSeq ID NM_001330751, NM_001330752, NM_001354825) [98] not
present in the Ensembl gene annotation (release 91) [99] were added to the gene annota-
tion used for genome mapping and expression estimates. The preprocessed reads were
mapped to the reference human genome and transcriptome (GRCh38) with the extended
gene annotation using STAR (v2.5.3a) [96]. Samtools (v1.4.1) was used to post-process the
alignments [100]. Read coverage tracks were created by STAR. Expression estimates were
calculated by RSEM (v1.3.1) [101]. Strand specificity of the library (reverse/antisense) was
taken into consideration. DGE of coding genes was calculated by edgeR (v 3.26.8) [102]
package in R (v3.6.2)/Bioconductor (v3.9) [103] using GLM [104]. The Benjamini-Hochberg
procedure was used to correct p-values for multiple testing errors [105]. Additional visu-
alizations were done by ggplot2 (v3.2.0; [106], dplyr (v0.8.2) ggrepel (v0.8.1), and ggpubr
(v0.2.1) R libraries [107]. Alternative exon usage was calculated by DEXSeq (v1.30.0) [51].
Subread_to_DEXSeq script using featureCounts (v1.5.2) [108] was used to get exonic reads
for the DEXSeq calculation. p-values were adjusted for multiple testing error with the
default DEXSeq method. In addition, Sashimi plots for quantitative visualization and the
MISO algorithm for estimation of isoform expression were used [109,110]. Sashimi plots
were visualized with Gviz (v1.32.0) [111].

RNA-Seq data were analyzed using ingenuity pathway analysis (IPA, QIAGEN Inc.).
Associations of differentially expressed mRNAs in our data sets with canonical pathways
were determined in two ways: (i) the ratio of the number of mRNAs that map to the
pathway divided by the total number of mRNAs that map to the canonical pathway is
displayed; and (ii) A right-tailed Fisher’s Exact Test was used to calculate a p-value to
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determine the probability that the associations between the genes in the datasets and the
canonical pathway is explained by chance alone. p-values were corrected by the Benjamini-
Hochberg approach. We also determined the associations of mRNA from our datasets
with physiological functions and/or diseases in the ingenuity knowledge base using the
procedures described and provide z-scores for individual annotations when available. The
z-scores are statistical measures of how closely the actual expression patterns compare
to the patterns that are expected based on the literature/ingenuity knowledge base for a
particular annotation [112]. Pathways, physiological functions and diseases clearly related
to cancers were excluded from our results. To identify overrepresented mRNAs encoding
mitochondrial proteins, we used the genes listed in Mitocarta2.0 [113]. To determine
their biological functions, we used the Reactome pathway in The Gene Ontology (GO)
Knowledge based platform (released 24 March, 2020) [114,115]. For in silico analysis
of physical interactions of proteins encoded by the different gene sets, the search tool
for retrieval of interacting genes the STRING data base [36] was used. Active physical
interaction sources including text mining, experiments, and data base as well as a high
confidence interaction score (>0.7) were used to construct the protein–protein networks.
For visualization of networks, disconnected nodes were hidden.

5. Conclusions

Selective activation of the CNS and RG promoters in a human cell model is associated
with discrete gene programs that include differential expression and exon usage of a
multitude of genes with partial overlap. The respective gene programs reveal associations
with qualitative and quantitative differences in canonical signaling pathways, physiological
functions of the nervous system and neurological diseases and strongly support selective
as well as complementary and common roles of the reference protein and CNS-specific
isoforms in neurodegenerative disorders. Mining of these novel PGC-1α isoform targets
should provide an invaluable resource for many research groups examining the intricate
and complicated function of this multifaceted coactivator in neurodegenerative diseases.
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AD Alzheimer’s disease
ALS amyotrophic lateral sclerosis
CRISPR clustered regularly interspaced short palindromic repeats
CRISPRa CRISPR activating transcription
DEG differentially expressed genes
EGFP enhanced green fluorescence protein
HD Huntington’s disease
MDS multidimensional scaling
Mito-genes mitochondrial genes
MT-genes genes encoded by mitochondria
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
NT-PGC-1α N-terminal truncated PGC-1α
PD Parkinson’s disease
PGC-1α peroxisome proliferator activated receptor gamma coactivator 1A
qRT-PCR quantitative real-time PCR
RG reference gene
RRM RNA recognition motif
RS domain arginine/serine-rich domain
sgRNA single guide RNA
uORF upstream open reading frame

VPR
tripartite activator called VPR encoding herpes simplex virus protein 16 (VP64),
the activation domain of the p65 subunit of nuclear factor NF-κB and the replication
and transcription activator (RTA) of the γ-herpesvirus family
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