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Abstract

Echocardiography is a widely used modality for the assessment of right

ventricular (RV) function; however, few studies have comprehensively

compared the accuracy of echocardiographic parameters using invasively

obtained reference values. Therefore, this exploratory study aimed to compare

the accuracy of echocardiographic parameters of RV function and

RV–pulmonary artery (PA) coupling. We calculated four indices of RV

function (end‐systolic elastance [Ees] for systolic function [contractility], τ for
relaxation, and β and end‐diastolic elastance [Eed] for stiffness), and an index

of RV–PA coupling (Ees/arterial elastance [Ea]), using pressure catheteriza-

tion, cardiac magnetic resonance imaging, and a single‐beat method. We then

compared the correlations of RV indices with echocardiographic parameters.

In 63 participants (54 with pulmonary hypertension (PH) and nine without

PH), Ees and τ correlated with several echocardiographic parameters, such as

RV diameter and area, but the correlations were moderate (|correlation

coefficients (ρ)| < 0.5 for all parameters). The correlations of β and Eed with

echocardiographic parameters were weak, with |ρ| < 0.4. In contrast, Ees/Ea

closely correlated with RV free wall longitudinal strain (RVFW‐LS)/estimated

systolic PA pressure (eSPAP) (ρ=−0.72). Ees/Ea also correlated with tricuspid
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annular plane systolic excursion/eSPAP, RV diameter, and RV end‐systolic
area, with |ρ | >0.65. In addition, RVFW‐LS/eSPAP yielded high sensitivity

(0.84) and specificity (0.75) for detecting reduced Ees/Ea. The present study

indicated a limited accuracy of echocardiographic parameters in assessing RV

systolic and diastolic function. In contrast to RV function, they showed high

accuracy for assessing RV–PA coupling, with RVFW‐LS/eSPAP exhibiting the

highest accuracy.
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INTRODUCTION

Pulmonary hypertension (PH) is hemodynamically
defined by an elevated mean pulmonary arterial (PA)
pressure of ≥25mmHg1,2 or >20mmHg in the updated
guidelines.3 In PH, a sustained elevation of PA pressure
or the afterload of the right ventricle impairs right
ventricular (RV) function and its adaptation to the
pulmonary vascular system, that is, RV–PA coupling.4

Notably, the presence and degree of impaired RV
function and of RV–PA coupling are considered to affect
the outcomes of patients with PH.5–7 Therefore, accurate
evaluation of RV function and RV–PA coupling is
essential for the precise assessment and optimal manage-
ment of patients.

The gold standard for evaluating RV function and
RV–PA coupling is the multibeat method performed
using conductance and pressure catheters.8,9 This
method enables simultaneous monitoring of RV volume
and pressure, and the calculated values and their clinical
relevance have been reported.10,11 However, owing to the
cost, invasiveness, and need for special equipment, such
analyses can only be performed at a few facilities,
reducing its application in the practice.

A simpler way of evaluating RV function is using the
single‐beat method,12,13 with the application of a
pressure catheter and cardiac magnetic resonance
(CMR) imaging.14 RV indices obtained using this method
are associated with the prognosis of patients with PH.15,16

In particular, end systolic elastance (Ees) divided by
arterial elastance (Ea) (Ees/Ea), an index of RV–PA
coupling, is most closely associated with the outcome of
patients with PH.15,16 However, even with this simplified
method, such indices are still challenging to use in the
clinical practice, because of the need for dedicated
software and mathematical processing.

As echocardiography is noninvasive, it can be
performed repeatedly. Various echocardiographic indices

are considered to reflect RV function and RV–PA
coupling and are widely used in clinical practice.17,18

However, the correlations of such indices with invasively
measured reference values have been reported in a small
number of studies.6,19–21 In addition, these studies
focused on only one or a few echocardiographic
parameters, and their accuracy was not comprehensively
compared with that of other parameters. As a result, it
remains unclear which parameter most accurately
reflects RV systolic/diastolic function and RV–PA
coupling.

The primary purpose of this study was to compre-
hensively compare the accuracy of echocardiographic
parameters of RV function and RV–PA coupling, using
pressure catheter, CMR, and single‐beat method‐derived
data as reference values. In addition, for the echocardio-
graphic parameters that provided good accuracy, we
aimed to exploratory determine their sensitivity and
specificity for detecting impaired RV function or RV–PA
coupling.

METHODS

Study population

Of the patients admitted to our department for PH
diagnosis or follow‐up from May 2020 to April 2022,
those who underwent right heart catheterization (RHC)
with a pressure catheter, echocardiography, and CMR
imaging within 14 days before and after RHC were
retrospectively evaluated. Clinically unstable patients
with modifications to their PH medication during the
abovementioned ±14 days from RHC and those with a
left ventricular (LV) ejection fraction (EF) < 50% upon
echocardiography were excluded. The diagnostic criteria
and treatment strategies for PH were defined according
to the 2015 European and 2017 Japanese PH treatment
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guidelines.1,22 Hence, a mean PA pressure (MPAP) ≥ 25
mmHg was used to define PH.

This study was approved by the Ethics Committee of
Hokkaido University Hospital (Approval number:
016‐0461) and conducted in accordance with the 1964
Declaration of Helsinki and its subsequent amendments.
As this was a retrospective study, the need for informed
consent was waived by the Ethics Committee. However,
patients could opt out of the study and they were
informed of this right on our institutional website.

RHC

RHC was performed according to the guidelines at the
time of practice.23 Briefly, a Swan–Ganz catheter was
used to measure PA pressure, PA wedge pressure, cardiac
output, RV pressure (RVP), and right atrial (RA)
pressure.

Immediately after Swan–Ganz catheterization, a
pressure catheter (Mikro‐Cath pressure catheter; Millar
Co. Ltd) was inserted and advanced to the PA.
Subsequently, as reported in our previous study,24 PAP
and RVP were recorded using an AV converter (Power-
Lab; ADInstruments) and a dedicated software (Lab-
Chart Pro; ADInstruments).

CMR imaging

CMR imaging studies were performed on a 1.5‐T
magnetic resonance imaging (MRI) scanner (Achieva or
Achieva dStream; Philips Healthcare) or a 3.0‐T MRI
scanner (Achieva TX; Philips Medical Systems) with
electrocardiogram gating. Image acquisition and analysis
were performed using a previously described protocol.24

Briefly, cine MRI was performed in the axial plane
covering the whole heart, using a steady‐state free
precession pulse sequence. The details of the parameters
are provided in Supporting Information S12: Table 1.
Images were analyzed using a dedicated software
(Extended MR WorkSpace or IntelliSpace Portal; Philips
Healthcare). The endocardial contours were manually
traced, and the RV and LV end‐diastolic volumes (EDVs)
and end‐systolic volumes (ESVs) were computed. The RV
and LV stroke volume (SV) and EF were calculated as
SV = EDV− ESV and EF = SV/EDV× 100%, respectively.

Echocardiography

Transthoracic echocardiography was performed using
the Artida/Aplio i900 (3.0 MHz/i6SX1 probe; Canon

Medical Systems), Vivid E9 (M5S probe; GE Healthcare),
iE33 (S4 probe; PHILIPS), ACUSON SC2000 (4V1c
probe; SIEMENS Healthcare), or ProSound F75 (UST‐
52127 probe; Fujifilm Healthcare) ultrasound machines.

In this study, echocardiography was conducted by
sonographers of our institution under the supervision of
certified cardiologists as a part of routine practice,
according to international guidelines.17 The results
described in the final report were collected and
retrospectively analyzed. In brief, we collected the RA
diameter, RA area, diameter of the inferior vena
cava, and estimated RA pressure data. The basal (RV
diameter at end‐diastole [RVDd‐base]) and mid‐level RV
diameters at end‐diastole and the end‐diastolic and end‐
systolic RV areas (RVEDA and RVESA, respectively) were
measured. The RV fractional area change (FAC)
was calculated as ([RVEDA–RVESA]/RVEDA) × 100%.
Tricuspid annular plane systolic excursion (TAPSE) was
measured in M‐mode. Tricuspid annular systolic velocity
(pulsed tissue Doppler s wave: s') was measured as the
peak longitudinal systolic velocity of the tricuspid annulus
on the RV free‐wall (FW) side. The tricuspid regurgitation
pressure gradient was calculated from the peak tricuspid
regurgitant jet velocity and the estimated systolic PA
pressure (eSPAP) was calculated. TAPSE divided by
eSPAP was also calculated.25 The degree of tricuspid
regurgitation was classified into mild, moderate, or severe,
according to the relevant guidelines.26 The LV eccentricity
index (EI) was calculated using dimensions obtained in
the parasternal LV short‐axis view. The sonographers and
cardiologists had access to general clinical data but were
blinded to indices of RV function and RV–PA coupling.

Strain analysis was performed using the apical four‐
chamber view by a cardiologist (HS), according
to international guidelines.27 The two‐dimensional
(2D)‐echo images were analyzed offline using vendor‐
independent analysis software (2D Strain Analysis soft-
ware version TTA2.4; TomTec Imaging Systems), and the
RA and RV strains and strain rates (SRs) were measured.
For the RA, the end diastole was defined as the tricuspid
valve closure, and we measured the RA strain and the
peak RASR in the reservoir, conduit, and contraction
phases. For the RV, we measured the RV free wall
longitudinal peak strain (RVFW‐LS) and three RVSRs:
peak systolic SR, peak early diastolic SR, and peak atrial‐
diastolic SR. We also calculated the RVFW‐LS divided by
the eSPAP.28 Similar to the routine echocardiography,
the examiner was not blinded to the general clinical data
but blinded to indices of RV function and RV‐PA
coupling. Another examiner (IT) performed the strain
analysis for interobserver reproducibility analysis, and
that examiner was blinded to clinical data and RV
indices.
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Calculation of indices for systolic/diastolic
RV function and RV–PA coupling

In this study, RV end‐systolic elastance (Ees) was
deemed to reflect RV systolic function; τ, β, and Eed
were deemed to reflect RV diastolic function (with τ
representing relaxation, and both β and Eed representing
RV stiffness). Also, Ees/Ea was considered to reflect
RV–PA coupling. Each index was calculated as described
below.

RVP waveform data obtained with the pressure
catheter were analyzed offline. The means of five
minimum RVPs, end‐diastolic RVPs (RVEDPs), time
constant of ventricular pressure decay (τ) values, and
maximum isovolumic pressure (Piso) values were calcu-
lated. For the calculation of Piso, we applied the single‐
beat method,29 in which mathematical curve fitting of
RVP data during isovolumic contraction and relaxation
were exerted using a dedicated software (LabChart Pro®,
ADInstruments), as described in our previous study.24 τ
was calculated using the Weiss method.30

Ees was calculated using the following formula:
Ees = (Piso− Pes)/RVSV (1), where end systolic pressure
(Pes) was calculated as Pes = 1.65 ×MPAP− 7.79,31 with
MPAP measured using a pressure catheter. The RVSV
was obtained using CMR imaging.12

Ea was calculated using the following equation: Pes/
RVSV (2).

From equations (1) and (2), Ees/Ea was calculated as
follows: Ees/Ea = Piso/Pes− 1. RV diastolic stiffness (β)
was calculated using the following equation32: RVP = α
([eRVV × β]− 1). To calculate α and β, we used the
pressure and volume data sets at three points: (RVP,
RV volume [RVV]) = (0, 0), (minimum RVP [RVP‐min],
RVESV), and (RVEDP, RVEDV). Here, RVP‐min was
standardized to 1 mmHg to eliminate measurement
errors, and a modified RVEDP was used, as follows:
(1 + RVEDP− RVP‐min).

Eed was calculated as the slope at end diastole in the
diastolic pressure–volume relationship, using the follow-
ing equation15: Eed = α × β× eRVEDV× β.

Statistical analysis

Categorical data were expressed as absolute numbers (%)
and continuous variables as medians (interquartile
ranges) or mean ± SD. Differences between those with
and without PH were described as the median and 95%
confidence intervals. We exploratory examined the
correlations between echocardiographic parameters and
indices of RV function and of RV–PA coupling using
Spearman's rank correlation coefficient (ρ). Considering

the possible impact of tricuspid regurgitation, we
calculated partial correlation coefficient between echo-
cardiographic parameters and RV indices adjusted by
three grades of tricuspid regurgitation using multiple
logistic regression analysis. To calculate the sensitivity
and specificity of echocardiographic parameters for
detecting impaired RV function or RV–PA coupling, we
used the normal range reported in previous reports and
calculated the sensitivity, specificity, and accuracy of
each echocardiographic index. We made this exploratory
analysis only for echocardiographic parameters that
exhibited good correlations with the reference RV
indices. The intra‐ and interobserver reproducibility of
four strain echocardiography indices (RVFW‐LS, peak
systolic SR, peak early diastolic SR, and peak atrial‐
diastolic SR) and RVFW‐LS/sPAP was examined, using
Bland–Altman analysis and intraclass coefficients (ICCs),
in 12 randomly selected patients. Data provided by HS
were used for intra‐observer reproducibility and those by
HS and IT were used for interobserver reproducibility.
JMP Pro version 16 (SAS Institute Inc.) was used for
statistical analysis. Statistical significance was set
at p< 0.05.

RESULTS

Table 1 summarizes the characteristics of the 63
participants, who included 54 participants who met the
criteria for PH and the nine remaining participants who
did not. Table 2 shows the results of CMR imaging and
RHC. CMR data were missing for four of the 63 patients,
mainly because of their poor clinical condition. The
calculated indices of RV function (Ees, τ, β, and Eed) and
of RV–PA coupling (Ees/Ea) are summarized in Table 3
and Figure 1. Among the five indices, τ and Ees/Ea were
significantly lower in the participants with PH than in
those without.

The echocardiographic results of the 63 participants
are summarized in Table 4. Patients with PH exhibited
RV dilatation, with larger diameters and areas than those
in patients without PH. The TAPSE was smaller in
patients with PH. Strain analysis‐derived indices of the
RA and RV were generally lower in patients with PH
than in those without.

The ρ of RV‐related echocardiographic parameters
with reference indices of RV function and of RV–PA
coupling are summarized in Table 5, and those of RA or
IVC‐related echocardiographic parameters are summa-
rized in Supporting Information S13: Table 2. Scatter
plots of correlations between all echocardiographic
parameters and indices of RV function and of RV–PA
coupling are shown in the Supporting Information
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figures. Among the echocardiographic indices examined,
the highest correlation with Ees was observed for RVDd‐
base, and the highest correlation with τ was observed for
RVESA. The correlation coefficients for Ees and τ,
however, were modest with |ρ| < 0.5 for all echocardio-
graphic parameters. Regarding β and Eed, the highest ρ
was observed for TAPSE/ePASP and EI at end‐diastole,
respectively, although it remained rather low (|ρ| < 0.4).
In contrast, Ees/Ea exhibited remarkably higher correla-
tion coefficients with echocardiographic parameters,
with RVFW‐LS/eSPAP exhibiting the highest ρ at
−0.72. The representative echocardiographic indices that
had high correlation coefficients with the reference RV
indices are shown in Figure 2. The severity of TR was
classified into mild, moderate, and severe in 51, 8, and 4
patients, respectively. As shown in the Supporting
Information S14: Table 3, the calculated partial correla-
tion coefficients incorporating the severity of tricuspid
regurgitation remained relatively high (≥0.49) as for the
six echocardiographic parameters whose |ρ| were >0.6
shown in Table 5.

Among the five RV indices, Ees/Ea most closely
correlated with echocardiographic parameters. Thus, as
an additional exploratory analysis, we sought to examine
the diagnostic accuracy of echocardiographic parameters
to detect RV–PA uncoupling. Since the lower limit of

Ees/Ea is reportedly 0.7−0.8,6,33 we used either <0.8 or
<0.7 for abnormally low Ees/Ea, and subsequently
calculated the area under the receiver operating charac-
teristic curve (AUC), sensitivity, specificity, and accuracy
of each echocardiographic index. As shown in Table 6,
when Ees/Ea < 0.8 was used to define RV–PA uncou-
pling, RVFW‐LS/eSPAP exhibited the highest AUC (0.88)
and accuracy (0.71) with its cutoff value of −0.493.
Among the other indices than strain parameters, those
with AUCs > 0.80 were RVDd‐base, RVESA, RVFAC,
EIs, and TAPSE/eSPAP. Similarly, when Ees/Ea < 0.7
was used to define RV–PA uncoupling, RVFW‐LS/eSPAP
again exhibited the highest AUC at 0.87 (Supporting
Information S15: Table 4).

Bland–Altman plots for intra‐observer reproducibility
analysis are provided in Supporting Information S11:
Figure 11A. The limits of agreement were small (0.44
[−1.81 to 2.68], 0.04 [−0.2 to 0.28], −0.06 [−0.31 to 0.19],
−0.02 [−0.28 to 0.22], and 0.005 [−0.046 to 0.057] for
RVFW‐LS, peak systolic SR, peak early diastolic SR, peak
atrial‐diastolic SR, and RVFW‐LS/sPAP, respectively),
and no systematic error was indicated. ICCs were also
high, at >0.8 for the five indices (0.97, 0.92, 0.92, 0.82,
and 0.99 for RVFW‐LS, peak systolic SR, peak early
diastolic SR, peak atrial‐diastolic SR, and RVFW‐LS/
sPAP, respectively). Regarding the interobserver repro-
ducibility (Supporting Information S11: Figure 11B),
limits of agreement were again small (−0.08 [−6.56 to
6.40], 0.03 [−0.35 to 0.4], −0.04 [−0.42 to 0.34], 0.01
[−0.33 to 0.34], and 0.003 [−0.17 to 0.18] for RVFW‐LS,
peak systolic SR, peak early diastolic SR, peak atrial‐
diastolic SR, and RVFW‐LS/sPAP, respectively). As for
peak systolic SR, the difference was small (−0.04) but the
plots indicated positive proportional association. The
ICCs of the five parameters were all >0.7 (0.77, 0.74, 0.81,
0.71, and 0.97 for RVFW‐LS, peak systolic SR, peak early
diastolic SR, peak atrial‐diastolic SR, and RVFW‐LS/
sPAP, respectively).

DISCUSSION

In the present study, we comprehensively compared the
accuracy of echocardiographic parameters for the assess-
ment of RV function and RV–PA coupling, using
pressure catheter, CMR, and single‐beat method to
calculate the reference values. First, we found that Ees,
the index of RV systolic function, correlated with RV
diameter; and τ, the index of RV relaxation, correlated
with RV end‐systolic area, both with moderate correla-
tion coefficients (|ρ| < 0.5). Second, β and Eed, the index
of RV stiffness, did not strongly correlate with any
echocardiographic parameters (all |ρ| < 0.4). Third, Ees/

TABLE 1 Characteristics of study participants.

Number of participants 63

With PH, n (%) 54 (86)

Sex, male, n (%) 25 (40)

Age, years 60 (47–70)

Body mass index (kg/m2) 22.8 (20.1–25.9)

Concentration of brain natriuretic
peptide (pg/mL)

28.6 (11.2–111.9)

Characteristics of patients with PH (n= 54)

Classification of PH, Group 1/2/3/4/5, n 31/0/6/17/0

World Health Organization functional
class, 1/2/3/4, n

13/15/25/1

Number of pulmonary vasodilators used,
0/1/2/3, n

23/10/10/11

Phosphodiesterase 5 inhibitor use, n (%) 27 (50)

Endothelin receptor antagonist use,
n (%)

20 (37)

Prostacyclin use, oral/intravenous/
inhalative/no, n

8/7/1/38

Note: Values are expressed as frequencies or medians (ranges).

Abbreviation: PH, pulmonary hypertension.

PULMONARY CIRCULATION | 5 of 15



Ea, the index of RV–PA coupling, correlated well with
several echocardiographic parameters, with RV FWLS/
eSPAP exhibiting the best ρ at −0.72. In contrast to
previous studies, through the comprehensive compari-
sons of many echocardiographic parameters, this study
indicated the superior accuracy of RVFW‐LS/eSPAP over
that of other parameters, and its high sensitivity and
specificity in detecting impaired RV–PA coupling.

The TAPSE, RVs', and RVFAC are widely used
echocardiographic parameters for the evaluation of RV

systolic function.17 In addition, in recent years, strain and
SR indices have been reported to reflect RV systolic
function.34 However, in our study, none of these indices
were significantly correlated with Ees, a reference index
of RV contractility. A possible explanation for this is that
TAPSE, RVs', RVFAC, and strain indices allow the
quantitative evaluation of certain aspects of RV motion,
such as myocardial shortening and velocity, while Ees
reflects the intrinsic contractility of the RV. Here, it
should be noted that the clinical relevance of

TABLE 2 Results of CMR imaging and RHC.

All participants
(n= 63)

Patients with PH
(n= 54)

Patients without PH
(n= 9) Differencea (95% CI)

CMR imaging

RVEDV (mL) 150.6 (123.4–197.0)b 164.2 (133.0–203.8)c 103.9 (99.5–129.9) 73.2 (45.3–101.1)

RVEDV Index (mL/m2) 101.4 (75.4–120.6)b 106.4 (82.9–122.6)c 71.1 (67.4–77.4) 41.3 (25.6–57.0)

RVESV (mL) 92.5 (64.2–139.9)b 107.4 (73.7–144.8)c 54.6 (51.1–62.1) 68.5 (43.5–93.4)

RVESV Index (mL/m2) 61.7 (39.1–89.5)b 70.3 (46.7–95.6)c 36.9 (34.5–39.5) 40.0 (25.2–54.7)

RVSV (mL) 53.7 (41.1–68.7)b 53.9 (40.6–70.8)c 52.3 (46.8–59.5) 4.73 (−4.77 to 14.23)

RVSV Index (mL/m2) 35.8 (27.0–41.2)b 35.9 (25.2–41.5)c 35.4 (32.5–37.2) 1.30 (−3.46 to 6.05)

RVEF (%) 37.1 (27.4–47.4)b 33.9 (23.9–44.9)c 49.4 (42.6–53.0) −13.4 (−19.2 to −7.7)

RHC (Swan–Ganz catheter‐derived)

PAWP (mmHg) 7 (5–9) 7 (5–9) 7 (6–9) 0 (−1 to 2)

MPAP (mmHg) 32 (23–38) 33 (27–39) 17 (14–23) 16 (12–20)

RVEDP (mmHg) 8 (6–9) 8 (6–9) 6 (5–9) 1 (−1 to 3)

MRAP (mmHg) 5 (3–6) 5 (3–6) 3 (3–5) 1 (0–3)

SV (mL) 63.0 (48.3–77.6) 62.7 (46.1–79.5) 63.0 (52.6–70.0) 1.7 (−7.7 to 11.0)

SV Index (mL/m2) 39.4 (31.9–45.8) 38.0 (31.4–46.5) 40.7 (37.0–44.6) −1.5 (−6.2 to 3.2)

Cardiac output (L/min) 4.14 (3.38–4.82) 4.20 (3.46–4.92) 3.89 (3.29–4.34) 0.34 (−0.33 to 1.02)

Cardiac Index (L/min/m2) 2.60 (2.24–2.95) 2.65 (2.22–2.99) 2.55 (2.31–2.94) 0.05 (−0.30 to 0.41)

PVR (WU) 5.5 (4.0–8.0) 6.0 (4.7–8.6) 1.9 (1.8–4.0) 3.9 (2.7–5.2)

PAC (mL/mmHg) 2.03 (1.19–2.75) 1.90 (1.12–2.68) 2.54 (1.95–3.51) −0.67 (−1.46 to 0.12)

RHC (pressure catheter‐derived)

MPAP (mmHg) 32 (24–36) 33 (27–37) 15 (14–20) 16 (12–20)

RVEDP (mmHg) 5 (3–6) 5 (3–6) 3 (2–4) 1 (0‐3)

RV isovolumic
pressure (mmHg)

64 (53–74) 65 (57–74) 47 (35–51) 22 (14–30)

Note: Values are expressed as medians (ranges).

Abbreviations: β, RV diastolic stiffness; τ, time constant; CI, confidence interval; CMR, cardiac magnetic resonance; Ea, arterial elastance; EDP, end diastolic
pressure; EDV, end diastolic volume; Eed, end diastolic elastance; Ees, end systolic elastance; EF, ejection fraction; ESV, end systolic volume; MPAP, mean
pulmonary arterial pressure; MRAP, mean right atrial pressure; PAC, pulmonary arterial compliance; PAWP, pulmonary arterial wedge pressure; PH,
pulmonary hypertension; PVR, pulmonary vascular resistance; RHC, right heart catheterization; RV, right ventricle; SV, stroke volume; WU, Wood units.
aDifferences between patients with PH and those without PH.
bn= 59.
cn= 50.
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abovementioned echocardiographic parameters has been
reported in a number of studies, which is not the case for
Ees. Thus, further studies are necessary to examine how
echocardiography should be used for the assessment of
RV systolic function in the clinical practice.

RV diastolic function can be assessed relative to
relaxation and stiffness.32 Relaxation is an active dilatory
movement of the RV and can be mathematically
represented as τ.35 With echocardiography, the rate of

RVP decline during early diastole and strain indices are
expected to reflect RV relaxation.17 However, these
variables were at best weakly correlated with τ.
Alternatively, RV stiffness may be reflected by β and
Eed, and some RA and RV indices were expected to
correlate with β and Eed. Once more contrary to our
expectations, none of the echocardiographic indices
correlated with the two parameters, with ρ> 0.4. In
addition, a recent study reported a significant correlation

TABLE 3 Indices of RV function and RV–PA coupling.

All participants (n= 63) Patients with PH (n= 54) Patients without PH (n= 9) Differencea (95% CI)

Ees (mmHg/mL) 0.40 (0.33–0.47)b 0.39 (0.31–0.46)c 0.48 (0.30–0.65) −0.09 (−0.28 to 0.09)

τ (ms) 43.4 (40.1–46.7) 44.9 (41.5–48.3) 34.5 (24.2–44.8) 10.4 (−0.2 to 21.0)

β 0.025 (0.022–0.028)d 0.025 (0.022–0.029)e 0.024 (0.017–0.030) 0.002 (−0.005 to 0.009)

Eed (mmHg/mL) 0.12 (0.10–0.14)d 0.12 (0.10–0.14)e 0.12 (0.08–0.16) 0.01 (−0.04 to 0.05)

Ees/Ea 0.64 (0.51–0.76) 0.51 (0.42–0.60) 1.40 (0.87–1.93) −0.89 (−1.42 to −0.36)

Note: Values are expressed as averages ± SD.

Abbreviations: CI, confidence interval; Ea, arterial elastance; Eed, end diastolic elastance; Ees, end systolic elastance; PA, pulmonary artery; RV, right
ventricular.
aDifferences between patients with PH and those without PH.
bn= 59.
cn= 50.
dn= 58.
en= 49.

FIGURE 1 Five indices of RV function and RV–PA coupling in patients with or without PH. *p< 0.05 versus patients with PH;
differences between patients with PH and those without PH: Ees, −0.09 (−0.28 to 0.09) (mmHg/mL); τ, 10.4 (−0.2 to 1.0) (ms); β, 0.002
(−0.005 to 0.009); Eed, 0.01 (−0.04 to 0.05) (mmHg/mL); Ees/Ea, −0.89 (−1.42 to −0.36). β, RV diastolic stiffness; τ, time constant of
ventricular pressure decay; Ea, atrial elastance; Eed, end diastolic elastance; Ees, end systolic elastance; PA, pulmonary artery;
PH, pulmonary hypertension; RV, right ventricle.
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of s'/[RA area index] with Eed.20 However, in our study,
there was no such good correlation between s'/[RA area
index] and Eed. The difference between the two studies
may be due to different methods for calculating Eed, that
is, Yogaswaran et al. used a conductance catheter to
measure RV volumes, whereas we used CMR data.
Additionally, differences in the study participants'
characteristics may have caused different results between
the two studies. Thus, currently, the accuracy of
echocardiographic indices for the assessment of RV
diastolic function, particularly RV stiffness, is considered
limited.

Echocardiographic parameters that specifically reflect
RV–PA coupling are not prevalently applied in the
practice; however, TAPSE/eSPAP19,36 and RVFW‐LS/
eSPAP28 are indices that show promise in this regard.
Theoretically, these two measures are consistent with
Ees/Ea in that both are calculated by correcting RV
systolic function‐related parameters (TAPSE or RVFW‐
LS) according to afterload (eSPAP). In the current study,
we were able to show close correlations of TAPSE/eSPAP
and RVFW‐LS/eSPAP with Ees/Ea, consistent with
recent validation studies.19,21 In addition, application of
the cut‐off value of −0.493 for RVFW‐LS/eSPAP yielded

high sensitivity and specificity in detecting RV–PA
uncoupling, further indicating the clinical usefulness of
RVFW‐LS/eSPAP. Of note, however, 95% confidence
intervals of ρ and AUC of RVFW‐LS/eSPAP overlapped
with those of other echocardiographic parameters,
indicating that the differences were not statistically
significant. Even so, in contrast to previous studies, our
study comprehensively compared correlations of echo-
cardiographic parameters with invasively obtained refer-
ence indices, showing a favorable accuracy of RVFW‐LS/
eSPAP. Interestingly, we revealed that other simple
indices, such as RVESA, RVFAC, and TAPSE/eSPAP,
correlated well with Ees/Ea. However, we were unable to
explain the underlying mechanisms of such correlations
between morphological and functional data and also
could not deny the possible effect of unknown confound-
ing factors. These need to be addressed in future studies.

This study has several limitations. First, the reference
values that were used were not based on the gold
standard method, in which pressure and conductance
catheters are simultaneously used. However, our simpli-
fied method enabled us to obtain reference values from
more than 50 individuals including those without PH.
Second, even for use with simplified methods, the sample

FIGURE 2 Correlations of five indices of RV function and RV‐PA coupling with echocardiographic parameters with the highest
correlation coefficient. β, RV diastolic stiffness; ρ, Spearman's rank correlation coefficient; τ, time constant; Ea, atrial elastance; Eed, end
diastolic elastance; Ees, end systolic elastance; EId, eccentricity index at end diastole; ESA, end systolic area; PA, pulmonary artery; RV,
right ventricle; RVDd, RV diastolic diameter; RVFW‐LS, RV free‐wall longitudinal strain; SPAP, systolic pulmonary arterial pressure;
TAPSE, tricuspid annular plane systolic excursion.
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size was small. Hence, we could not evaluate the impact
of baseline characteristics such as age, sex, and PH
subtypes on the results. In addition, although there were
differences in the correlation coefficients for each
echocardiographic index, the small sample size pre-
cluded us from clarifying the relevance of the differ-
ences. Third, this was a retrospective and monocentric
study and, thus, was not without selection bias;
therefore, care should be taken when the results are
extrapolated to different populations. Fourth, for the
determination of non‐PH, we used the definition of
mPAP < 25mmHg without pulmonary vasodilator ther-
apy and, thus, some patients without PH had a PVR > 3
WU, which is above that of the upper limit of PAH in
the guidelines for PH published in 2015.1 Fifth, we did
not analyze all echocardiographic indices, including RV
thickness and the myocardial performance index, as
these require images taken specifically for those

purposes. Sixth, we used 0.8 and 0.7 as the lower limits
of Ees/Ea based on previous studies; however, the
relevance of using these numbers was not sufficiently
validated. In this regard, we made an receiver operating
characteristic (ROC) curve analysis of Ees/Ea in 30
participants (nine without PH and 21 with treatment‐
naïve PH) and found an optimal cut‐off value of Ees/Ea
at 0.77 for the discrimination of participants with and
without PH. This value (0.77) was within the reported
lower limit range of Eed/Ea (0.7–0.8), which supported
the relevance of the ROC analysis in this study. Finally,
this study was conducted only to examine the accuracy
of the echocardiographic parameters, and not their
clinical relevance.

In conclusion, the present exploratory analysis
indicated a favorable accuracy of echocardiographic
parameters for the assessment of RV–PA coupling.
RVFW‐LS/eSPAP exhibited the highest correlation with

TABLE 6 Receiver operating characteristic curve analysis of echocardiographic indices to detect RV–PA uncoupling.

Ees/Ea < 0.8 defined as impaired RV–PA coupling

AUC (95% CI)
Cutoff
value Sensitivity Specificity Accuracy

Echocardiographic parameters of 2D, M‐mode, and Doppler analysis

RVDd‐base 0.80 (0.65–0.90) ≥41 0.72 0.88 0.60

RVDd‐mid 0.75 (0.59–0.86) ≥31 0.72 0.69 0.41

TAPSE 0.68 (0.50–0.82) ≤19 0.74 0.63 0.37

RVs' 0.61 (0.39–0.80) ≤12 0.75 0.55 0.30

RVEDA 0.71 (0.54–0.84) ≥16 0.98 0.38 0.35

RVESA 0.81 (0.66–0.91) ≥14 0.74 0.81 0.56

RVFAC 0.83 (0.67–0.92) ≤32 0.85 0.81 0.66

EId 0.57 (0.42–0.71) ≥1.18 0.40 0.88 0.28

EIs 0.88 (0.77–0.94) ≥1.25 0.79 0.88 0.66

TAPSE/eSPAP 0.82 (0.66–0.92) ≤0.452 0.73 0.88 0.61

RVs'/RA area index 0.66 (0.47–0.81) ≤0.94 0.53 0.82 0.34

Strain and SR parameters

RV free wall‐LS 0.85 (0.69–0.93) ≥−20.7 0.76 0.88 0.63

Peak systolic 0.85 (0.72–0.93) ≥−0.91 0.73 0.94 0.67

Early diastolic 0.80 (0.64–0.90) ≤0.73 0.75 0.80 0.55

Late diastolic 0.61 (0.43–0.77) ≤1.0 0.89 0.44 0.33

RV free wall‐LS/eSPAP 0.88 (0.74–0.95) ≥−0.493 0.84 0.88 0.71

Note: Bold font indicates AUC, sensitivity, or specificity of >0.8.

Abbreviations: ρ, Spearman's rank correlation coefficient; AUC, area under the receiver operating characteristic curve; CI, confidence interval; Ees, end systolic
elastance; EId, eccentricity index at end diastole; EIs, eccentricity index at end systole; eSPAP, estimated systolic pulmonary arterial pressure; LS, longitudinal
strain; LSR, longitudinal strain rate; LV, left ventricle; PA, pulmonary artery; RV, right ventricle; RVD, RV diameter; RVDd, diastolic RVD; RVEDA, RV end
diastolic area; RVESA, RV end systolic area; RVFAC, RV fractional area change; s', myocardial velocity during systole; SR, strain rate; TAPSE, tricuspid
annular plane systolic excursion.
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the reference value, and showed high sensitivity and
specificity for detecting RV–PA uncoupling. Notably,
other echocardiographic parameters such as RVESA,
RVFAC, EIs, and TAPSE/eSPAP also exhibited close
correlations with the reference value of RV–PA uncou-
pling. Regarding the assessment of RV function, the
accuracy of echocardiography was modest for RV systolic
function and relaxation, and relatively low for RV
stiffness.
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