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INTRODUCTION
IBD, which primarily includes UC and
Crohn’s disease (CD), is a progressive,
chronic and relapsing condition. This
debilitating disease is steadily becoming a
worldwide medical concern, with increas-
ing prevalence and incidence in both
industrialised and developing countries.1

While the exact aetiology of the disease
remains unknown, genetic predisposition
and various environmental and immuno-
logical causes have been identified as con-
tributing factors.2 Generally, IBD is
characterised by a dysregulated excessive
immune response and tissue damage in
the GI tract.3 4 This aberrant and sus-
tained immune response is thought to be
mainly facilitated by defects in the func-
tion of the intestinal epithelial barrier and
in the regulation of mucosal immunity.5

Yet, tissue damage associated with IBD is
commonly considered solely a down-
stream effect and not a contributing
factor. This view has led to a concentrated
focus on the development of IBD treat-
ments that target inflammatory pathways,
but all, thus far, have exhibited limited
efficacy. In contrast, none of the IBD
drugs released to date were designed to
specifically target the tissue-destructive
processes associated with the disease.

When it comes to basic and clinical
research of IBD-associated tissue destruc-
tion, most groups have directed their
efforts to investigating cellular responses
during inflammation, neglecting
altogether the main component undergo-
ing physical rupture, namely, the

extracellular matrix (ECM). In a similar
manner, while the regulatory role of the
ECM in the progression of invasive dis-
eases, such as cancer, is becoming
acknowledged, its function in IBD is often
overlooked despite the common notion
that tissue destruction is imperative to
disease progression.
In this article, we highlight ECM

remodelling as an integral part of direc-
tional pathological signalling in IBD
rather than, as is often considered, a
passive bystander. We argue that the
ECM, in the context of IBD, is not only a
static scaffold holding cells in place and
maintaining tissue architecture but a
dynamic participant in intestinal immune
responses capable of determining cell fate.
Through our review of some common
facts and new studies in the field of IBD,
we will promote the new concept of the
ECM immune signalling response.

WHY STUDY ECM BIOLOGY IN IBD?
Tissue damage is a hallmark of IBD pro-
gression and severity. It is known, for
instance, that CD progression can advance
(in some cases simultaneously) towards
two seemingly opposing directions—stric-
turing or penetrating disease (figure 1).
The stricturing type of disease results
from fibrosis in the intestinal tissue,6–8

while the penetrating type is characterised
by the formation of fistulae.9 Whereas the
first type is a phenomenon of excess in
deposition of ECM components by myofi-
broblasts, the second type is an outcome
of ECM destruction that eliminates the
boundaries between tissues. Microscopic
colitis, a less common form of IBD, has
an ECM component as well, the thicken-
ing of the collagenous layer in the sube-
pithelium, which is thought to be the
cause of diarrhoea in this condition.10

These examples demonstrate that ECM
build-up and/or destruction play a central
role in IBD, and its clinical classification
and complications.

Tissue damage associated with IBD is
most likely preceded by molecular events
within the ECM. In figure 2, we provide
evidence, for such ECM remodelling pro-
cesses taking place in IBD-afflicted human
colonic mucosa, revealed by second-
harmonic imaging of the collagen scaf-
fold. Second-harmonic imaging uses a
two-photon microscope in order to
induce an optical process in which two
excitation photons are effectively com-
bined in non-centrosymmetric materials,
such as fibrillar collagen, to generate a
photon with twice the excitation energy.
This technique enables us to image the
structure and morphology of non-labelled
collagen in native tissues in high spatial
resolution.

The excessive inflammatory response
taking place in the intestinal tissue
involves not only cellular processes but
cellular processes and molecular interac-
tions that take place in the context of a
dynamically modifying ECM. Therefore,
it is reasonable to assume that ECM
remodelling contributes to IBD pathogen-
esis and inflammation sustenance and is
not merely a secondary by-product.

ECM AS A PIVOTAL BIOLOGICAL
ENTITY IN HOMEOSTASIS AND
DISEASE
The ECM is a substantial component of
tissues and thus essential for tissue func-
tion, architecture and homeostasis, yet the
investigation of ECM function presents
many technical challenges.

Composed of an intricate mesh of
fibrous proteins and glycosaminoglycans
(GAGs), the ECM serves as a scaffold for
cells within tissues. It is mainly composed
of three types of proteins with distinct
roles: structural proteins (eg, collagen and
elastin), specialised glycoproteins (eg, fibro-
nectin) and proteoglycans (eg, lumican and
decorin).11 Accumulating evidence suggests
that, in contrast to previous conception, the
ECM is not merely a supportive platform
for cells but a dynamic tissue component
involved in many cellular processes, such as
proliferation, migration and adhesion.12

ECM morphology and structure are con-
stantly undergoing remodelling; compo-
nents are deposited, degraded or otherwise
modified by the cues that cells convey to
the matrix. In turn, this dynamic and phys-
ically variegated molecular landscape,
through its interactions with cell surfaces, is
able to induce directional signalling and
changes in gene expression. Increased ECM
stiffness has already been shown to precede
fibrosis in the liver.13 Specifically regarding
IBD with fibrostenotic phenotype, a recent
study indicates that intestinal fibrosis is
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autopropagated independent of inflamma-
tion, as human colonic fibroblasts cultured
on stiff matrices, corresponding to CD stric-
tures, develop a fibrogenic phenotype via
mechanotransduction signalling.14

The ECM also serves as a reservoir for
signalling molecules, which are exposed
upon proteolysis.15 16 ECM remodelling
processes are executed by matrix protei-
nases (eg, matrix metalloproteinases
(MMPs) and cathepsins), lysyl oxidases
(LOX/LOXL) and heparanases. These
ECM remodelling enzymes are differen-
tially expressed and contribute to various
biological processes.17–19 In many cases,
in a somewhat counterintuitive manner,
enzymes with contradicting activities (eg,
collagen cross-linking vs proteolysis)
exhibit a synergistic effect on the same

physiological or cellular process, as
demonstrated by the attenuation of breast
carcinoma cell invasion following com-
bined inhibition of LOX and MMPs.20

Hence, this net enzymatic activity appears
to assist the cellular crosstalk in IBD. Of
note, in contrast to other post-
translational modifications, the processes
catalysed by ECM remodelling enzymes
(eg, covalent cross-linking and proteolysis)
are irreversible. This introduces a higher
level of control, generating master
switches in the regulation of the immune
system and other physiological processes.
Accordingly, the activity of ECM

remodelling enzymes is regulated on
several levels, including transcription,
translation, secretion, activation by cleav-
age of the pro-domain and inhibition by

the endogenous tissue inhibitor of metal-
loproteinase (TIMP) family. Thus, in the
study of the ECM and its remodelling
enzymes, gene expression data are far
from sufficient in order to assess the
actual situation in the extracellular space.
This issue, along with the biochemical
and physical complexity of the ECM,
poses a challenge when approaching ECM
involvement in biological processes
including IBD pathogenesis.

ECM REMODELLING AND INTEGRITY
ARE INTEGRAL FACTORS IN IBD
Various studies over the past two decades
have found ECM remodelling enzymes to
be upregulated in human IBD. In a com-
plementary manner, the key role of ECM
composition and remodelling in the onset,

Figure 1 Illustration of IBD-associated progressive tissue damage and complications due to extracellular matrix (ECM) remodelling imbalance and
dysregulation. The illustration represents the two faces of progressive tissue damage and complications associated with IBD, resulting from
imbalanced and dysregulated ECM remodelling (ie, fistulising vs fibrostenotic disease). During chronic intestinal inflammation, the ECM is
remodelled due to secretion of enzymes and structural components by immune, epithelial and stromal cells. Matrix metalloproteinases (MMPs)
contribute to epithelial and endothelial barrier disruption and enable immune cells to infiltrate into the tissue. Extracellular proteolysis is a
propagator of inflammation via cytokine processing, and release of bioactive molecules from the ECM. On the other hand, fibrotic processes also
take place simultaneously by fibroblast activation and secretion of ECM components that assemble via lysyl oxidase (LOX) activity. In turn, the
increased stiffness of this fibrotic tissue leads to further fibrogenesis. Therefore, both the destructive and fibrogenic processes in the ECM are
self-amplifying and contribute to the tissue damage and excess inflammatory response characteristic of IBD.
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progression and severity of IBD has been
implicated in various rodent models.
Specifically, animal models genetically
modified so as to produce an altered com-
position of ECM enzymes and/or compo-
nents exhibit differential phenotypes in
response to intestinal inflammation induc-
tion. However, the difficulty in performing
mechanistic follow-up studies has left the
role of ECM remodelling in IBD
uncharted territory. A survey of the limited
data from rodent models and human
studies, presented below, reveals a clear
link between ECM remodelling and IBD.

This link has been exhibited in several
rodent knockout models. Heparanase, for
instance, was shown to be abundant in the
colonic epithelium of patients with IBD in
contrast to normal colonic tissue or colonic
tissue afflicted by infectious colitis,21 and its
overexpression in mice led to an increase in
colitis via enhanced macrophage activa-
tion.22 Elevated levels of collagenase-1
(MMP-1) and stromelysin-1 (MMP-3) have
likewise been associated with IBD,23 24 as
has collagenase-3 (MMP-13), which contri-
butes to intestinal barrier dysfunction, with
collagenase-3-deficient mice less susceptible
to experimental colitis.25 Matrilysin
(MMP-7) deficiency in mice contributes to
defence against luminal bacteria and
re-epithelialisation,26 while TIMP-3 defi-
ciency results in higher susceptibility to
experimental colitis.27 However, some
MMPs produce a counter-effect on disease

progression. For example, stromelysin-2
(MMP-10)-deficient mice are more suscep-
tible to colitis and inflammation-associated
colonic dysplasia.28

Another revealing example of the dif-
ferential function of MMPs is the highly
homologous gelatinases A (MMP-2) and B
(MMP-9). The former is more closely
associated with homeostasis, while the
latter is expressed predominantly in
pathological scenarios. Interestingly, gela-
tinase B has been found to be the predom-
inant upregulated MMP in inflamed
intestinal tissue of patients with IBD.29

Gelatinase B is secreted mainly by infil-
trating neutrophils and the intestinal epi-
thelium. Remarkably, there is a correlation
between this protease’s activity in the
intestine and the tissue’s condition, with
the greatest amount exhibited in the
inflamed tissue of patients with UC and
CD, a lesser amount in the non-inflamed
areas in the intestine of these patients, as
well as intestinal tissue of patients in clin-
ical remission, and the least amount in
healthy controls. This increase in dysregu-
lated proteolytic activity correlates with
endoscopic and histological disease scores
and with the extent of morphological
tissue damage.29–33 Specifically, in fistu-
lae of patients with CD—one of the most
debilitating tissue-destructive complica-
tions of the disease—gelatinase B presents
a marked increase in transcript, protein
and activity levels.34 35

Gelatinase B has also been recently
implicated as a serological, urinary and
faecal biomarker for IBD in several
studies, which can be used as a tool for
IBD diagnosis and monitoring. Its levels
in patient bodily fluids were shown to
positively correlate with other known
IBD indicators and to be influenced
by immunosuppressive treatments.36–39

Moreover, recent studies propose gelati-
nase B to be the superior serum bio-
marker for CD and UC in a group of
acceptable IBD markers exhibiting a
strong association with endoscopy and
imaging-defined inflammation, as well as
with clinical disease activity.24 40

Taken together, these data suggest that
gelatinase B is a reliable biomarker for
human IBD, not a trivial statement con-
sidering that gelatinase B is not a canon-
ical inflammatory molecule, such as
proinflammatory cytokines. They also
imply that ECM remodelling enzymes are
prominent factors that characterise and
strongly correlate with IBD.

The most striking findings concerning
gelatinase B on disease onset demonstrate
that gelatinase B-deficient mice are less
susceptible to experimental colitis41–43

and preserve a high degree of microfloral
diversity associated with protection
against colitis,44 whereas gelatinase B
overexpression in the gut leads to
increased susceptibility.45 These results
strengthen the view that stimulated ECM

Figure 2 Second-harmonic imaging of native human colon biopsies revealing extracellular matrix (ECM) remodelling in IBD. All samples were
thawed in phosphate buffered saline and immediately imaged under two-photon microscope (×20 objective). (A) Healthy colon biopsy from a
patient without IBD. (B) Inflamed colon biopsy from a patient with IBD. Note the thickening of ECM barrier between crypts (indicated by curvy
arrows), the formation of holes within this barrier (indicated by arrowheads) and changes in collagen microstructure.
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remodelling by gelatinase B is a key mech-
anism in IBD pathogenesis rather than just
a by-product of inflammation.

It is important to note that, in addition
to their ECM maintenance duties, the
structural components of the ECM also
actively take part in intestinal inflamma-
tion. For example, the ECM proteoglycan
Lumican was shown to contribute to
innate immunity via its interaction with
toll-like receptor 4 (TLR-4).
Consequently, Lumican-deficient mice
display a different reaction to colitis
induction compared with wild-type mice,
exhibiting an attenuated immune
response, but also increased morbidity
and tissue damage. This phenotype resem-
bles that of myeloid differentiation
primary response gene 88 (MyD88)−/−
mice and TLR4−/− mice, highlighting the
importance of Lumican in innate immun-
ity.46 47 Thus, the enzymatic remodelling
of the ECM and its composition are
important in IBD development and, pre-
sumably, also its morphology and bio-
mechanical properties.

In view of this body of evidence, it is
plausible that the ECM is responsible for
maintaining tissue regulation under
normal conditions. Therefore, perturb-
ation of ECM homeostatic flexibility inev-
itably influences the sensitivity of the
intestinal tissue to inflammation. This
leads us to postulate that ECM remodel-
ling processes taking place within the
intestinal tissue are indeed pivotal in IBD
pathogenesis and, furthermore, are
capable of steering the tissue towards
health or disease.

POSTULATED IBD PATHOGENIC
MECHANISMS INVOLVE ECM
REMODELLING EVENTS
Several pathogenic mechanisms are
thought to contribute to the chronic intes-
tinal inflammation characteristic of IBD.
Among these are (1) increased permeabil-
ity of the intestinal epithelium, (2) ele-
vated endothelial permeability and (3)
self-feeding proinflammatory loops. All
three mechanisms require some sort of
destruction of ECM tissue barricades,
which opens the way to encounters
between microbial antigens and the
immune system.

Changes in endothelial and epithelial
barrier integrity have been associated with
MMP activation, which prompts the
cleavage and redistribution of cell–cell
junction and adhesion proteins.48–54 The
migration and invasion of immune cells
into the gut mucosa is enabled by prote-
olysis of the ECM and the basement
membrane, which is predominantly

performed by matrix proteases expressed
by these cells.55 56

In addition to their role in barrier func-
tion, certain ECM proteins have been
identified as factors in inflammation.
Heparanase, for example, was shown to
increase macrophage sensitivity to stimula-
tion by lipopolysaccharide, and the secre-
tion of proinflammatory cytokines by
these cells.22 Another example is the gene
for LOX, which was found to be upregu-
lated in rat colitis, and the enzyme was
shown to mediate vascular inflammation
induced by increased matrix stiffness.57 58

Gelatinase B was found to be secreted
upon inflammatory stimulation, while its
levels decrease in response to anti-
inflammatory stimulation by interleukin
(IL)-10 in a number of cell types, includ-
ing immune, epithelial and stromal
cells.59–61 Furthermore, this enzyme was
shown to potentiate chemokines and cyto-
kines such as IL-8 and IL-1β by proteo-
lytic processing.62 63

Only one recent study suggests a spe-
cific disease-promoting mechanism for
gelatinase B participation in human IBD,
revealing how ECM proteolysis-
generated fragments directly propagate
immune signalling. This mechanism
involves a proinflammatory cycle in the
gut in which gelatinase B activity induces
the formation of a collagen-derived frag-
ment, proline-glycine-proline, which is a
chemoattractant for neutrophils, and an
inducer of gelatinase B expression.64 This
represents the first report of ECM frag-
ment signalling in IBD pathogenesis
resulting from specific proteolysis by
MMPs.65 This finding highlights the
notion that elevated gelatinase B secre-
tion to the extracellular space is not
simply a result of the inflammatory
process, but also an amplifier of it.
Another key mechanism indicating the

regulatory role of ECM integrity in IBD
pathogenesis is hyaluronan (HA)-mediated
signalling. HA is an abundant GAG ECM
component, and its level of polymerisa-
tion indicates matrix integrity, in contrast
to fragmented HA molecules. Elevated
HA fragment deposition in the intestine is
associated with inflamed tissue in IBD and
has been shown to induce leucocyte infil-
tration into the intestine and innate
immune activation.66 67 Also, fragments
of HA promote wound healing, but also
fibrotic, processes by contributing to
fibroblast proliferation and myofibroblast
differentiation.68 69 Along the same lines,
intact HA, formed by high-molecular-
weight HA chains, promotes differenti-
ation of anti-inflammatory regulatory
T-cells.70

In conclusion, these findings join
together like pieces of a puzzle to indicate
the active mechanistic role that ECM
remodelling, as well as other types of
extracellular proteolytic events, plays in
the commonly accepted pathogenic path-
ways responsible for IBD development
and progression.

THERAPEUTIC OPPORTUNITIES IN THE
STUDY OF ECM FUNCTION IN IBD
Immunosuppressive treatments (eg, corti-
costeroids and antitumour necrosis factor
α (TNF-α)) have had a limited effect on
mucosal healing.71 Furthermore, these
medications have not shown much
promise in preventing or treating long-
term complications of IBD (ie, fibrosis
and fistulisation). There is, therefore, a
pressing need to devise pharmaceutical
means to prevent and treat the tissue
damage in IBD.

In this respect, we now return to gelati-
nase B since it has been vastly explored in
relation to IBD tissue damage and, as
mentioned in previous sections, appears
to be a prominent factor in the pathology.
This notion is highlighted by several
studies showing that decreased gelatinase
B transcript, protein and activity levels in
the intestinal tissue of patients with IBD
correlate with clinical improvement and
mucosal healing, facilitated by immuno-
modulatory treatments, such as TNF-α
blockers.72–74 In a similar manner, antige-
latinase neutralising antibodies developed
in our laboratory exhibit great effective-
ness in attenuating IBD in murine
models75 and, most recently, a humanised
antigelatinase B antibody has entered
phase I clinical trials (ClinicalTrials.gov
identifier: NCT01831427). This develop-
ment outlines a remarkable conceptual
transformation to one that envisions the
role of remodelling enzymes as thera-
peutic targets in IBD.

Manipulation of HA polymerisation
may also be a worthy therapeutic option
as this disaccharide polymer has many
immunoregulatory roles. In fact, it was
recently reported that the injection of
high-molecular-weight HA has a beneficial
effect on experimental colitis.76

Another medical condition that may
benefit from ECM remodelling factors-
based therapeutics is IBD-associated fibro-
sis, considered an irreversible self-
propagating process, currently treated
mainly by mechanical means (eg, surgical
resection or balloon dilation). Unravelling
the molecular processes and markers pre-
ceding bowel strictures in the early inflam-
matory state will assist in mitigating this
destructive process. As increase in matrix
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stiffness seems to be an early event in
tissue fibrosis, targeting collagen cross-
linking enzymes, such as the LOX family,
may be of therapeutic significance.

In our view, early treatment of patients
with IBD consisting of a combination of
immunomodulation and manipulation of
ECM remodelling protocols aimed at
reaching homeostatic balance in the intes-
tinal tissue holds great promise to pre-
venting inflammation-associated tissue
damage. Furthermore, in patients already
suffering from tissue destructive complica-
tions, ECM homeostatic restoration
therapy may very well be the means to
reverse these processes.

SUMMARY
The current outlook on IBD biology por-
trays ECM remodelling and processing in
the pathology as a bystander effect of
inflammation. We wish to challenge this
notion and suggest investigating the extra-
cellular point of view. IBD involves both
tissue destruction and fibrosis. These two
devastating phenomena are a direct conse-
quence of ECM remodelling events—the
first involves ECM degradation and the
second, accumulating extracellular fibro-
genesis. Therefore, ECM remodelling is a
key event and an active participant in IBD
pathophysiology.

The ECM tightly interacts with the
stromal and parenchymal cells, and ensures
the separation between the two groups
under homeostatic conditions. Hence, any
modification of the ECM influences cellular
processes and, since the ECM also acts as a
reservoir for signalling molecules, also
induces signalling pathways. Therefore,
considering that ECM biology is such a
large, integral and dynamic part of the
tissue, it should not be neglected when
approaching any disease, especially IBD.
For these reasons and in light of recent evi-
dence from our laboratory, including the
results presented herein, targeting ECM
remodelling in a specific and fine-tuned
manner may contribute to the treatment of
IBD by preventing both propagated inflam-
mation and tissue damage.
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