
Analytically Embedding Differential Equation Constraints into 
Least Squares Support Vector Machines Using the Theory of 
Functional Connections

Carl Leake1,*, Hunter Johnston1, Lidia Smith2, Daniele Mortari1

1Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843, USA

2Mathematics Department, Blinn College, Bryan, TX 77802, USA

Abstract

Differential equations (DEs) are used as numerical models to describe physical phenomena 

throughout the field of engineering and science, including heat and fluid flow, structural bending, 

and systems dynamics. While there are many other techniques for finding approximate solutions to 

these equations, this paper looks to compare the application of the Theory of Functional 
Connections (TFC) with one based on least-squares support vector machines (LS-SVM). The TFC 

method uses a constrained expression, an expression that always satisfies the DE constraints, 

which transforms the process of solving a DE into solving an unconstrained optimization problem 

that is ultimately solved via least-squares (LS). In addition to individual analysis, the two methods 

are merged into a new methodology, called constrained SVMs (CSVM), by incorporating the LS-

SVM method into the TFC framework to solve unconstrained problems. Numerical tests are 

conducted on four sample problems: One first order linear ordinary differential equation (ODE), 

one first order nonlinear ODE, one second order linear ODE, and one two-dimensional linear 

partial differential equation (PDE). Using the LS-SVM method as a benchmark, a speed 

comparison is made for all the problems by timing the training period, and an accuracy 

comparison is made using the maximum error and mean squared error on the training and test sets. 

In general, TFC is shown to be slightly faster (by an order of magnitude or less) and more accurate 

(by multiple orders of magnitude) than the LS-SVM and CSVM approaches.
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1. Introduction

Differential equations (DE) and their solutions are important topics in science and 

engineering. The solutions drive the design of predictive systems models and optimization 

tools. Currently, these equations are solved by a variety of existing approaches with the most 

popular based on the Runge-Kutta family [1]. Other methods include those which leverage 

low-order Taylor expansions, namely Gauss-Jackson [2] and Chebyshev-Picard iteration [3–

5], which have proven to be highly effective. More recently developed techniques are based 

on spectral collocation methods [6]. This approach discretizes the domain about collocation 

points, and the solution of the DE is expressed by a sum of “basis” functions with unknown 

coefficients that are approximated in order to satisfy the DE as closely as possible. Yet, in 

order to incorporate boundary conditions, one or more equations must be added to enforce 

the constraints.

The Theory of Functional Connections (TFC) is a new technique that analytically derives a 

constrained expression which satisfies the problem’s constraints exactly while maintaining a 

function that can be freely chosen [7]. This theory, initially called “Theory of Connections”, 

has been renamed for two reasons. First, the “Theory of Connections” already identifies a 

specific theory in differential geometry, and second, what this theory is actually doing is 

“functional interpolation”, as it provides all functions satisfying a set of constraints in terms 

of a function and any derivative in rectangular domains of n-dimensional spaces. This 

process transforms the DE into an unconstrained optimization problem where the free 

function is used to search for the solution of the DE. Prior studies [8–11], have defined this 

free function as a summation of basis functions; more specifically, orthogonal polynomials.

This work was motivated by recent results that solve ordinary DEs using a least-squares 

support vector machine (LS-SVM) approach [12]. While this article focuses on the 

application of LS-SVMs to solve DEs, the study and use of LS-SVMs remains relevant in 

many areas. In reference [13] the authors use the support vector machines to predict the risk 

of mold growth on concrete tiles. The mold growth on roofs affects the dynamics of heat and 

moisture through buildings. The approach leads to reduced computational effort and 

simulation time. The work presented in reference [14] uses LS-SVMs to predict annual 

runoff in the context of water resource management. The modeling process starts with 

building a stationary set of runoff data based on mode functions which are used as input 

points in the prediction by the SVM technique when chaotic characteristics are present. 

Furthermore, reference [15] uses the technique of LS-SVMs as a less costly computational 

alternative that provides superior accuracy compared to other machine learning techniques in 

the civil engineering problem of predicting the stability of breakwaters. The LS-SVM 

framework was applied to tool fault diagnosis for ensuring manufacturing quality [16]. In 

this work, a fault diagnosis method was proposed based on stationary subspace analysis 

(SSA) used to generate input data used for training with LS-SVMs.

In this article, LS-SVMs are incorporated into the TFC framework as the free function, and 

the combination of these two methods is used to solve DEs. Hence, the contributions of this 

article are twofold: (1) This article demonstrates how boundary conditions can be 

analytically embedded, via TFC, into machine learning algorithms and (2) this article 
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compares using a LS-SVM as the free function in TFC with the standard linear combination 

of CP. Like vanilla TFC, the SVM model for function estimation [17] also uses a linear 

combination of functions that depend on the input data points. While in the first uses of 

SVMs the prediction for an output value was made based on a linear combination of the 

inputs xi, a later technique uses a mapping of the inputs to feature space, and the model 

SVM becomes a linear combination of feature functions φ(x). Further, with the kernel trick, 

the function to be evaluated is determined based on a linear combination of kernel functions; 

Gaussian kernels are a popular choice, and are used in this article.

This article compares the combined method, referred to hereafter as CSVM for constrained 

LS-SVMs, to vanilla versions of TFC [8,9] and LS-SVM [12] over a variety of DEs. In all 

cases, the vanilla version of TFC outperforms both the LS-SVM and the CSVM methods in 

terms of accuracy and speed. The CSVM method does not provide much accuracy or speed 

benefit over LS-SVM, except in the PDE problem, and in some cases has a less accurate or 

slower solution. However, in every case the CSVM satisfies the boundary conditions of the 

problem exactly, whereas the vanilla LS-SVM method solves the boundary condition with 

the same accuracy as the remainder of the data points in the problem. Thus, this article 

provides support that in the application of solving DEs, CP are a better choice for the TFC 

free function than LS-SVMs.

While the CSVM method underperforms vanilla TFC when solving DEs, its implementation 

and numerical verification in this article still provides an important contribution to the 

scientific community. CSVM demonstrates that the TFC framework provides a robust way to 

analytically embed constraints into machine learning algorithms; an important problem in 

machine learning. This technique can be extended to any machine learning algorithm, for 

example deep neural networks. Previous techniques have enforced constraints in deep neural 

networks by creating parallel structures, such as radial basis networks [18], adding the 

constraints to the loss function to be minimized [19], or by modifying the optimization 

process to include the constraints [20]. However, all of these techniques significantly modify 

the deep neural network architecture or the training process. In contrast, embedding the 

constraints with TFC does not require this. Instead, TFC provides a way to analytically 

embed these constraints into the deep neural network. In fact, any machine learning 

algorithm that is differentiable up to the order of the DE can be seamlessly incorporated into 

TFC. Future work will leverage this benefit to analyze the ability to solve DEs using other 

machine learning algorithms.

2. Background on the Theory of Functional Connections

The Theory of Functional Connections (TFC) is a generalized interpolation method, which 

provides a mathematical framework to analytically embed constraints. The univariate 

approach [7] to derive the expression for all functions satisfying k linear constraints follows,

f(t) = g(t) + ∑
i = 1

k
ηipi(t), (1)
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where g(t) represents a “freely chosen” function, ηi are the coefficients derived from the k 
linear constraints, and pi(t) are user selected functions that must be linearly independent 

from g(t). Recent research has applied this technique to embedding DE constraints using 

Equation (1), allowing for least-squares (LS) solutions of initial-value (IVP), boundary-value 

(BVP), and multi-value (MVP) problems on both linear [8] and nonlinear [9] ordinary 

differential equations (ODEs). In general, this approach has developed a fast, accurate, and 

robust unified framework to solve DEs. The application of this theory can be explored for a 

second-order DE such that,

F (t, y, ẏ, ÿ) = 0 subject to:
y t0 = y0
ẏ t0 = ẏ0

(2)

By using Equation (1) and selecting p1(t) = 1 and p2(t) = t, the constrained expression 

becomes,

y(t) = g(t) + η1 + η2t . (3)

By evaluating this function at the two constraint conditions a system of equations is formed 

in terms of η,

y0
ẏ0

=
1 t0
0 1

η1
η2

which can be solved for by matrix inversion leading to,

η1 = y0 − g0 − t0 ẏ0 − ġ0
η2 = ẏ0 − ġ0 .

These terms can are substituted in Equation (3) and the final constrained expression is 

realized,

y(t) = g(t) + y0 − g0 + t − t0 ẏ0 − ġ0 ,

By observation, it can be seen that the function for y(t) always satisfies the initial value 

constraints regardless of the function g(t). Substituting this function into our original DE 

specified by Equation (2) transforms the problem into a new DE with no constraints,

F (t, g, ġ, g̈) = 0. (4)

Aside from the independent variable t, this equation is only a function of the unknown 

function g(t). By discretizing the domain and expressing g(t) as some universal function 

approximator, the problem can be posed as an unconstrained optimization problem where 

the loss function is defined by the residuals of the F  function. Initial applications of the TFC 

method to solve DEs [8,9] expanded g(t) as some basis (namely Chebyshev or Legendre 
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orthogonal polynomials); however, the incorporation of a machine learning framework into 

this free function has yet to be explored. This will be discussed in following sections. The 

original formulation expressed g(t) as,

g(t) = ξTh(x) where x = x(t),

where ξ is an unknown vector of m coefficients and h(x) is the vector of m basis functions. 

In general the independent variable is t ∈ [t0, tf ] while the orthogonal polynomials are 

defined in x ∈ [−1, +1]. This gives the linear mapping between x and t,

x = x0 +
xf − x0
tf − t0

t − t0 t = t0 +
tf − t0
xf − x0

x − x0 .

Using this mapping, the derivative of the free function becomes,

dg
dt = dξTh(x)

dt = ξTdh(x)
dx ⋅ dx

dt ,

where it can be seen that the term dx
dt  is a constant such that,

c :=
xf − x0
tf − t0

.

Using this definition, it follows that all subsequent derivatives are,

dkg
dtk

= ckξTdkh(x)
dxk .

Lastly, the DE given by Equation (4) is discretized over a set of N values of t (and inherently 

x). When using orthogonal polynomials, the optimal point distribution (in terms of 

numerical efficiency) is provided by collocation points [21,22], defined as,

xi = − cos iπ
N for i = 0, 1, ⋯, N,

By discretizing the domain, Equation (4) becomes a function solely of the unknown 

parameter ξ,

F (ξ) = 0, (5)

which can be solved using a variety of optimization schemes. If the original DE is linear 

then the new DE defined by Equation (5) is also linear. In this case, Equation (5) is a linear 

system,

Aξ = b,
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which can be solved using LS [8]. If the DE is nonlinear, a nonlinear LS approach is needed, 

which requires an initial guess for ξ0. This initial guess can be obtained by a LS fitting of a 

lower order integrator solution, such as one provided by a simple improved Euler method. 

By defining the residuals of the DE as the loss function ℒk := F ξk , the nonlinear Newton 

iteration is,

ξk + 1 = ξk − Jk
TJk

−1Jk
Tℒk where Jk := ∂ℒ

∂ξ k

where k is the iteration. The convergence is obtained when the L2-norm of ℒ satisfies 

L2 ℒk < ε, where ε is a specified convergence tolerance. The final value of ξ is then used in 

the constrained expression to provide an approximated analytical solution that perfectly 

satisfies the constraints. Since the function is analytical, the solution can be then used for 

further manipulation (e.g., differentiation, integration, etc.). The process to solve PDEs 

follows a similar process with the major difference involving the derivative of the 

constrained expression. The TFC extension to n-dimensions and a detailed explanation of 

the derivation of these constrained expressions are provided in references [23,24]. 

Additionally, the free function also becomes multivariate, increasing the complexity when 

using CPs.

3. The Support Vector Machine Technique

3.1. An Overview of SVMs

Support vector machines (SVMs) were originally introduced to solve classification problems 

[17]. A classification problem consists of determining if a given input, x, belongs to one of 

two possible classes. The proposed solution was to find a decision boundary surface that 

separates the two classes. The equation of the separating boundary depended only on a few 

input vectors called the support vectors.

The training data is assumed to be separable by a linear decision boundary. Hence, a 

separating hyperplane, H, with equation wTφ(x) + b = 0, is sought. The parameters are 

rescaled such that the closest training point to the hyperplane H, let’s say (xk, yk), is on a 

parallel hyperplane H1 with equation wTφ(x) + b = 1. By using the formula for orthogonal 

projection, if x satisfies the equation of one of the hyperplanes, then the signed distance 

from the origin of the space to the corresponding hyperplane is given by wTφ(x)/wTw. Since 

wTφ(x) equals −b for H, and 1 − b for H1, it follows that the distance between the two 

hyperplanes, called the “separating margin”, is 1/wTw. Thus to find the largest separating 

margin, one needs to minimize wTw. The optimization problem becomes,

min1
2 wTw subject to: yi wTφ xi + b ≥ 1, i = 1, …, m .

If a separable hyperplane does not exist, the problem is reformulated by taking into account 

the classification errors, or slack variables, ξi, and a linear or quadratic expression is added 

to the cost function. The optimization problem in the non-separable case is,
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min1
2 wTw + C ∑ξi subject to: yi wTφ xi + b ≥ 1 − ξi .

When solving the optimization problem by using Lagrange multipliers, the function φ(t) 
always shows up as a dot product with itself; thus, the kernel trick [25] can be applied. In 

this research, the kernel function chosen is the radial basis function (RBF) kernel proposed 

in [12]. Hence, the function φ(t) can be written using the kernel [25],

K ti, t = φ ti Tφ(t) = exp − t − ti 2

σ2 , (6)

and its partial derivatives [12,26],

K ti, tj = φ ti Tφ tj = exp − ti − tj 2

σ2

K1 ti, tj = φ′ ti Tφ tj = − 2 ti − tj
σ2 exp − ti − tj 2

σ2

K1
T ti, tj = φ ti Tφ′ tj = 2 ti − tj

σ2 exp − ti − tj 2

σ2

K11 ti, tj = φ′ ti Tφ′ tj = 2
σ2 − 4 ti − tj 2

σ4 exp − ti − tj 2

σ2 ,

(7)

where the Kernel bandwidth, σ, is a tuning parameter that must be chosen by the user.

We follow the method of solving DEs using RBF kernels proposed in [12]. As an example, 

we take a first order linear initial value problem,

y′ − p(t)y = r(t), subject to: y t0 = y0,

to be solved on the interval [t0, tf ]. The domain is partitioned into N sub-intervals using grid 

points t0, t1, …, tN = tf, which from a machine learning perspective represents the training 

points. The model,

y(x) = ∑
i = 1

N
wiφi(x) + b = wTφ(x) + b (8)

is proposed for the solution y(t). Note that the number of coefficients wi equals the number 

of grid points ti, and thus the system of equations used to solve for the coefficient is a square 

matrix. Let e be the vector of residuals obtained when using the model solution y(t) in the 

DE, that is, ei is the amount by which y ti  fails to satisfy the DE,

y′ ti − p ti y ti − r ti = ei .
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This results in,

wTφ′ ti = p ti wTφ ti + b + r ti + ei,

and for the initial condition, it is desired that,

wTφ t0 + b = y0,

is satisfied exactly. In order to have the model close to the exact solution, the sum of the 

squares of the residuals, eTe, is to be minimized. This expression can be viewed as a 

regularization term added to the objective of maximizing the margin between separating 

hyperplanes. The problem is formulated as an optimization problem with constraints,

min1
2 wTw + γ eTe subject to:

wTφ′ ti − p ti wTφ ti + b − r ti − ei = 0

wTφ t0 + b − y0 = 0.

Using the method of Lagrange multipliers, a loss function, ℒ, is defined using the objective 

function from the optimization problem and appending the constraints with corresponding 

Lagrange multipliers αi and β.

ℒ = 1
2 wTw + γ eTe + αi wTφ′ ti − p ti wTφ ti + b − r ti − ei + β wTφ t0 + b − y0

The values where the gradient of ℒ is zero give candidates for the minimum.

∂ℒ
∂w = 0 w = ∑

i = 1

N
αi φ′ ti − p ti φ ti + βφ t0

∂ℒ
∂ei

= 0 γei = − αi

∂ℒ
∂b = 0 0 = ∑

i = 1

N
αiq ti − β

∂ℒ
∂αi

= 0 0 = wTφ′ ti − p ti wTφ ti + b − g ti − ei
∂ℒ
∂β = 0 0 = wTφ t0 + b − y0

Note that the conditions found by differentiating ℒ with respect to αi and β are simply the 

constraint conditions, while the remaining conditions are the standard Lagrange multiplier 

conditions that the gradient of the function to be minimized is a linear combination of the 

gradients of the constraints. Using,

w = ∑
j = 1

N
αj φ′ tj − p tj φ tj + βφ t0 ,
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we obtain a new formulation of the approximate solution

y(t) = ∑
j = 1

N
αj φ′ tj − p tj φ tj

Tφ(t) + βφ t0
Tφ(t) + b

where the inner products of φ(t) can be re-written using Equations (6) and (7), and the 

parameter σ in the kernal matrix is a value that is learned during the training period together 

with the coefficients w. The remaining gradients of ℒ can be used to form a linear system of 

equations where αi, β, and b are the only unknowns. Note, that this system of equations can 

also be expressed using the kernal matrix and its partial derivatives rather than inner-

products of φ.

3.2. Constrained SVM (CSVM) Technique

In the TFC method [7], the general constrained expression can be written for an initial value 

constraint as,

y(t) = g(t) + y0 − g0 ,

where g(t) is a “freely chosen” function. In prior studies [8,9,11], this free function was 

defined by a set of orthogonal basis functions, but this function can also be defined using 

SVMs,

g(t) = ∑
i = 1

N
wiφi(t) = wTφ(t),

where g0 becomes,

g t0 = ∑
i = 1

N
wiφi t0 = wTφ t0 .

This leads to the equation,

y(t) = wT φ(t) − φ t0 + y0, (9)

where the initial value constraint is always satisfied regardless of the values of w and φ(t). 
Through this process, the constraints only remain on the residuals and the problem becomes,

min1
2 wTw + γeTe subject to: wTφ′ ti − p ti wTφ ti − wTφ t0 + y0 − r ti − ei = 0.

Again, using the method of Lagrange multipliers, a term is introduced for the constraint on 

the residuals, leading to the expression,
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ℒ(w, e, α) = 1
2 wTw + γeTe − ∑

i = 1

N
αi wTφ′ ti − p ti wTφ ti − wTφ t0 + y0 − r ti − ei .

The values where the gradient of ℒ is zero give candidates for the minimum,

∂ℒ
∂w = 0 w = ∑

i = 1

N
αi φ′ ti − p ti φ ti − φ t0

∂ℒ
∂ei

= 0 ei = −
αi
γ

∂ℒ
∂αi

= 0 0 = wTφ′ ti − p ti wT φ ti − φ t0 + y0 − r ti − ei .

Using,

w = ∑
i = 1

N
αj φ′ tj − p tj φ tj − φ t0 ,

we obtain a new formulation of the approximate solution given by Equation (9), that can be 

expressed in terms of the kernel and its derivatives. Combining the three equations for the 

gradients of ℒ, we can obtain a linear system with unknowns αj,

∑
j = 1

N
Mijαj = r ti + p ti y0 .

The coefficient matrix is given by,

Mij = K11 ti, tj − p tj K1 ti, tj − K1 ti, t0 − p ti Ky(i, j) + δij/γ,

where we use the notation,

K4 ti, tj = K ti, tj − K tj, t0 − K ti, t0 + 1
Ky ti, tj = K1 tj, ti − K1 tj, t0 − p tj K4 ti, tj .

Finally, in terms of the kernel matrix, the approximate solution at the grid points is given by,

y ti = ∑
j = 1

N
αjKy ti, tj + y0,

and a formula for the approximate solution at an arbitrary point t is given by,

y(t) = ∑
j = 1

N
αjKy t, tj + y0 .
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3.3. Nonlinear ODEs

The method for solving nonlinear, first-order ODEs with LS-SVM comes from reference 

[12]. Nonlinear, first-order ODEs with initial value boundary conditions can be written 

generally using the form,

y′(t) = f(t, y), y t0 = y0, t ∈ t0, tf .

The solution form is again the one given in Equation (8) and the domain is again discretized 

into N sub-intervals, t0, t1, …, tN (training points). Let ei be the residuals for the solution 

y ti ,

ei = y′ ti − f ti, y ti .

To minimize the error, the sum of the squares of the residuals is minimized. As in the linear 

case, the regularization term wTw is added to the expression to be minimized. Now, the 

problem can be formulated as an optimization problem with constraints,

min1
2 wTw + γ eTe subject to:

wTφ′ ti = f ti, yi + ei
wTφ t0 + b = y0
yi = wTφ ti + b .

The variables yi are introduced into the optimization problem to keep track of the nonlinear 

function f at the values corresponding to the grid points. The method of Lagrange multipliers 

is used for this optimization problem just as in the linear case. This leads to a system of 

equations that can be solved using a multivariate Newton’s method. As with the linear ODE 

case, the set of equations to be solved and the dual form of the model solution can be written 

in terms of the kernel matrix and its derivatives.

The solution for nonlinear ODEs when using the CSVM technique is found in a similar 

manner, but the primal form of the solution is based on the constraint function from TFC. 

Just as the linear ODE case changes to encompass this new primal form, so does the 

nonlinear case. A complete derivation for nonlinear ODEs using LS-SVM and CSVM is 

provided in Appendix B.

3.4. Linear PDEs

The steps for solving linear PDEs using LS-SVM are the same as when solving linear 

ODEs, and are shown in detail in reference [27]. The first step is to write out the 

optimization problem to be solved. The second is to solve that optimization problem using 

the Lagrange multipliers technique. The third is to write the resultant set of equations and 

dual-form of the solution in terms of the kernel matrix and its derivatives.

Solving linear PDEs using the CSVM technique follows the same solution steps except the 

primal form of the solution is derived from a TFC constrained expression. A complete 

derivation for the PDE shown in problem #4 of the numerical results section using CSVM is 

Leake et al. Page 11

Mach Learn Knowl Extr. Author manuscript; available in PMC 2020 May 29.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



provided in Appendix C. The main difficulty in this derivation stems from the numerous 

amount of times the function φ shows up in the TFC constrained expression. As a result, the 

set of equations produced by taking gradients of ℒ contain hundreds of kernel matrices and 

their derivatives. The only way to make this practical (in terms of the derivation and 

programming the result) was to write the constrained expression in tensor form. This was 

reasonable to perform for the simple linear PDE used in this paper, but would become 

prohibitively complicated for higher dimensional PDEs. Consequently, future work will 

investigate using other machine learning algorithms, such as neural networks, as the free 

function in the TFC framework.

4. Numerical Results

This section compares the methodologies described in the previous sections on four 

problems given in references [12] and [27]. Problem #1 is a first order linear ODE, problem 

#2 is a first order nonlinear ODE, problem #3 is a second order linear ODE, and problem #4 

is a second order linear PDE. All problems were solved in MATLAB R2018b (MathWorks, 

Natick, MA, USA) on a Windows 10 operating system running on an Intel® Core™ i7–7700 

CPU at 3.60GHz and 16.0 GB of RAM. Since all test problems have analytical solutions, 

absolute error and mean-squared error (MSE) were used to quantify the error of the 

methods. MSE is defined as,

MSE = 1
n ∑

i = 1

n
yi − yi

2
(10)

where n is the number of points, yi is the true value of the solution, and yi is the estimated 

value of the solution at the i-th point.

The tabulated results from this comparison are included in Appendix A. A graphical 

illustration and summary of those tabulated values is included in the subsections that follow, 

along with a short description of each problem. These tabulated results also include the 

tuning parameters for each of the methods. For TFC, the number of basis functions, m, was 

found using a grid search method, where the residual of the differential equation was used to 

choose the best value of m. For LS-SVM and CSVM, the kernel bandwidth, σ, and the 

parameter γ were found using a grid search method for problems #1, #3, and #4. For 

problem #2, the value of σ for the LS-SVM and CSVM methods was tuned using 

fminsearch while the value of γ was fixed at 1010 [12]. This method was used in problem #2 

rather than grid search because it did a much better job choosing tuning parameters that 

reduced the error of the solution. For all problems, a validation set was used to choose the 

best value for σ and γ [12,26]. It should be noted that the tuning parameter choice affects the 

accuracy of the solution. Thus, it may be possible to achieve more accurate results if a 

different method is used to find the value of the tuning parameters. For example, an 

algorithm that is better suited to finding global optimums, such as a genetic algorithm, may 

find better tuning parameter values than the methods used here.
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4.1. Problem #1

Problem #1 is the linear ODE,

ẏ + t + 1 + 3t2

1 + t + t3 y = t3 + 2t + t2 1 + 3t2

1 + t + t3 , subject to: y(0) = 1, t ∈ [0, 1] (11)

which has the analytic solution,

y(t) = e−t2/2

1 + t + t3
+ t2

The accuracy gain of TFC and CSVM compared to LS-SVM for problem #1 is shown in 

Figure 1. The results were obtained using 100 training points. The top plot shows the error 

of the LS-SVM solution divided by the error in the TFC solution, and the bottom plot shows 

the error of the LS-SVM solution divided by the error of the CSVM solution. Values greater 

than one indicate that the compared method is more accurate than the LS-SVM method, and 

vice-versa for values less than one.

Figure 1 shows that TFC is the most accurate of the three methods followed by CSVM and 

finally LS-SVM. The error reduction when using CSVM instead of LS-SVM is typically an 

order of magnitude or less. However, the error reduction when using TFC instead of the 

other two methods is multiple orders of magnitude. The attentive reader will notice that the 

plot that includes TFC solution has less data points in Figure 1 than the other methods. This 

is because the calculated points and the true solutions vary less than machine level accuracy 

and when the subtraction operation is used the resulting number becomes zero.

Tables A1–A3 in the appendix compare the three methods for various numbers of training 

points when solving problem #1. Additionally, these tables show that TFC provides the 

shortest training time and the lowest maximum error and mean square error (MSE) on both 

the training set and test set. The CSVM results are the slowest, but they are more accurate 

than the LS-SVM results. The accuracy gained when using CSVM compared to LS-SVM is 

typically less than an order of magnitude. On the other hand, the accuracy gained when 

using TFC is multiple orders of magnitude. Moreover, the speed gained when using LS-

SVM compared to CSVM is typically less than an order of magnitude, whereas the speed 

gained when using TFC is approximately one order of magnitude. An accuracy versus speed 

comparison is shown graphically in Figure 2, where the MSE on the test set is plotted 

against training time for five specific cases: 8, 16, 32, 50, and 100 training points.

4.2. Problem #2

Problem #2 is the nonlinear ODE given by,

ẏ = y2 + t2, subject to: y(0) = 1, t ∈ [0, 0.5], (12)

which has the analytic solution,
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y(t) = −
t Γ 1

4 J− 3
4

t2
2 + 2Γ 3

4 J 3
4

t2
2

Γ 1
4 J 1

4
t2
2 − 2Γ 3

4 J− 1
4

t2
2

,

where Γ is the gamma function defined as,

Γ(z) = ∫0
∞

xz − 1e−xdx

and J is Bessel function of first kind defined as,

Jv(z) = z
2

v ∑
k = 0

∞
−z2

4
k

k!Γ(v + k + 1)

The accuracy gain of TFC and CSVM compared to LS-SVM for problem #2 is shown in 

Figure 3. This figure was created using 100 training points. The top plot shows the error in 

the LS-SVM solution divided by the TFC solution. The bottom plot provides the error in the 

LS-SVM solution divided by the error in the CSVM solution.

Figure 3 shows that TFC is the most accurate of the two methods with the error being 

several orders of magnitude lower than the LS-SVM method. It was observed that the 

difference in accuracy between the CSVM and LS-SVM is negligible. The small variations 

in accuracy are a function of the specific method. For this problem, the solution accuracy for 

both methods monotonically decreases as t increases; however, the behavior of this decrease 

is not constant and is at different rates, which produces a sine wave-like plot of the accuracy 

gain.

Tables A4–A6 in the appendix compare the two methods for various numbers of training 

points when solving problem #2. Additionally, these tables show that solving the DE using 

TFC is faster than using the LS-SVM method for all cases except the second case (using 16 

training points). However, the speed gained using TFC is less than one order of magnitude. 

Furthermore, TFC is more accurate by multiple orders of magnitude as compared to the LS-

SVM method over the entire range of test cases. In addition, TFC continues to reduce the 

MSE and maximum error on the test and training set as more training points are added, 

whereas the LS-SVM method error increases slightly between 8 and 16 points and then stays 

approximately the same. The CSVM method follows the same trend as the LS-SVM 

method; however, it requires more time to train than the LS-SVM method. This is 

highlighted in an accuracy versus speed comparison, shown graphically in Figure 4, where 

the MSE on the test set is plotted against training time for five specific cases: 8, 16, 32, 50, 

and 100 training points.
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4.3. Problem #3

Problem #3 is the second order linear ODE given by,

ÿ + 1
5 ẏ + y = − 1

5e−t/5cost, subject to: y(0) = 1
y′(0) = 1 t ∈ [0, 2], (13)

which has the analytic solution,

y(t) = sin(t)
et/5

The accuracy gain of TFC and CSVM compared to LS-SVM for problem #3 is shown in 

Figure 5. The figure was created using 100 training points. The top plot shows the error in 

the LS-SVM solution divided by the TFC solution, and the bottom plot shows the error in 

the LS-SVM solution divided by the CSVM solution.

Tables A7–A9 in the appendix compare the two methods for various numbers of training 

points when solving problem #3. These tables show that solving the DE using TFC is 

approximately an order of magnitude faster than using the LS-SVM method for all cases. 

Furthermore, TFC is more accurate than the LS-SVM method for all of the test cases. One 

interesting note is that when moving from 16 to 32 training points TFC actually loses a bit of 

accuracy, whereas the LS-SVM method continues to gain accuracy. Despite this, TFC is still 

multiple orders of magnitude more accurate than the LS-SVM method. Additionally, these 

tables show that the CSVM method is faster than the LS-SVM for all cases. The speed 

difference varies from approximately twice as fast to an order of magnitude faster. The LS-

SVM and CSVM methods have a similar amount of error, and which method is more 

accurate depends on how many training points were being used. However, LS-SVM is 

slightly more accurate than CSVM for more cases than CSVM is slightly more accurate than 

LS-SVM. An accuracy versus speed comparison is shown graphically in Figure 6, where the 

MSE on the test set is plotted against training time for five specific cases: 8, 16, 32, 50, and 

100 training points.

Figure 5 shows that TFC is the most accurate of the three methods. The TFC error is 4–6 

orders of magnitude lower than the LS-SVM method. The LS-SVM method has error that is 

lower than the error in the CSVM method by an order of magnitude or less.

4.4. Problem #4

Problem #4 is the second order linear PDE on (x, y) ∈ [0, 1] × [0, 1] given by,

∇2z(x, y) = e−x x − 2 + y3 + 6y subject to:

z(x, 0) = xe−x

z(0, y) = y3

z(x, 1) = e−x(x + 1)
z(1, y) = 1 + y3 e−1

(14)

which has the analytical solution,
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z(x, y) = x + y3 e−x

The accuracy gain of TFC and CSVM compared to LS-SVM for problem #4 is shown in 

Figure 7. The figure was created using 100 training points in the domain—training points in 

the domain means training points that do not lie on one of the four boundaries. The top plot 

shows the log base 10 of the error in the LS-SVM solution divided by the TFC solution, and 

the bottom plot shows the log base 10 of the error in the LS-SVM solution divided by the 

error in the CSVM solution.

Figure 7 shows that TFC is the most accurate of the two methods. The TFC error is orders of 

magnitude lower than the LS-SVM method. The CSVM error is, on average, approximately 

one order of magnitude lower than the LS-SVM method, but the error is still orders of 

magnitude higher than the error when using TFC.

Tables A10–A12 in the appendix compare the two methods for various numbers of training 

points in the domain when solving problem #4. These tables show that solving the DE using 

TFC is slower than LS-SVM by less than an order of magnitude for all test cases. The MSE 

error on the test set for TFC is less than LS-SVM for all of the test cases. The amount by 

which the MSE error on the test set differs between the two methods varies between 7 and 

18 orders of magnitude. In addition, these tables show that the training time for CSVM is 

greater than LS-SVM by approximately an order of magnitude or less. The MSE error on the 

test set for CSVM is less than the MSE error on the test set for LS-SVM for all the test 

cases. The amount by which the MSE error on the test set differs between the two methods 

varies between one and three orders of magnitude. An accuracy versus speed comparison is 

shown graphically in Figure 8, where the MSE on the test set is plotted against training time 

for five specific cases: 9, 16, 36, 64, and 100 training points in the domain.

5. Conclusion

This article presented three methods to solve various types of DEs: TFC, LS-SVM, and 

CSVM. The CSVM method was a combination of the other two methods; it incorporated 

LS-SVM into the TFC framework. Four problems were presented that include a linear first 

order ODE, a nonlinear first order ODE, a linear second order ODE, and a linear second 

order PDE. The results showed that, in general, TFC is faster, by approximately an order of 

magnitude or less, and more accurate, by multiple orders of magnitude. The CSVM method 

has similar performance to the LS-SVM method, but the CSVM method satisfies the 

boundary constraints exactly whereas the LS-SVM method does not. While the CSVM 

method underperforms vanilla TFC, it showed the ease with which machine learning 

algorithms can be incorporated into the TFC framework. This capability is extremely 

important, as it provides a systematic way to analytically embed many different types of 

constraints into machine learning algorithms.

This feature will be exploited in future studies and specifically for higher-dimensional PDEs, 

where the scalability of machine learning algorithms may give a major advantage over the 

orthogonal basis functions used in TFC. In this article, the authors found that the number of 
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terms when using SVMs may become prohibitive at higher dimensions. Therefore, future 

work should focus on other machine learning algorithms, such as neural networks, that do 

not have this issue. Additionally, comparison problems should be looked at other than initial 

value problems. For example, problems could be used for comparison that have boundary 

value constraints, differential constraints, and integral constraints.

Furthermore, future work should analyze the effect of the regularization term. One 

observation from the experiments is that the parameter γ is very large, about 1013, making 

the contribution from wTw insignificant. However, wTw is the term meant to provide the best 

separating boundary surfaces. Going farther in this direction, one could analyze whether 

applying the kernel trick is beneficial (if the separating margin is not really achieved), or if 

an expansion similar to Chebyshev polynomials (CP), but using Gaussians, could provide a 

more accurate solution with a simpler algorithm.
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Appendix A Numerical Data

The rows in Tables A1–A9 correspond to 8, 16, 32, 50, and 100 training points, respectively.
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Appendix B Nonlinear ODE LS-SVM and CSVM Derivation

This appendix shows how the method of Lagrange multiplies is used to solve nonlinear 

ODEs using the LS-SVM and CSVM methods. Equation (A1) shows the Lagrangian for the 

LS-SVM method. The values where ℒ are zero give candidates for the minimum.

ℒ(w, b, e, y, α, β, η) = 1
2 wTw + γeTe − ∑

i = 1

N
αi wTφ′ ti − f ti, yi − ei

− β wTφ t0 + b − y0

− ∑
i = 1

N
ηi wTφ ti + b − yi

(A1)

∂ℒ
∂w = 0 w = ∑

i = 1

N
αiφ′ ti + ∑

i = 1

N
ηiφ ti + βφ t0

∂ℒ
∂ei

= 0 γei = − αi
∂ℒ
∂αi

= 0 wTφ′ ti = f ti, yi + ei
∂ℒ
∂ηi

= 0 yi = wTφ ti + b
∂ℒ
∂β = 0 wTφ t0 + b = y0

∂ℒ
∂b = 0 β + ∑

i = 1

N
ηi = 0

∂ℒ
∂yi

= 0 αify ti, yi + ηi = 0

A system of equations can be set up by substituting the results found by differentiating ℒ
with respect to w and ei into the remaining five equations found by taking the gradients of 

ℒ. This will lead to a set of 3N + 2 equations and 3N + 2 unknowns, which are αi, ηi, yi, β, 

and b. This system of equations is given in Equation (A2),

∑
j = 1

N
αjφ′ tj Tφ′ ti + ∑

j = 1

N
ηjφ tj Tφ′ ti + βφ t0 Tφ′ ti + αi

γ = f ti, yi

∑
j = 1

N
αjφ′ tj Tφ ti + ∑

j = 1

N
ηjφ tj Tφ ti + βφ t0 Tφ ti + b − yi = 0

∑
j = 1

N
αjφ′ tj Tφ t0 + ∑

j = 1

N
ηjφ tj Tφ t0 + βφ t0 Tφ t0 + b = y0

β + ∑
i = j

N
ηj = 0

αify ti, yi + ηi = 0

(A2)

where i = 1, …, N. The system of equations given in Equation (A2) is the same as the 

system of equations in Equation (20) of reference [12] with one exception: The 

regularization term, I/γ, in the second row of the second column entry is missing from this 

set of equations. The reason is, while running the experiments presented in this paper, that 

Leake et al. Page 30

Mach Learn Knowl Extr. Author manuscript; available in PMC 2020 May 29.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



regularization term had an insignificant effect on the overall accuracy of the method. 

Moreover, as has been demonstrated here, it is not necessary in the setup of the problem. 

Once the set of equations has been solved, the model solution is given in the dual form by,

y(t) = ∑
i = 1

N
αiφ′ ti

Tφ(t) + ∑
i = 1

N
ηiφ ti

Tφ(t) +

+ βφ t0
Tφ(t) + b .

As with the linear ODE case, the set of 3N + 2 equations that need to be solved and dual 

form of the model solution can be written in terms of the kernel matrix and its derivatives. 

The method for solving the nonlinear ODEs with CSVM is the same, except the Lagrangian 

function is,

ℒ(w, e, y, α, η) = 1
2 wTw + γeTe − ∑

i = 1

N
αi wTφ′ ti − f ti, yi − ei

− ∑
i = 1

N
ηi wT φ ti − φ t0 + y0 − yi ,

where the initial value constraint has been embedded via TFC by taking the primal form of 

the solution to be,

y(t) = wT φ ti − φ t0 + y0 .

Similar to the SVM derivation, taking the gradients of ℒ and setting them equal to zero 

leads to a system of equations,

∑
j = 1

N
αjφ′ tj

Tφ′ ti + ∑
j = 1

N
ηj φ tj − φ t0

Tφ′ ti − f ti, yi + αi/γ = 0

∑
j = 1

N
αjφ′ tj

T φ ti − φ t0 + ∑
j = 1

N
ηj φ tj − φ t0

T φ ti − φ t0 + y0 − yi = 0

αify ti, yi + ηi = 0

where i = 1, …, N. This can be solved using Newton’s method for the unknowns αi, ηi, and 

yi. In addition, the gradients can be used to re-write the estimated solution, y, in the dual 

form,

y(t) = ∑
i = 1

N
αiφ′ ti

T φ(t) − φ t0 + ∑
i = 1

N
ηi φ ti − φ t0

T φ(t) − φ t0 + y0 .

As with the SVM derivation, the system of equations that must be solved and the dual form 

of the estimated solution can each be written in terms of the kernel matrix and its derivatives.
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Appendix C Linear PDE CSVM Derivation

This appendix shows how to solve the PDE given by,

∇2z(x, y) = f(x, y) subject to:

z(x, 0) = c1(x, 0)
z(0, y) = c2(0, y)
z(x, 1) = c3(x, 1)
z(1, y) = c4(1, y)

using the CSVM method. Note, that this is the same PDE as shown in problem number four 

of the numerical results section where the right-hand side of the PDE has been replaced by a 

more general function f(x, y) and the boundary-value type constraints have been replaced by 

more general functions ck(x, y) where k = 1, …, 4. Note, that throughout this section all 

matrices will be written using tensor notation rather than vector-matrix form for 

compactness. In this article, we will let superscripts denote a derivative with respect to the 

superscript variable and a subscript will be a normal tensor index. For example, the symbol 

Aij
xx would denote a second-order derivative of the second-order tensor Aij with respect to 

the variable x (i.e. 
∂2Aij
∂x2 ).

Using the Multivariate TFC [23], the constrained expression for this problem can be written 

as,

z(x, y) = Aijvivj + wjφj(x, y) − wkBijkvivj

Aij =
0 c1(x, 0) c3(x, 1)

c2(0, y) −c1(0, 0) −c3(0, 1)
c4(1, y) −c1(1, 0) −c3(1, 1)

Bijk =
0 φk(x, 0) φk(x, 1)

φk(0, y) −φk(0, 0) −φk(0, 1)
φk(1, y) −φk(1, 0) −φk(1, 1)

vi = 1 1 − x x
vj = 1 1 − y y .

where z will satisfy the boundary constraints ck(x, y) regardless of the choice of w and φk. 

Now, the Lagrange multiplies are added in to form ℒ,

ℒ(w, α, e) = 1
2wiwi + γ

2eiei − αI zI
xx + zI

yy − fI − eI ,

where zI is the vector composed of the elements z xn, yn  where n = 1, …, Np and there are 

Np training points. The gradients of ℒ give candidates for the minimum,
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∂ℒ
∂wk

= wk − αI φIk
xx − BIijk

xx vivj + φIk
yy − BIijk

yy vivj = 0
∂ℒ
αk

= zI
xx + zI

yy − fI − eI = 0
∂ℒ
ek

= γ
2ek − αk = 0,

where φIk is the second order tensor composed of the vectors φi(xn, yn), BIijk is the fourth 

order tensor composed of the third order tensors B(xn, yn)ijk, and n = 1, …, Np. The 

gradients of ℒ can be used to form a system of simultaneous linear equations to solve for the 

unknowns and write z in the dual form. The system of simultaneous linear equations is,

AIJαJ = ℬI

AIJ = φIk
xxφJk

xx − φIk
xxBJijk

xx vivj + φIk
xxφJk

yy − φIk
xxBJijk

yy vivj − BIijk
xx vivjφJk

xx + BIijk
xx vivjBJmnk

xx vmvn
− BIijk

xx vivjφJk
yy + BIijk

xx vivjBJmnk
yy vmvn + φIk

yyφJk
xx − φIk

yyBJijk
xx vivj + φIk

yyφJk
yy − φIk

yyBJijk
yy vivj

− BIijk
yy vivjφJk

xx + BIijk
yy vivjBJmnk

xx vmvn − BIijk
yy vivjφJk

yy + BIijk
yy vivjBJmnk

yy vmvn + 1
γ δIJ

ℬI = fI − AIij
xxvivj − AIij

yy vivj

where vm = vi, vn = vj, and AIijk is the fourth order tensor composed of the third order 

tensors A(xn, yn)ijk where n = 1, …, Np. The dual-form of the solution is,

z(x, y) = Aijvivj + αI φIk
xxφ(x, y)k − BIijk

xx vivjφk(x, y) + φIk
yyφk(x, y) − BIijk

yy vivjφk(x, y)

− αI φIk
xxBijkvivj − BIijk

xx vivjBmnkvmvn + φIk
yyBijkvivj − BIijk

yy vivjBmnkvmvn .

The system of simulatenous linear equations as well as the dual form of the solution can be 

written and were solved using the kernel matrix and its partial derivatives.

Abbreviations

BVP boundary-value problem

CP Chebyshev polynomial

CSVM constrained support vector machines

DE differential equation

IVP initial-value problem

LS least-squares

LS-SVM least-squares support vector machines
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MSE mean square error

MVP multi-value problem

ODE ordinary differential equation

PDE partial differential equation

RBF radial basis function

SVM support vector machines

TFC Theory of Functional Connections
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Figure 1. 
Accuracy gain for the Theory of Functional Connections (TFC) and constrained support 

vector machine (CSVM) methods over least-squares support vector machines (LS-SVMs) 

for problem #1 using 100 training points.
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Figure 2. 
Mean squared error vs. solution time for problem #1.
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Figure 3. 
Accuracy gain for TFC and CSVM methods over LS-SVM for problem #2 using 100 

training points.
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Figure 4. 
Mean squared error vs. solution time for problem #2.
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Figure 5. 
Accuracy gain for TFC and CSVM methods over LS-SVMs for problem #3 using 100 

training points.
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Figure 6. 
Mean squared error vs. solution time for problem #3 accuracy vs. time.
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Figure 7. 
Accuracy gain for TFC and CSVM methods over LS-SVMs for problem #4 using 100 

training points in the domain.
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Figure 8. 
Mean squared error vs. solution time for problem #4 accuracy vs. time.
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