
present study from Alladina and colleagues is another important
piece in this field.�
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Smoothing the Edges of Lung Protection

Two deceptively simple tools for improving the gas exchange and
mechanics of patients with the acute respiratory distress syndrome
(ARDS)—positive end-expiratory pressure (PEEP) and prone
positioning—were brought to clinical attention nearly 50 years ago
(1). Although the potential was soon recognized for PEEP to

simultaneously influence global lung mechanics, gas exchange, and
hemodynamics (2), our understanding of its regional actions in ARDS
and its relationship to body position has been slow to evolve. The early
and elegant physiologic investigation of Suter and colleagues
demonstrated that the PEEP associated with best tidal compliance
during volume-controlled ventilation (lowest driving pressure) held
simultaneous benefits for gas exchange efficiency and oxygen delivery.
At the time, lung protection against ventilator-induced lung injury
was not a recognized priority, and by today’s standards, a large VT was
in use. It is interesting to note that the compliance-defined optimal
value of PEEP was first shown in that early era (3) to be a function of
the VT delivered, a relationship that has beenmore recently confirmed
(4). In today’s routine practice, the effects of PEEP on the lung
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continue to be monitored by single “lumped parameter” variables
(pressure and VT) measured at the airway opening.

Although improved oxygenation remains a key motivator for
using PEEP, adjustments are nowmore often made with a careful eye
toward finding a balance between the higher PEEP values needed to
minimize tidal recruitment in the injured lung and the lower PEEPs
need to avoid overdistension of a less injured lung. Finding the best
trade-off between maintaining recruitment and avoiding
overdistension has proven to be a challenge in the mechanically
heterogeneous environment of ARDS. The injured lung is
characterized by an increase in the normal vertical gradient of pleural
pressure, primarily because of the superimposed weight of a heavy
lung andmediastinum. The supine gradient of end-expiratory
transpulmonary pressure (Ptp) is thereby increased (5), declining
from ventral to dorsal regions. Any increment of applied airway
pressure, such as PEEP, tends to disproportionately expand the more
compliant nondependent alveolar units.

Prone positioning, a method that usually (but not invariably)
improves oxygenation even when PEEP falters, has taken somewhat
longer to gain acceptance into clinical practice. Anatomically, dorsal
portions of the chest wall are less compliant than the ventral portions,
a disparity that is partially offset in the prone position by the
buttressing of the ventral surface. These functional changes in the
geographical distribution of Ptp tend to improve the uniformity of
lung expansion. Importantly, in the prone position, the weight of the
heart and mediastinal contents is relieved from the dorsal lung (6).
The net effect is a more homogenous distribution of ventilation and
Ptp (7) in the prone position.

In this issue of the Journal, Katira and colleagues
(pp. 1266–1274) demonstrate experimentally in a porcine lung
injury model (using electrical impedance tomography imaging and
direct pleural pressure measurements by catheters placed in
gravitationally dependent and nondependent zones) that diverse
local actions of PEEP regarding lung unit distention are made more
uniform by prone positioning (8). Consequently, a single value of
PEEP applied to the airway opening in the prone position may exert
similar distending forces on both dependent and nondependent lung
units. These results help advance our mechanistic understanding of
the PEEP–proning interaction. Although this is not the first study to
indicate the homogenizing effect of prone positioning on PEEP-
associated Ptp, it holds clear implications for clinical practice.
Interestingly, while the regional splay of Ptp was narrowed by
proning, the average Ptp was similar in both supine and prone
positions. These latter experimental findings would seem consistent
with those of Keenan and colleagues (9) in a similar porcine injury
model that indicated a near identical “best PEEP” (determined by
tidal compliance) for the supine and prone positions.

There are shortcomings. Very limited gas exchange data are
provided. Data regarding ventilation efficiency would have been
particularly interesting, as the underlying status of the
recruitment/overdistention balance and clinical outcome have
been linked more closely to CO2-eliminating efficiency than to
improved O2 exchange (10). Likewise, no detailed information
regarding hemodynamics or O2 delivery were provided, even
though PEEP titration in either position may be limited by its
effects on hemodynamics.

Numerous unresolved bedside questions remain regarding
prone positioning. In whom is it most likely to prove effective and
helpful? Convincing data, such as supplied here, regarding the more

homogenous distribution of stress and strain in the prone position
would argue for prone ventilation as a method of preventing
ventilator-induced lung injury. Thus far, however, clinical data have
demonstrated a convincing benefit only in those patients who already
suffer from severe lung injury (11). Is proning indicated for lung
protection even when there is no benefit to oxygenation and
ventilation pressures are modest? Conversely, one could imagine an
adverse effect of proning in such patients, particularly given the
higher “dose” of critical care often associated with prone ventilation
in the forms of sedation and neuromuscular blockade. If proning is to
be an integral part of a generalized “lung protective” strategy, when is
it safe to withdraw it? Are the mechanisms of oxygenation benefit
always tied to recruitment? Perhaps not; a variety of vascular
disturbances have long been reported in ARDS (12, 13) (and have
recently been well described in coronavirus disease [COVID-19]). In
that context, it is interesting to note that prone position also results in
a more homogenous distribution of perfusion (14, 15).

Although guidelines and tables provide some useful guidance for
general populations, bedside decisions for the individual are made
most confidently when based on a firmmechanistic understanding
and close monitoring of the relevant variables. The study by Katira
and colleagues helps unravel the interactions between PEEP and prone
positioning and suggests that the complexity of the mechanical
problem posed by protecting the injured lungs of life-threatening
ARDS can be reduced a bit by applying titrated PEEP in
the prone position.
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Where Is the Cystic Fibrosis Transmembrane
Conductance Regulator?

Cystic fibrosis (CF) is amucoobstructive pathology associated with
chronic inflammation and chronic bacterial infection of the lungs.
Mutations in the CF gene lead to dysfunction of the CFTR (CF
transmembrane conductance regulator) and development of clinical
symptoms. Two central characteristics of CF lung disease are an
inadequate hydration and a defective transport of themucous layer that
covers and protects the airway surface. Despite the huge progressmade
in CF care, the exact relationships between primary defects and different
manifestations of the disease are lacking. In that context, it is important
to establish a precisemap of CFTR expression along the airways. Such
studies, begun immediately after the discovery of the CF gene, gradually
concluded that CFTRwas detected in airway surface epithelial cells,
including in airwaymulticiliated cells, as well as in rare “CFTR hot” cells
near or within airway submucosal gland acini or gland duct cells (1, 2).

In 2018,Montoro and colleagues (3) and Plasschaert and
colleagues (4) applied single-cell RNA sequencing (scRNAseq), a
technology that allows unbiased transcriptional profiling of tens of
thousands of individual cells. They generated a catalog of the cells
expressed in the lung, and, more particularly, they revealed a population
of rare cells that they entitled pulmonary ionocytes. This name reflected
a population of cells found in fish gills and frog skin, which contribute to
ion homeostasis and hydration. Interestingly, pulmonary ionocytes were
not only established byMontoro and colleagues and Plasschaert and
colleagues as the sites of highest CFTR expression in airway cells but

were also characterized by their high expression of other ion-transport
genes, including subunits of the amiloride sensitive Na1 channel, and
components of H1-ATPases. This peculiar gene expression program,
also showing similarities with renal intercalated cells, suggests that
ionocytes could be directly involved in active absorption of fluids (5)
and/or regulation of acid-base homeostasis (6). In themurine tracheal
epithelium, themajority of CFTRwas present in pulmonary ionocytes
but basal and secretory cells also expressed CFTR (3). Remarkably, little
to no CFTR expression was detected inmulticiliated cells, which were
thought to be themain harbor of CFTR expression.

In this issue of the Journal, Okuda and colleagues
(pp. 1275–1289) are now providing a comprehensive description of
CFTR-expressing cell types in normal human conducting airways (7).
To do so, they have combined scRNAseq technologies, single-cell
quantitative RT-PCR, and RNA in situ hybridization methods,
validating some of their results by electrophysiological approaches.
Their measurements also provide information about variations of
gene expression between large and small airway epithelia. This work
confirms that CFTR is strongly expressed in ionocytes but also
underlines the rarity of these cells in human small airway epithelium.
The authors’ conclusion is that ionocytes represent a fraction of the
total CFTR signal. Instead, more abundant cell types that express
lower individual levels of CFTR represent a much larger fraction of
the total signal. Secretory cells are thus the dominant cell type that
expresses CFTR in the surface epithelium of large and small airways.
CFTR is also significantly expressed in basal cells, suprabasal cells,
and, to a lesser extent, multiciliated cells. Finally, the authors directly
measured CFTR-mediated Cl2 secretory function, demonstrating a
better correlation between this signal and the presence of secretory
cell types than with ionocytes. Secretory cells from CF airway
epithelia, but not multiciliated cells, were capable of CFTR-mediated
Cl2 secretion after transduction with wild-type CFTR.

The results of Okuda and colleagues fit well with independent data
sets that were recently published on human lung and airway (Table 1).
Deprez and colleagues provided an scRNAseq atlas of 77,969 cells from
35 healthy human airway samples derived from 10 subjects, in which
they defined 28 distinct cell types/states (8). They confirmed the high
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