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Abstract: Obesity is characterized as a complex and multifactorial excess accretion of adipose
tissue (AT) accompanied with alterations in the immune response that affects virtually all age
and socioeconomic groups around the globe. The abnormal accumulation of AT leads to several
metabolic diseases, including nonalcoholic fatty liver disorder (NAFLD), low-grade inflammation,
type 2 diabetes mellitus (T2DM), cardiovascular disorders (CVDs), and cancer. AT is an endocrine
organ composed of adipocytes and immune cells, including B-Cells, T-cells and macrophages. These
immune cells secrete various cytokines and chemokines and crosstalk with adipokines to maintain
metabolic homeostasis and low-grade chronic inflammation. A novel form of adipokines, microRNA
(miRs), is expressed in many developing peripheral tissues, including ATs, T-cells, and macrophages,
and modulates the immune response. miRs are essential for insulin resistance, maintaining the
tumor microenvironment, and obesity-associated inflammation (OAI). The abnormal regulation
of AT, T-cells, and macrophage miRs may change the function of different organs including the
pancreas, heart, liver, and skeletal muscle. Since obesity and inflammation are closely associated,
the dysregulated expression of miRs in inflammatory adipocytes, T-cells, and macrophages suggest
the importance of miRs in OAI. Therefore, in this review article, we have elaborated the role of
miRs as epigenetic regulators affecting adipocyte differentiation, immune response, AT browning,
adipogenesis, lipid metabolism, insulin resistance (IR), glucose homeostasis, obesity, and metabolic
disorders. Further, we will discuss a set of altered miRs as novel biomarkers for metabolic disease
progression and therapeutic targets for obesity.

Keywords: adipocyte; miRs; inflammation; immune cells; metabolic dysfunction

1. Introduction

Chronic inflammation associated with obesity affects people around the world, espe-
cially in western regions including the USA and Canada. According to the World Health
Organization, approximately 38.2 million children less than 5 years old were obese in 2019.
Global statistics show obesity is a risk component contributing to the development of severe
metabolic disorders such as nonalcoholic fatty liver disorder (NAFLD) [1], cancer [2], type
2 diabetes mellitus (T2M) [3], and cardiovascular disorders (CVDs) [4]. Obesity alters preex-
isting adipocyte hypertrophy, preadipocyte differentiation, macrophages, T-cell infiltration
at the adipose site, the release of inflammatory cytokines, and increases insulin resistance
(IR) [5]. In ATs, cytokines and chemokines are released by both adipocytes and immune
cells [6], and the dysfunction of these AT-derived-cytokines and chemokines may result
in hypoxia, and excess secretion of free fatty acids (FFAs) [7]. Moreover, the infiltration of
immune cells and the excessive accumulation of macrophages may also contribute to FFA
release [8]. In obese individuals, adipocytes increase in quantity and mass and change their
immunological profile. These cell deaths trigger the release of metabolites, which polarize
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the immune response toward a pro-inflammatory T-helper 1 (Th1) state. The excess FA in
AT acts as an energy source for the proliferation of cancer cells and the development of
tumors [9]. Furthermore, the up-regulation of various inflammatory genes in immune cells
induces a pro-inflammatory immune response in ATs, glucose tolerance, and IR, the main
factors correlated with metabolic syndrome [10].

Innate lymphoid cells appeared as key element in obesity and immune response.
Interestingly, ILC2 have been reported in gut mucosa and lymphoid clusters associated
with fat [11]. IL-5, that is obtained by ILC2, is essential for the stimulation of eosinophil
and their migration to AT, while IL-13 promote macrophage activation [12]. Together, these
ILC2-derived cytokines help in macrophage homeostasis and play a protective role in
obesity-induced metabolic disorders. Meanwhile, the deficiency of ILC2 elevates adipocity
and IR in HFD- mice [13]. In AT, the ILC2 are elevated by IL-33 and IL-23 signals [14]. ILC2
limit the inflammation and help to maintain metabolic homeostasis adipose-resident ILC1
promote disease progression such as IR [15]. Hence, it is shown that ILC2 has a protective
role against obesity while ILC1 has adverse effects. Metabolic syndrome may also enhance
the inflammatory mediator secretion such as IL-6 [16], leptin [17], TNF-α [18], resistin [19],
and monocyte chemoattractant protein-1 (MCP-1) [20]. It has been shown that in AT, the
number of T-cells is elevated in both mice and humans [21]. Additionally, both CD4+

and CD8+ T-cells are actively involved in obesity-associated inflammation (OAI) in white
adipose tissue (WAT). The pro-inflammatory Th1 cells in WAT of mice and humans in
obese conditions recruit macrophages to induce an inflammatory microenvironment in the
vascular adipose tissue (VAT). Interestingly, both T-cells and macrophages work together
and help the body fight against foreign stimuli, repair tissues, and remove dead cells.
Both macrophages and T-cells work synergistically to build an effective immune response
through different immunological mechanisms, including phagocytosis and cytokine or
chemokine secretion [22]. Sometimes, the excessive accumulation of inflammatory cy-
tokines occurs, which might cause chronic inflammation and cause various diseases such
as obesity and aging [23]. In the last decade, various studies have highlighted macrophage
accumulation in ATs as the main source of inflammation aiding in meta-inflammation, and
miRNAs are a key component of these signaling pathways [24,25]. Hence, the current
review is designed to discuss the cross-talk between AT-associated adipocytes, immune
cells, and miRs in regulating OAI and metabolic dysfunction.

2. MicroRNA—An Exciting Discovery

MicroRNAs (miRs) are small non-coding RNA molecules produced by almost all
types of eukaryotic cells and consist of approximately 20–22 nucleotides (NTs) [26]. miRs
regulate multiple genes by binding to target mRNAs, thereby controlling the stability and
translation of protein-coding mRNAs [27,28]. The number and expression of miRs varies
with species and depends on their complexity. Humans have 2000 to 3000 miRs, while
mice have over 1500 miRs, with some being tissue and organ-specific [29]. The synthesis of
miRs begins in the cell nucleus, where primary miRs are transcribed by RNA polymerase II.
These primary miRs are transferred to the cytoplasm by Ran GTPase and exportin-5 (XPO5)
(Figure 1). The primary miRs produce miRNA with the aid of type III endoribonuclease
DICER in connotation with RNA-binding proteins. Another pathway for the biogenesis of
miRs has been reported as DICER-independent [30] and miRs serve as a signature of cell
identification. The miRs are expressed in different organs of the body by different cell types;
however, it has been shown that miR-122 is greatly expressed in the liver [31]. Similarly,
miR-133a, [32] miR-133b, [33] miR-208a, [34] miR-208b, miR-499, [35] miR-486, [36] and
miR-1 [37] help in the proliferation and differentiation of skeletal muscles, are expressed in
muscle cells and are known as myomiRs [38] About 50% of brain tissue miRs consist of
miR-124 and miR-9 [39,40].
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Figure 1. The schematic illustration of miRNA biogenesis and mechanism of action: in the nucleus of cells pri-miRNA
are transcripted from DNA with help of RNA polymerase. The pri-miRNA is then cleaved by Drosha enzyme to pre-
miRNA and moved into the cytoplasm by exportin-5 activity. The pre-miRNA is matured to miRNA via DICER. The
mature strand of miRNA is integrated into the RNA-induced silencing complex (RISC) which inhibits the translation of the
complementary mRNA.

miRs play a key role in cellular interaction via a mechanism involving protein car-
riers and vesicle trafficking. To this end, Killian et al. identified several miRs inside the
extracellular vesicles, their secretion, and uptake by donor and receiving cells, respectively,
followed by the release of their cargo in receiving cells [41,42]. Later on, Cortez and his
coworker confirmed the presence of miRs in body fluids and also correlated their level to
disease development [29]. The extracellular transport of miRs occurs by two routes: (a) ac-
tive transport with the aid of extracellular vesicles [43] and (b) as a part of protein–miRNA
complexes [44]. It has been shown that sometimes miRs also leak from damaged cells [45]
to mediate a physiological response including growth regulation, immune responses, and
reactions toward external stimuli.

3. Role of miRs in AT Inflammation

miR dysregulation in AT causes inflammation that is directly linked with obesity.
Further, these dysregulated miRs are also closely associated with various obesity-related
metabolic diseases. Recently, 21 miRs expressed differently in lean and obese people have
been identified in epididymal AT [46]. Another group has analyzed human subcutaneous
AT by performing miRNA arrays and found that 50 of 799 miRs show a significant differ-
ence in both lean and obese individuals [47]. It has been shown that out of these 50 miRs,
around 17 well correlate with BMI [47]. The expression of miR-17–5p and miR-132 causes a
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decrease in omental fat, hence its circulation is also minimized in obese individuals [48].
Another recent study highlighted approximately 11 adipocyte-linked miRs whose con-
centration is downregulated in obese individuals [49]. Due to the very close association
between obesity and inflammation, it is highly suggested that the dysregulation of miRs
in inflammatory adipocytes is also closely associated with obesity-induced inflammation.
To support this hypothesis, a few miRs have been reported that play a critical role in the
inflammatory state of AT. miR-221 and miR-222 expression correlates with both TNF-α
and aminopeptidase N-1; however, the effect of miRNA on these adipokines is still a
question [50]. Moreover, miR-132, which is downregulated in obese individuals, activates
NF-κB and the transcription of MCP-1 and IL-8 [51]. Brichard et al. have identified that
adiponectin is regulated by miR in WAT and among these miRs, it is observed that miR883b-
5p is upregulated in adiponectin and downregulated in obese individuals [52]. Together,
these studies suggest that AT miRs regulate adipokines either directly by focusing on the
inflammatory adipokines or indirectly by the initial regulation of intermediate components
that control adipokines in the next stages of inflammation.

T-cells develop in the thymus and then move to their corresponding organs to attain
tissue or organ-specific characteristics. Recent studies have shown that miRs are actively
involved in the maturation and differentiation of T-cells [53,54]. Among these miRs,
most are derived from adipocytes and are actively involved in T-cell recruitment and
inflammation. miR-326 participates directly in the polarization of Th1 cells towards Th17
cells which endorse the inflammation of AT through releasing IL-17; hence, miRs serve as a
marker for Th17 in inflamed AT [55]. These studies highlight that miRs expression in AT
is directly associated with T-cell inflammation, the process stimulated by AT during the
onset of obesity. Beside macrophages and T-cells, it is reported that B-cells miRs also play
a key role in obesity. For example, miR-150 is studied to modulate AT function by B-cell
activation and correlation with other immune cells [56].

4. Role of miRs and Oxidative Stress in Obesity and Its Associated Diseases

The imbalance between the production of free radicals and anti-oxidant is termed as
oxidative stress (OS). Due to access supply of glucose and free fatty acid (FFA) toward
mitochondria, an increase in ROS and OS is observed in obese individuals, and it has been
shown that obesity is related to an enhanced concentration of free radicals in blood [57]
(Figure 2). Further, various enzymes such as lipoxygenases, cytochrome P450 (CYP),
nitric oxide (NO) synthases and oxidases is generated by ROS and work as inflammatory
mediators [58]. ROS generation by NOXs, (an enzyme that helps to generate ROS from
oxygen) is associated with OS and helps in the regulation of some of the miRs. Intriguingly,
it is observed that the level of miR-26a is downregulated in mice fed on HFD as compared
to ND [45]. However, it has been shown that miR-26a causes the downregulation of protein
kinase C δ (PKCδ), which is involved in the production of ROS [59]. Therefore, miR-26a
could play a role against hepatosteatosis. The overexpression of miR-34a enhances the
OS in NAFLD [60]. The lower level of NAD+ due to miR-34a targeting nicotinamide
phosphoribosyltransferase (NAMPT) affects the activity of silent information regulator
1 (SIRT1), suppressing the lipid oxidation and promoting the inflammation of lipid [61].
The upregulation of miRs-217 is observed in atherosclerotic lesions, and this miRs is
known to target SIRT1, a regulator of metabolic disorders [62]. The deacetylase SIRT1 and
forkhead box-containing protein, O subfamily1 (FoxO1), enhance the activity of endothelial
nitric oxide synthase [61,63]. The correlation between SIRT1 and miRs might serve as
a new highlight in atherosclerosis regarding endothelial nitric oxide synthase activity.
Sun et al. reported that miR-155 and simvastatin serve as anti-atherosclerosis, as simvastatin
downregulate the expression of miR-155 through affecting the mevalonate-geranylgeranyl-
pyrophosphate-RhoA signaling pathway [64]. In another study, Yang et al. highlighted that
the expression of the miR-155-target protein, mammalian sterile 20-like kinase 2 (MST2)
is enhanced in the arteries of miR-155 knockout mice. The miR-155 suppressed MST2
and stimulated the pathway of the extracellular signal-regulated kinase (ERK); as a result,
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the OS response was stimulated [65]. Together, these findings highlighted the fact that
obesity and OS are closely related; hence, serve as a key mediator in the progression of
obesity-associated metabolic disorders [66]. Although, various antioxidant compounds
are reported to defend against obesity associated-disease; however, considering the miRs’
ability to target specific proteins, it is speculated that these miRs could serve as therapeutic
targets to alleviate OS in obesity-related metabolic disorders.
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adipokines and miRs are also associated with OS and inflammation.

5. Role of miRs in Metabolic Organ Cross-Talk

In recent years, several reports have supported the fact that circulating and tissue-
derived miRs facilitate intracellular communication. The role of miRs in physiological
processes of metabolic organ crosstalk has also been acknowledged as an endocrine and
paracrine messenger. The role of miRs as endocrine messengers takes place in three
different ways: first, hormone production and the response of target cells are regulated by
miRs. As an example, miR-378a-5p targets a member of the transforming growth factor-β
family (nodal) [55]. Second, cytokines regulate miRs. For example, IL-6 stimulates STAT3
to activate the transcription of miR-21 [67] and miR-181-b1 genes [68,69]. Third, miRs show
hormone-like properties and facilitate cell to cell interaction. Host cells secrete miRs and
they are taken up by receipt cells to perform their activities [70]. Hence, these studies
show that miRs play a key role in the crosstalk between different organs to maintain their
homeostasis (Figure 3). Below, we discuss some miR crosstalk with metabolic organs in
more detail.
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6. AT Derived miRs

Obesity is identified as an excessive accumulation of WAT and brown AT (BAT) [71].
WAT is characterized as an energy storage site and BAT generates heat by utilizing the
stored energy via thermogenesis phenomena. BAT is known as the secretary type of AT and
releases adipokines and miRs [72]. Adipokines help in the maintenance of energy home-
ostasis in the whole body. AT-derived circulating miRs are newly identified adipokines [73].
To this end, patients suffering from lipodystrophy have low circulating miRs as compared
to healthy people [74]. DICER is studied as main miRNA biogenesis enzyme. Recently,
Brandao et al. reported that exercise training stimulates the DICER in AT of both mice and
human. Moreover, miR-203-3p is upregulated as a result of exercise training. Together,
DICER-miR-203-3p is upregulated as a result of exercise, which ultimately helps the body
in metabolic function [75]. Mudhasani et al. studied the genetic role of miRNA in the regu-
lation of adipogenesis and DICER requirement in WAT and BAT formation [76]. Another
study was conducted on DICER-deficient mice, indicating a defective miRs processing
and lipodystrophic phenotype. Hence, these findings support the fact that AT microen-
vironments contribute to circulating miRs expression and function. Most of these miRs
are released by adipocytes and their expression level is directly related to the severity of
obesity. A DICER-deficient mouse was transplanted with wild-type mouse AT and it was
observed that circulating miRs expression was reconstituted to normal and an improved
glucose tolerance level was obtained. Most of these AT-derived circulating miRs were
also associated with body mass index (BMI), waist-to-height ratio, percent fat mass, and
plasma adipokine levels in both humans and mice. Particularly, it has been shown that the
overexpression of miR-142-3p and miR-140-5p is reduced following bariatric surgery [77].
The major concentration of AT consists of adipocytes; however, fibroblasts, lymphocytes,
adipocyte progenitor cells, and macrophages are also resident in the AT. These resident
cells help in AT regulation and play a key role in the development of inflammation, IR, and
secretion of adipokines. However, miRs derived from adipocytes act as the main regulator
to energy homeostasis, and AT acts as the main source of circulating miRs.
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7. miRs as A Bridge between Adipocytes and AT Macrophages

Macrophages are an essential component of the innate immune system and are impor-
tant for mediating the host defense against inflammation. Macrophages may have classical
M1 (pro-inflammatory) or M2 (anti-inflammatory) phenotypes. The crosstalk between
adipocytes and AT macrophages (ATMs) is quite challenging due to metabolic complica-
tions in obese individuals. AT in lean individuals is populated by M2 macrophages that
express F4/80, CD11b, CD206, and CD301 in mice [78]. M2 macrophages maintain AT
homeostasis and insulin sensitivity [79]. AT of lean mice is populated mostly by IL-4 [80].
Classical M1 macrophages are highly expressed in obese mice and secrete pro-inflammatory
factors, such as IL-6, TNF-α, and nitric oxide (NO) [81,82]. For example, the percentage
of M1 macrophages increases to 50% in AT of obese people as compared to lean subjects,
who have only 5% of these immune cells [83]. ATMs mainly facilitate efferocytosis, reg-
ulate adipocyte lipolysis, and produce anti-inflammatory cytokines in lean conditions.
However, in obese individuals the anti-inflammatory phenotype switches towards a pro-
inflammatory phenotype and the secretion of excess cytokines such as IL-6 and TNF-α,
resulting in AT low-grade chronic inflammation, is present. This low-grade inflammation
also results in IR and the development of diabetes. In an obese microenvironment, both
adipocyte and ATMs secrete microvesicles and exosomes containing mi-RNAs in blood ves-
sels that affect glucose homeostasis. AT-derived adipocytes release more miRs containing
exosomes in obese mice as compared to lean mice [84]. Lee et al. conducted bioinformatics
analysis of RNA and identified that miR-10a-5p is a key regulator of inflammation in ATMs
and reported that a high-fat diet reduces miR-10a-5p levels in ATMs, and the treatment of
mice with a miR-10a-5p mimic inhibits pro-inflammatory responses and enhances glucose
tolerance [85].

miR-29a levels increase in obese ATM-derived exosomes, which might result in IR [86].
However, the knockout of miR-29a in obese ATM exosomes minimizes this factor. Hence,
miR-29a could serve as an obesity-associated type 2 diabetes marker [87]. It has been
also shown that miR-30e-5p is upregulated in ATMs from high fat diet (HFD) mice when
treated with AM251, an antagonist of cannabinoid receptor 1, while its target, DLL4
is downregulated [88]. Hence, miR-30e can serve as a biomarker in cardiometabolic
disorders. Later, it was reported that HFD-induced obesity downregulates miR-30 and
acts as a regulator of pro-inflammatory ATM also be developed as a marker for obesity-
induced inflammation [25]. miR-99a was reported as a negative expression of obesity,
M2 macrophages show the overexpression of miR-99a, while M1 macrophages show a
decreased expression, indicating the relationship between M2 phenotype and miR-99a [89].
To this end, TNFα was recognized as a direct target of miR-99a and can decrease the
inflammation of AT to improve insulin sensitivity. Another miR-155 is overexpressed
in obese ATMs and targets peroxisome proliferator-activated receptors (PPARγ). These
miRs enter in insulin-secreting pancreatic islets of β cells through endocrine or paracrine
regulation via robust effects on cellular insulin action to maintain glucose homeostasis [90].
miR-34a is identified as a vital mediator and attack on adipose-resident M2 macrophage
to stimulate obesity and chronic inflammation [91]. Taken together, these circulating and
tissue-derived miRs facilitate the cross-talk between adipocytes and ATMs to sustain
obesity and inflammation.

8. AT and Skeletal Muscle miRs

miRs also mediate the communication between skeletal muscles and ATs. For exam-
ple, miR27a facilitates cross-talk between AT and skeletal muscle [92]. Both obese and
T2DM patients have higher circulating levels of miR27a than healthy/lean individuals.
Additionally, miR27a levels increase in obese patients through a different mechanism; one
of them may include a decrease in leptin levels. We can speculate that leptin may affect
obesity via regulating miR27a circulating levels, but this needs further investigation. Addi-
tionally, miR27a secreted by adipocytes in ATs may enhance OAI through regulating the
macrophage polarization to their pro-inflammatory phenotype M1-macrophages [93]. The
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increased circulating levels of miR27a may increase the predisposition of obese people to
IR through inhibiting the PPAR-γ signaling pathway. For example, the antidiabetic role of
PPAR-γ in ATs is well established, along with other major glucose level regulating organs,
such as the liver and pancreas [94,95]. The exosome trafficking of miR-27a helps skeletal
muscle cells uptake these miRNAs. The palmitate-treated 3T3-L1 adipocytes derived from
exosomal miR-27a inhibit PPAR-γ and result in IR in C2C12 cells [96]. Additionally, M1
macrophages in AT microenvironment also release miR-155 that decreases the PPAR-γ
coactivator 1α (PGC1α), resulting in IR and predisposition to T2DM [90]. PGC1α has a
proinflammatory role as it enhances lipid peroxidation (LPO) within skeletal muscle [97].
Hence, miRs may have both pro and anti-inflammatory action in establishing crosstalk
between AT and skeletal muscles.

9. miRs in AT–Pancreas Crosstalk

To date, nothing has been reported that supports crosstalk between AT and the pan-
creas. However, some circulating miRs derived from AT are shown to regulate pancreatic
β-cells [98]. To this end, miR-132 is reported as a promoter of β-cell proliferation, and
its level is reduced in obese individuals and AT [99]. The higher expression of miR-132
stimulates the proliferation of pancreatic α-cells that leads to the development of pancreatic
carcinoma. Moreover, the overexpression of BAT-derived miR-92 in INS-1 cells (a rat in-
sulinoma cell line) reduces insulin by the downregulation of polypyrimidine tract binding
protein 1 (PTBP1) [99]. The serum level of miR-146b and miR-15b is enhanced in obese and
T2DM individuals, while the overexpression of miR-146b and miR-15b could lower the
secretion of insulin in mouse pancreatic MIN6 cells line [100]. These findings highlight the
importance of miRs as an extra shield of negative gene directive and their contribution to
pancreatic β-cell maintenance and IR. However, further studies need to be conducted for
any prudent conclusion to facilitate AT–pancreas crosstalk.

10. AT-Cardiovascular System miRs

Recent evidence supports the fact that circulating and tissue-derived miRs facilitate
the progression of cardiovascular diseases (CVDs) [101]. An atherosclerosis mouse model
(Apoe-/-) was administrated with exosomes derived from AT of mice that were fed a HFD,
and these mice showed an exacerbation of atherosclerosis that might be due to exosomal
contents, including miRs [102]. Further, miR-29a and miR-194 show direct correlation
between obesity and cardiac dysfunction and reduced mitochondrial function of primary
cardiomyocytes in mice [103]. The cardiac dysfunction is attenuated in HFD-fed mice by
using miR-29a mimics or miR-194 inhibitors [104]. Further, miR-410-5p induces cardiac
fibrosis in mice and is overexpressed in HFD-fed mice. Taken together, miRs can be
developed as an attractive marker to investigate the communication between AT and
cardiovascular tissues [105].

11. Endocrine Function in the Liver by miRs

It has been shown that circulating miRs released from AT facilitates crosstalk with
the liver and function as an endocrine factor to mediate liver function. miR-122 is highly
expressed by hepatocytes and is 75% of the total miRs present in liver tissue [106]. Further,
miR-122 is essential for lipid metabolism and shows antitumorigenic and anti-inflammatory
properties [107]. The overexpression of miR-122 has been noticed in patients suffering
from nonalcoholic steatohepatitis [108]. Therefore, it is hypothesized that miR-122 released
from the liver of healthy individuals is decreased, but in obese individuals their percentage
is increased as AT also secretes an excess amount of miR-122 to maintain the function of
the liver and decrease the chances of liver disease. A BAT-derived miR-99b also helps
in the regulation of hepatic metabolism and is identified as a suppresser of fibroblast
growth factor 21 (FGF21) in mouse liver [109]. These BAT-derived exosomal miRs block the
synthesis of fibroblast growth factor 2 (FGF2), while miR-155 aids in glucose homeostasis
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in the miR-155 knockout mouse (KO) model [110]. These studies highlight the role of
AT-derived miRs in the liver.

Taken together, the above analysis highlights the fact that miRs secreted from AT act
differently in response to different external stimuli. Once these miRs enter the blood, they
communicate with different organs such as the muscles, heart, liver, and pancreas to main-
tain metabolic homeostasis. Table 1 is a list of some miRs reported from various diseases.

Table 1. miRs expression in various inflammatory diseases.

Sr. No Disease miRs References

1.
Alzheimer’s disease

(AD)

let-7d [111]
miR-342 [112]

miR-125b [113]

2. T2DM

miR-146a [114,115]
miR-223 [116]

miR-142-3p [117]
miR-126 [118]
miR-375 [119]
miR-155

3. Obesity

miR-138
miR-122 [120]

miR-142-3p [121]
miR-221 [122]
miR-145 [123]

4. Cardiac disorders

miR-92a [124]
miR-223 [125]
miR-126 [126]

miR-320a [127]

5.
Parkinson’s disease

(PD)

miR-29a/c [128]
miR-19b [129]
miR-214 [130]

miR-133b [60]

12. Extracellular miRs as Disease Biomarkers

Recent studies suggest that extracellular miRs serve as ideal disease biomarkers in
head and neck squamous cell carcinoma [131], inflammation [132], and pancreatitis [133].
These miRs can be detected in body fluids, such as blood [134], by applying a sensitive,
cheap, and simple assay. Indeed, fluctuation in the expression of these circulating and
tissue miRs concomitant with different diseases, including obesity [135], T2DM [136],
cardiac disorder [65], cancer [137], aging [138], and neurodegenerative disorders such as
Huntington’s disease (HD), Alzheimer’s disease (AD), and Parkinson’s disease (PD) has
been identified [139].

13. miRs-Based Therapeutics

Various miRs have been identified as attractive therapeutic markers for neurocognitive
disorders [140], cancer [141], metabolic syndrome [142], and autoimmune diseases [143,144].
miRs-based therapies are classified as miRs mimics and anti-miRs oligonucleotides. In
2018, the FDA approved patisiran as the first-ever RNA-based drug used for the treatment
of a neurodegenerative disorder (such as Alzheimer’s and Parkinson’s diseases) [145].
Miravirsen is an anti-miR-122 drug that has entered phase II trials to cure hepatitis virus
(HCV) infection [146]. It has been shown that Miravirsen inhibits the biogenesis of miR-122
and suppresses HCV infection. Moreover, this drug has a negligible toxic effect and viral
resistance. Other miR-34 and miR-16 mimics have been used to cure gastric cancer [147]
and solid tumors, while cutaneous T-cell lymphoma is being treated by anti-miR-155 [148].
Anti-miR-92a has entered phase I clinical trials for wound healing [149] research, while
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miR-29 mimic has entered phase II clinical trials for keloid patients. Surprisingly, various
obesity-linked miRs have been reported to have clinical potential, but only anti-miR-103
and anti-miR-107 have reached phase I trials to treat T2DM patients.

miR derived from AT helps to maintain the energy homeostasis of various physio-
logical processes within the body. Interestingly, it has been observed that deletion of the
DICER encoding gene of AT in mice results in the depletion of miRs and causes metabolic
disorders [150], suggesting that these miRs may serve as therapeutic targets for metabolic
syndrome. Keeping these properties in mind, this tissue-derived miRs has served as a
therapeutic for many diseases and has been investigated in several disease animal models
for their mechanism of action. It has been shown that the removal of miR-155 in mice can
minimize the HFD-induced IR and glucose intolerance [151]. Carlos et al. observed that
when a lean mouse-derived exosome is transfected with artificial mimics of miR-192, miR-
122, miR-27a-3p, and miR-27b-3 that are overexpressed in obese mice and injected again in
lean mice fed with a normal diet, glucose intolerance is observed [152]. The inhibition of
miR-143-3p via the injection of anti-miR-143-3p in mice regulates the insulin-like growth
factor 2 receptor (IGF2R) and prevents obesity-induced IR [153], and Aimin et al. reported
that miR-34a–KO mice show HFD obesity-induced IR, systemic inflammation, and glucose
intolerance [91]. Hence, miR-27a-3p, miR-122, miR-192, miR-143-3p, miR-155, and miR-34a
can also act as therapeutic targets for metabolic syndrome and obesity. BAT adipogenesis is
inhibited by miR-27 and miR-34 in mice, both miRs levels are elevated in obese individuals.
Therefore, circulating and tissue-derived miRs are considered as a therapeutic target in
obesity and obesity-related diseases and serve as a biomarker for pancreatic islet function,
IR, and chronic inflammation. To date, the miRs entered in clinical trials for the treatment
of various diseases are listed in Table 2.

Table 2. List of miRs in clinical trial for treatment of various diseases.

Sr. No. miRNAs Diseases Drug Ref.

1 anti-miR-155 Cutaneous T and B-cell lymphoma MRG-106 [154]
2 anti-miR-122 Hepatitis C virus infection Mirvirasen, RG-101 [155]

3 anti-miR-103/107 T2DM with nonalcoholic fatty liver
disease RG-125/AZD4076

4 miR-34 mimic solid tumors MRX34 [156]

5 miR-16 mimic Malignant pleural mesothelioma,
non-small-cell lung cancer MesomiR-1 [157]

6 miR-29 mimic Scleroderma MRG-201 [158]

14. Future Prospective and Conclusions

As discussed in this review, obesity is the hallmark of metabolic syndrome, char-
acterized as an abnormal accumulation of AT and immune cells. Thus, increasing the
knowledge of AT biology is fundamental to further understand the core functions of ATMs
in obesity. miRs are emerging regulators of host homeostasis and innate immune response,
including the immune homeostasis. Hence, understanding miRs synthesis, regulation,
secretion, and impact on adjacent or distant cells (as miRs laden in extracellular vesicles) is
crucial for different human conditions associated with altered metabolism and the immune
status, including the obesity that has taken the shape of the epidemic in the modern world.
In recent years, various designs and strategies have been proposed for the delivery of
miRs mimics or antagomiRs. These have great potential to open avenues for therapeutics
targeting obesity-associated altered metabolism and inflammatory status responsible for in-
ducing insulin resistance (IR), T2DM, and atherosclerosis. We warrant further well-planned
studies on the crosstalk between adipocytes, its derived factors, T-cells, and macrophages
to give a clear direction to the obesity field.
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