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Objective: Traumatic brain injury is one of the major causes of human olfactory

dysfunction and leads to brain structure alterations, mainly in the cortical olfactory

regions. Our study aimed to investigate volume changes in the gray matter (GM) and

white matter (WM) in patients with post-traumatic anosmia and then to explore the

relationship between GM volume and olfactory function.

Methods: Ethics committee approved prospective studies which included 22 patients

with post-traumatic anosmia and 18 age- and gender-matched healthy volunteers.

Olfactory function was assessed using the Sniffin’ Sticks. High-resolution 3-dimensional

T1 MRIs of the participants were acquired on a 3T scanner and the data were collected

for voxel-based morphometry (VBM) analysis. Furthermore, the GM and WM volumes of

the whole brain regions were compared and correlated with olfactory function.

Results: The analysis revealed significant GM volume reduction in the orbitofrontal

cortex (OFC), gyrus rectus (GR), olfactory cortex, insula, parahippocampal, temporal

pole, and cerebellum (all P < 0.001) in patients. Besides, WM volume loss was also

found in the OFC, GR, and insula (all P < 0.001) in patients. All WM atrophy areas were

connected to areas of GM volume loss spatially. Correlation analysis showed the olfactory

scores were significantly positively correlated with the GM volume of the occipital cortex

(P < 0.001, and PFWE < 0.05), while no significant correlation was found between the

Sniffin’ Sticks test scores and the WM volume in patients.

Conclusion: The reduction of GM and WM volume in olfactory-related regions was

responsible for olfactory dysfunction in post-traumatic patients. The occipital cortex

may play a compensation mechanism to maintain the residual olfactory function. To our

knowledge, we report here for the first time on white matter volume alterations specifically

in post-traumatic patients with anosmia.

Keywords: post-traumatic olfactory dysfunction, magnetic resonance image, olfactory cortex, gray and white

matter volume, traumatic brain injury
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INTRODUCTION

Traumatic brain injury (TBI) is one of the main causes
of olfactory disorder and is also a significant public health
event recognized worldwide (1). Patients with post-traumatic
olfactory dysfunction (PTOD) are frequently presented with
other clinical symptoms involving cognitive, emotional, and
motor impairments that can seriously affect their quality
of life (2). The frequency of olfactory dysfunction after
traumatic brain injury was 13.7 and 8.2% had anosmia,
accounting for 39% of patients seeking consultation from
smell and taste clinics (3, 4). Unfortunately, there are
limited treatment options and the prognosis of olfactory
disorders secondary to head trauma is worse than other
causes including sinonasal and post-viral olfactory dysfunction
(5). It is critical to fully understand the comprehensive
pathophysiological mechanisms, especially in the peripheral
and brain central cortex. According to the previous studies,
several mechanisms had been proposed to describe the possible
pathophysiology of PTOD including sinonasal tract disruption,
direct shearing or stretching of olfactory nerve fibers at the
cribriform plate, and focal contusion or hemorrhage within the
olfactory cortices (6, 7) and patients with PTOD performed
as impaired odor thresholds, odor discrimination, and odor
identification (8).

Voxel-based morphometry (VBM) is a useful method to
analyze the morphological changes in the brain as measured
by whole-brain MRI data and allows for the quantification of
regional gray matter (GM) and white matter (WM) volumes
of the cortex. Previous studies have demonstrated significant
alteration of GM volume of the olfactory-related regions in
patients with olfactory dysfunction due to different causes
including idiopathic factors (9–11), chronic sinusitis (12), and
neurodegenerative diseases (13) or heterogeneous etiologies (14).
However, little study has focused on the cerebral GM changes
in patients with PTOD, even though the VBM methods had
been utilized for detecting the GM alterations for patients
with TBI. Furthermore, those studies are always focused on
GM’s alterations, ignoring whether there are differences in
WM of those brain regions. To our knowledge, there were
several studies exploring the alteration of both the GM
volume and WM volume in the olfactory regions among
patients with mixed etiologies of olfactory loss (15, 16), but
there were none for patients with post-traumatic anosmia.
Recent studies used VBM methods to explore the brain
MRI image of patients with TBI and showed reduced GM
and WM volume in patients with traumatic brain injury
(17, 18). Whether there were altered GM volumes and their
association with olfactory function in patients with PTOD is
largely unknown.

In the present study, the first aim of this study was
to examine brain GM and WM volumes in patients with
post-traumatic anosmia as compared with healthy controls.
The second aim was to determine whether GM volumes in
olfactory related regions was correlated with the patient’s residual
olfactory function.

METHODS AND MATERIALS

Subjects
A total of 40 participants with right-handed took part in the
study, including 18 of them being healthy controls (10 men
and eight women; mean age = 34.78 years, SD = 13.69 years),
and 22 patients who were diagnosed with PTOD (nine men
and 13 women; mean age = 40.91 years, SD = 11.06 years)
according to the Position paper on olfactory dysfunction. All
the participants were collected for demographical and clinical
characteristics, including age, gender, GM, and WM volume of
the whole brain and olfactory function scores tested by sniffin’
sticks (see later). The participants were screened for without
psychiatric disorders, nasal sinus disease or drug use associated
with olfactory dysfunction. In addition, all the post-traumatic
patients with anosmia had no impaired olfactory function before
head injury. All the participants underwent a complete physical
and nasal endoscopy performed by an experienced rhinologist,
and scores on their Simple Mental State Examination (MMSE)
were normal. This study was approved by the Ethics Committee
at Beijing Anzhen Hospital (Beijing, China; Approval No.
2019015X) and complied with the Declaration of Helsinki for
Medical Research involving Human Subjects. All the participants
provided written informed consent prior to the participation.

Olfactory Function Test
For each participant, psychophysical testing of olfactory function
was performed by using Sniffin’ Sticks tests (Burghart, Gmbh,
Wedel, Germany) and olfactory threshold (OT), olfactory
discrimination (OD), olfactory identification (OI), and the
overall composite scores (TDI; composite score of threshold,
discrimination, and identification) were evaluated. Sniffin’ Sticks
have been assessed in healthy Chinese adults and various
patients with olfactory dysfunction in our previous studies (19,
20). Sniffin’ Sticks is suitable for application in the Chinese
population to differentiate normosmia from hyposmia and
anosmia (21). Standard administration was performed according
to the manufacturer’s instructions. For the testing, felt-tip pens
containing various odors were presented to the participants.
The pen’s tip was placed ∼2 cm in front of both nostrils for
bilateral stimulation. The test comprised three parts: OT, OD,
and OI test. The overall results were combined and reported as
TDI scores ranging from 1 to 48, with higher scores indicating
superior olfactory performance. A TDI scores 31, 16–30, and<15
indicated normosmia, hyposmia, and anosmia, respectively (22).

Structural Brain Image Acquisition and
Voxel-Based Morphometry
The whole-brain MRI was performed on a 3.0T (General Electric
Company, America) GE scanner with a 16-channel phased-
array head coil. For each subject, axial T1-weighted image (in
total 188 slices) were acquired using an IR-prepped 3D fast
gradient echo T1-weighted sequence (BRAVO) sequence with the
following parameter: voxel size: 0.47× 0.47× 1.0mm; repetition
time: 7.5ms; echo time: 2.8ms; flip angle: 15◦, field-of-view:
256mm. The BRAVO sequence could provide isotropic voxels
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resulting in the higher spatial resolution images, which present
crisper anatomic details to identify the lesions compared with the
conventional scanning sequence (23). Furthermore, the sequence
is optimized during the TI (time of inversion) process to provide
excellent gray-white matter contrast, enabling gray-white matter
segmentation and local volumemeasurements (24), which makes
the results more accurate.

Voxel-based morphometry of T1-weighted images was
performed using the CAT12 software (http://dbm.neuro.uni-
jena.de/vbm/) implemented in SPM12 (Welcome Centre of
Imaging Neuroscience, Institute of Neurology, UCL, London,
UK; http://www.fil.ion.ucl.ac.uk/spm) and MATLAB (version
2013a, The MathWorks, Natick, MA, USA). After checking the
data quality, the T1 images were first segmented into GM, WM,
and cerebrospinal fluid (CSF). The GM and WM images were
spatially normalized to a template in Montreal Neurological
Institute (MNI) space using the high-dimensional Diffeomorphic
Anatomical Registration Through Exponentiated Lie Algebra
(DARTEL). Then, the image and preprocessing quality in the
catreports were rechecked. Finally, the normalized GM and
WM images were smoothed with a Gaussian kernel (full width
at half maximum 8mm). Automated data quality checks were
performed as per the CAT12 toolbox. The volumes of GM,
WM, and CSF of each participant were summed up to the total
intracranial volume (TIV).

Voxel-wise GM andWM difference between the study groups
(healthy controls and post-traumatic patients with anosmia) were
examined using independent-sample t-tests, with gender, age
and TIV as variables. A whole-brain threshold of p < 0.001
uncorrected was considered as statistically significant (25), and
was used in combination with a non-stationary threshold to
balance the risks of Type-I and Type-II errors (26). The non-
stationary cluster extent threshold was computed within the
xjview (http://alivelearn.net/xjview). Significant activations were
located with the AAL toolbox (27). Correlations between the GM
and WM volume and olfactory scores of patients and healthy
controls were analyzed using the multiple regression design in
SPM12 with age, gender, and TIV as covariates. The purpose of
using covariables was to eliminate the adverse effects of these
parameters on the results. Correlation analyses were considered
significant at a whole-brain threshold of P < 0.001 uncorrected
and peak wise P < 0.05 family wise error (FWE) corrected with a
non-stationary cluster extent threshold.

Statistical Analysis
All the statistical analyses of demographical, clinical
characteristics, the GM andWM volumes of the whole brain and
TIV between the two groups were performed with SPSS software
version 24.0 (IBM Corporation, New York, NY, USA). Before
statistical analysis, all the data will be tested by the Kolmogorov–
Smirnov Test to verify whether it conforms to the normal
distribution. Continuous variables were presented as mean ±

SD, median (with range or interquartile range) or percentage
according to the data distribution. Chi-square tests were used
to compare frequencies for the categorical variables. Two-tailed
values of P < 0.05 were considered statistically significant.

TABLE 1 | Demographical and clinical characteristics of the cohort.

Characteristic Patient with

post-traumatic

anosmia

(n = 22)

Healthy controls

(n = 18)

P-value

Age (years), mean ± SDa 40.91 ± 11.06 34.78 ± 13.69 0.125

Male, n (%)b 9(40.9%) 10(55.6%) 0.356

TWM, mean ± SDa (mm3 ) 527.17 ± 61.53 537.54 ± 58.41 0.591

TGM, mean ± SDa (mm3 ) 624.84 ± 64.38 655.27 ± 61.38 0.137

TIV, mean ± SDa (mm3 ) 1,532.52 ± 151.18 1,571.59 ± 153.74 0.425

OT score, median (IQR)c 1(1, 1.13) 6.38(5.38, 7.50) <0.001

OD score, median (IQR)c 5(3.75, 6.5) 14(13, 15) <0.001

OI score, median (IQR)c 4(4, 5.25) 15(14, 16) <0.001

TDI score, mean ± SDa 11.67 ± 3.35 35.28 ± 1.81 <0.001

SD, standard deviation; IQR, interquartile range; OT, odor threshold; OD, odor

discrimination; OI, odor identification; TDI, threshold, identification and discrimination; TIV,

total intracranial volume; TGM, total gray matter volume; TWM, total white matter volume.
aAnalysis was performed by independent sample t-test.
bAnalysis was performed by the χ

2 test.
cAnalysis was performed by Mann–Whitney U-test. Two-tailed values of P < 0.05 were

considered statistically significant.

RESULT

Participants’ Demographical and Clinical
Results
The demographical and clinical characteristics of the enrolled
participants are shown in Table 1. No significant differences
were found between the post-traumatic patients with anosmia
and healthy controls with respect to age, gender, right-
handedness, smoker, GMV, WMV, and TIV (P > 0.05 for
all or Chi-square test P > 0.05). Post-traumatic patients with
anosmia had a significantly lower odor threshold (OT) score,
odor discrimination (OD) score, odor identification (OI), and
threshold-discrimination-identification (TDI) score (p < 0.05).
The TDI score of all the patients was <15 and post-traumatic
anosmia was diagnosed.

GM Volume
Compared to healthy controls, patients with PTODwith anosmia
had significantly reduced GM volume in the left rectus extending
to the left superior OFC, the right rectus and superior OFC
extending to the right middle OFC, the left middle temporal
lobe, the right inferior extending to right superior temporal pole,
the left inferior OFC, the cerebellum, the left primary olfactory
cortex, insula, parahippocampal, and superior temporal pole
(cluster extent threshold P < 0.001, cluster size ≥ 39 voxels).
Besides, patients with anosmia had increased GM volume in the
left Paracentral Lobule and precentral, and the superior parietal
compared with the healthy controls (Table 2; Figure 1).

WM Volume
Compared with healthy controls, patients with PTOD with
anosmia had significantly reduced WM volume in the left
superior OFC and rectus extending to inferior OFC, right
superior frontal lobe, right superior, middle and inferior OFC, left
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TABLE 2 | Brain regions demonstrated gray matter volume alterations in post-traumatic patients with anosmia.

Region (AAL) Side Cluster size (voxels) T-value Shared cluster※ MNI coordinates (mm)

x y z

Patients < Control Gyrus rectus L 605 4.5118 40.0% −6 38 −24

Superior OFC L 7.2%

Superior OFC R 386 4.3154 44.8% 14 45 −17

Gyrus rectus R 36.3%

Middle OFC R 3.5%

Middle temporal L 217 5.5441 75.9% −60 −30 −9

Inferior OFC R 150 4.0935 60.0% 44 20 −17

Superior temporal pole R 31.3% 44 20 −17

Cerebellum R 136 4.1326 99.3% 6 −46 −26

Inferior OFC L 76 4.4449 88.2% −30 31.5 −6

Olfactory cortex L 39 3.7039 11.8% −24 7.5 −18

Insula L 7.4%

Parahippocampal gyrus L 9.6%

Superior temporal pole L 5.9%

Patients > Control Paracentral lobule L 235 4.5801 89.0% −15 −21 75

Precentral L 62.5%

Whole-brain analyses with Puncorrected < 0.001, and a cluster-extent threshold applied: k ≥ 39 for the Main effect T-test.

L, left; R, right; OFC, Orbitofrontal cortex; AAL, automated anatomical labeling; MNI, Montreal Neurological Institute.
※When more than one region in the cluster, regions are reported with > 1% shared clusters.

FIGURE 1 | Gray matter reductions in post-traumatic patients with anosima compared with healthy controls. The VBM result is thresholded at P < 0.001. Whole-brain

analyses with Puncorrected < 0.001, and a cluster-extent threshold applied: k ≥ 36. (A–I) With red color represents the decreased GM volume regions in the patient

group; (A) left gyrus rectus; (B) right superior OFC; (C) right gyrus rectus; (D) right inferior OFC; (E) right insula; (F) right cerebellum; (G) left olfactory cortex; (H) left

middle OFC; (I) left inferior OFC. GM, gray matter; L, Left; R, Right; OFC, Orbitofrontal cortex.
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TABLE 3 | Brain regions demonstrated white matter volume alterations in post-traumatic patients with anosmia.

Region (AAL) Side Cluster size (voxels) T-value Shared clusters※ MNI coordinates (mm)

x y z

Patients < controls Superior OFC L 705 6.0445 42% −14 23 −29

Gyrus rectus L 15%

Inferior OFC L 4%

Superior OFC R 94 4.3154 77% 29 56 12

Middle OFC R 92 4.1986 52% 29 36 −15

Inferior OFC R 37%

Superior OFC R 8%

Inferior OFC L 66 3.7372 80% −26 26 −14

Insula L 14%

Superior OFC L 58 4.4324 71% −21 66 −9

Middle OFC L 14%

Gyrus rectus R 36 3.648 89% 15 17 −14

Caudate R 11%

Whole-brain analyses with Puncorrected < 0.001, and a cluster-extent threshold applied: k ≥ 36 for the Main effect T-test.

L, left; R, right; OFC, Orbitofrontal cortex; AAL, automated anatomical labeling; MNI, Montreal Neurological Institute.
※When more than one region in the cluster, regions are reported with > 1% shared clusters.

superior, middle, and inferior OFC extending to the insula, and
right rectus extending to caudate (cluster extent threshold P <

0.001, cluster size ≥ 36 voxels). However, there was no increased
WM volume in patients with anosmia (Table 3; Figure 2).

Correlation Results
For patients with post-traumatic anosmia, the OD and the TDI
scores were positively correlated with GM volume with the right
superior occipital cortex, while no correlation was found between
OT, OI scores, and GM volume. For healthy controls, only the
OI score was positively correlated with GM volume with the
right superior frontal cortex (Table 4). No correlation was found
between the Sniffin’ Sticks test scores and the WM volume in
patients or healthy controls.

DISCUSSION

To our knowledge, this is the first study to focus on the gray and
white matter volume alteration in post-traumatic patients with
anosmia as determined by VBM using SPM12. We found that
patients with post-traumatic anosmia presented with decreased
gray matter volume in the OFC, bilateral GR, olfactory cortex,
insula, parahippocampal gyrus, temporal pole, and cerebellum
(Figure 3). In addition, the WM matter volume got decreased
in bilateral OFC and GR extending to the insula and caudate.
All the white matter atrophy areas were spatially connected to
areas of gray matter volume loss except the parahippocampal,
temporal pole, and cerebellum. However, the patients got
increased GM volume from the left paracentral to the precentral
lobule. The correlation analysis showed that the right superior
occipital cortex was positively correlated with OD and TDI
scores, respectively.

In the present study, we found that OFC and GR’s GM volume
decreased, accompanied by decreased WM volume. The OFC

and GR play essential roles in the process of olfactory and were
considered the secondary olfactory cortex, mainly responsible
for odor perception (28). Besides, studies suggested that the
OFC and GR also connected with odor thresholds and the level
of olfactory expertise (29, 30). OFC accepted the projection of
the primary olfactory cortex (28), and also received projections
from the thalamic nucleus, which involved olfactory and flavor
perception (31). Head trauma can directly damage the olfactory
bulb and the frontal lobe and is often associated with impaired
olfactory recognition, which had been confirmed by the previous
study (32). Meanwhile, our study showed the OI scores of the
healthy group was positively correlated with the volume of the
right frontal cortex, indicating that the frontal cortex plays an
important role in odor identification. In our previous studies,
it was also found that the glucose metabolism was decreased in
OFC and GR regions of post-traumatic patients with anosmia
(33). However, the GM reduction of OFC was not only found in
patients with post-traumatic anosmia, but also in patients with
olfactory loss secondary to other causes (10, 12). Therefore, OFC
volume change can be substantial evidence of brain morphologic
changes in patients with olfactory dysfunction. Consistent with
our findings, reduced WM volume of OFC was found in
patients with anosmia with mixed etiologies (15, 16). Our results
suggested that the cause of PTOD is not only the damage of
neurons in those brain regions, but also the damage or atrophy
of nerve fibers.

Insula was another region that got reduced both GM volume
and WM volume in our study. The insula was considered to be
the secondary olfactory cortex and received fibrous projections
from the primary olfactory cortex, especially from the anterior
piriform cortex and amygdala (28). From previous studies, the
insula has been identified to be involved in odor perception (34,
35), odor discrimination (36), and odor hedonic (37). Consistent
with previous studies (15), our results also found that the volume
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FIGURE 2 | White matter reductions in post-traumatic patients anosima compared with healthy controls. The VBM result is thresholded at P < 0.001. Whole-brain

analyses with Puncorrected < 0.001, and a cluster-extent threshold applied: k ≥ 36 for the main effect t-test. (A–G) with red color represents the decreased WM volume

regions in the patient group. (A) left superior OFC; (B) left gyrus rectus; (C) right inferior OFC; (D) left middle OFC; (E) left inferior OFC; (F) right gyrus rectus; (G) right

superior frontal. VBM, voxel-based morphometry; L, Left; R, Right; OFC, Orbitofrontal cortex.

TABLE 4 | Correlation between olfactory scores and regional gray matter volume.

Olfactory scores Correlation Regions (AAL) Side Cluster size (voxels) T-value Shared clusters※ MNI coordinates (mm)

x y z

Patients OD Positive Superior occipital cortex R 355 5.2711 92% 23 −77 18

TDI Positive Superior occipital cortex R 396 6.6088 85% 20 −86 24

Controls OI Positive Superior frontal cortex R 312 6.1334 58% 26 56 17

Middle frontal cortex R 39% 26 56 17

Whole-brain analyses with Puncorrected < 0.001, and peak wise PFWE < 0.05 corrected.

L, Left; R, Right; OD, odor discrimination; OI, odor identification; TDI, threshold, identification and discrimination; AAL, automated anatomical labeling; MNI, Montreal Neurological Institute.
※When more than one region in the cluster, regions are reported with > 1% shared clusters.

ofWM extending fromOFC to insula was reduced, indicating the
atrophy of fiber bundles between the high-level cortices involved
in olfactory discrimination and recognition. Besides, it has been
proved that olfactory hallucination was the main symptom of
right posterior insula cerebral ischemia (38). More important,
insula is responsible for integrations of olfaction with taste and
trigeminal integrations (39). And direct stimulation of insula
could cause the sensory of gustatory and olfactory (40). These
evidences may support the fact that patients with post-traumatic
anosmia always company with taste dysfunction.

Our results show a reduction in the olfactory cortex, extending
to the parahippocampal gyrus and temporal pole. However, those

regions were not associated with changes in the WM volume.
The olfactory cortex, receiving direct input from olfactory bulb,
is considered as the primary olfactory area which comprises the
olfactory tubercle, the anterior olfactory nucleus, the piriform
cortex, the amygdaloid cortex, and the lateral entorhinal cortex
(41), and play roles on olfactory perception via attentional
mechanism to designate the identical flow of air through the nose
(42). The reduced GM volume in the primary olfactory cortex
among patients with post-traumatic anosmia suggests decreased
peripheral olfactory inputs. The temporal pole is a highly
interconnected area that is well-known recipient of projections
from amygdala, OFC, piriform cortex, and insula, playing roles
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FIGURE 3 | The connections and patterns of gray and white matter volume alterations in patients with post-traumatic anosmia. The olfactory-related regions’

connections in post-traumatic patients with anosmia are mainly from the nasal cavity olfactory mucosa through nerve fiber to the occipital lobe and cerebellum,

including the primary olfactory cortex and the secondary olfactory cortex. The cortices with decreased gray matter volume because of the trauma were mainly located

in the primary olfactory cortex and the cerebellum. In the secondary olfactory cortex, areas such as the orbitofrontal cortex, the gyrus rectus, the temporal pole, and

the insula were found to be associated with decreased gray matter volumes and white matter volumes. In addition, the occipital lobe may play a role in maintain the

residual olfactory function of post-traumatic patients when the conventional olfactory cortices were damaged.

in odor emotional responses (43), and odor recognition (44),
indicating the importance of this area for retention of namable
odors. Like the temporal pole, parahippocampal is closely related
to olfactory memory (45). In patients with PTOD, reduced
GM volume of the temporal pole and parahippocampal gyrus
may lead to the occurrence of distorted olfactory processing
(parosmia) after injury (46). In addition, patients with post-
traumatic anosmia have been shown to exhibit GM reduction
in the cerebellum when compared with healthy controls, which
was consistent with previous studies (47, 48). The cerebellum is
also involved in olfaction, especially with activation in relation to
sniffing and alterations of the respiratory pattern (49). Therefore,
post-traumatic patients with anosmia with breathing pattern
changes are possible due to the GM volume reduction in
the cerebellum.

A most significant finding in the present study was that a
positive association was observed between the OD and DTI
scores with the GM volume in the occipital cortex among patients
with post-traumatic anosmia. The occipital is not a regular
olfactory-related brain region identified by the researchers.
A study by Chen and colleagues demonstrated that patients
with congenital Parkinson and olfactory dysfunction showed
decreased GM volume of occipital, consistent with our result

(13). Meanwhile, among volunteers with normal sense of smell,
extensive activation related to the occipital cortex was found
after odor stimulation (50). An earlier study found that circuits
associated with occipital were involved in processing hedonic and
edibility judgments of odors (51). A comparative study of patients
with congenital blindness and healthy volunteers found that in
the absence of vision, olfactory stimulation would preferentially
enter the occipital area, so occipital is believed to be related to
olfactory processing (52). Unfortunately, previous studies did not
clarify how the occipital area specifically exerted its olfactory
effect. From the aspect of anatomy, the occipital got extensive
fiber connections with temporal and frontal lobe (53) which
contained the olfactory secondary centers responsible for odor
memory and perception. Therefore, based on our current results,
we inferred that occipital played a role in odor discrimination in
the process of olfaction, which required future research to verify.

The present study had several limitations. First, our study was
cross-sectional and sample of patients (n = 22) and controls
(n = 18) was not very large, further longitudinal or larger
sample size studies were warranted to consolidate findings of
this study. Second, our study did not show the alterations of
the olfactory bulb’s volume, which was considered a significant
important factor affecting olfactory function (48, 54, 55). Further
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studies we will use tools such as VBM to accurately measure
olfactory bulb volume to observe the influence of head trauma
on olfactory bulb volume and olfactory function. Third, the
olfactory-related cortex has the characteristics of plasticity (56),
and the olfactory function of traumatic brain injury patients
often recover spontaneously, and most of them occur 6 months
to 1 year after injury (57). Although the disease duration of
the patients we recruited in our study was <1 year, it was
not clear that their brain structure was remodeled during the
spontaneous recovery.

CONCLUSIONS

Our study demonstrated alterations of the GM andWM volumes
of olfactory related regions in patients with post-traumatic
anosmia. Atrophy of GM volume and WM volume in the
OFC, GR, and insula cortex was highly associated with olfactory
dysfunction in post-traumatic patients. The occipital cortex
may play a compensation mechanism to maintain the residual
olfactory function. To our knowledge, we report here for the
first time on white matter volume alterations in post-traumatic
patients with anosmia.
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