
RESEARCH ARTICLE

Additive effect of contrast and velocity

suggests the role of strong excitatory drive in

suppression of visual gamma response

Elena V. OrekhovaID
1,2,3*, Andrey O. Prokofyev1, Anastasia Yu. Nikolaeva1, Justin

F. SchneidermanID
2,3, Tatiana A. Stroganova1

1 Moscow State University of Psychology and Education, Center for Neurocognitive Research (MEG Center),

Moscow, Russia, 2 University of Gothenburg, Sahlgrenska Academy, Institute of Neuroscience &Physiology,

Department of Clinical Neuroscience, Gothenburg, Sweden, 3 MedTech West, Sahlgrenska University

Hospital, Gothenburg, Sweden

* Orekhova.Elena.V@gmail.com

Abstract

It is commonly acknowledged that gamma-band oscillations arise from interplay between

neural excitation and inhibition; however, the neural mechanisms controlling the power of

stimulus-induced gamma responses (GR) in the human brain remain poorly understood. A

moderate increase in velocity of drifting gratings results in GR power enhancement, while

increasing the velocity beyond some ‘transition point’ leads to GR power attenuation. We

tested two alternative explanations for this nonlinear input-output dependency in the GR

power. First, the GR power can be maximal at the preferable velocity/temporal frequency of

motion-sensitive V1 neurons. This ‘velocity tuning’ hypothesis predicts that lowering con-

trast either will not affect the transition point or shift it to a lower velocity. Second, the GR

power attenuation at high velocities of visual motion can be caused by changes in excita-

tion/inhibition balance with increasing excitatory drive. Since contrast and velocity both add

to excitatory drive, this ‘excitatory drive’ hypothesis predicts that the ‘transition point’ for low-

contrast gratings would be reached at a higher velocity, as compared to high-contrast grat-

ings. To test these alternatives, we recorded magnetoencephalography during presentation

of low (50%) and high (100%) contrast gratings drifting at four velocities. We found that low-

ering contrast led to a highly reliable shift of the GR suppression transition point to higher

velocities, thus supporting the excitatory drive hypothesis. No effects of contrast or velocity

were found in the alpha-beta range. The results have implications for understanding the

mechanisms of gamma oscillations and developing gamma-based biomarkers of disturbed

excitation/inhibition balance in brain disorders.

Introduction

Gamma-band oscillations arise from a precise interplay between neural excitation (E) and

inhibition (I) [1, 2]. Neurochemical and optogenetic manipulations that change either E or I
affect the amplitude and frequency of gamma oscillations [3–6], suggesting that gamma can
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provide useful biomarkers of an altered E-I balance in neuropsychiatric disorders [7]. Magne-

toencephalographic (MEG) gamma oscillations induced in the visual cortex by large, moving,

and high-contrast gratings (hereafter referred to as ‘gamma response’, GR) are particularly

promising in this respect because they are individually stable [8] and genetically determined

[9].

Gamma oscillations in the cerebral cortex are thought to be generated via interactions

between excitatory pyramidal and inhibitory fast-spiking basket cells (pyramidal-interneuro-

nal network gamma, i.e. PING)–this mechanism operates best in the 30–90 Hz regime [2, 10].

The frequency and power of visual gamma oscillations are strongly affected by sensory features

of the visual stimuli. Understanding the mechanisms of such stimulus-dependency is crucial

for potential use of the GR as a biomarker of E-I balance.

The GR peak frequency nearly linearly increases with luminance contrast [11–17] and

drift-rate/velocity [18, 19] of a visual grating. The increase in GR frequency caused by increas-

ing stimulation intensity is well explained by excitation of a network of interneurons [20].

Indeed, experimental studies suggest that tonic excitation of I interneurons is the major factor

regulating gamma frequency [4, 21, 22].

Unlike that of frequency, intensity-related changes in the GR power are often not linear. In

human MEG or EEG, GR power increases approximately linearly with increasing the gratings’

contrast [11, 14, 23]. On the other hand, GR power recorded in monkey’s local field potentials

(LFP) saturates or even decreases at high contrasts [11, 12, 24]. Furthermore, increasing the

motion-velocity/temporal frequency of a high contrast grating leads to bell-shaped changes in

GR power in both human MEG [18] and in monkeys’ LFP [19], with the maximal response

being observed at around 1.2˚/s (or 2 Hz temporal frequency). There are at least two plausible

explanations of this bell-shaped dependency of the MEG GR power on visual motion velocity.

First, this bell-shaped dependency may reflect the number of responsive V1 neurons

involved in the generation of gamma activity. Indeed, positive correlations between neuronal

spiking rate and LFP gamma power were observed in a number of studies [17, 25–28]; but see

[12, 19]. In terms of spiking rate, neurons in V1 are ‘tuned’ to specific features of visual stimu-

lation, such as orientation, spatial frequency, and temporal frequency/velocity [29]. Therefore,

the stimuli that activate more neurons can potentially cause stronger gamma activity. For

example, such spatial frequency tuning of neurons’ firing rate in the primate cortical area V1

[30] has been invoked to explain the spatial frequency dependency of human visual gamma

oscillations [31]. In a similar way, neurons in V1 and/or lateral geniculate nuclei (LGN) are

preferentially tuned to a certain temporal frequency/velocity [30, 32–34]. This can manifest

itself as a velocity tuning of visual gamma oscillations, which would result in the observed bell-

shaped dependency of GR power on visual motion velocity. Neural selectivity for certain veloc-

ities or temporal frequencies of visual motion has furthermore been reported in studies that

used other neuroimaging methods and stimulation parameters [35–38].

There are, however, some observations that are difficult to explain using the ‘velocity tun-

ing’ hypothesis. Depending on the imaging methods used, the temporal frequencies that

induce maximal response may differ [35–38]. Neural spiking rates furthermore do not neces-

sarily peak at the same temporal frequencies as GR power does. For example, Salekhar et al

recorded LFP and multi-unit activity (MUA) in monkeys’ V1 in response to high-contrast

gratings drifting at different temporal frequencies [19]. They report the bell-shaped depen-

dency on the drift rate (temporal frequency) in both LFP gamma power (50–80 Hz) and

MUA. However, the temporal frequency that induced the maximal neural spiking rate did not

correspond to that of the maximal GR power (8–16 Hz for spiking, 1–4 Hz for GR power). In

other words, increasing the temporal frequency of visual stimuli from 4 to 8 Hz induced an

increase in the neural firing rate whereas GR power started to reduce. Considering such
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observations, the factors other than ‘velocity tuning’ may contribute to non-linear dependency

of gamma oscillation on velocity of visual gratings.

The second, alternative explanation for the bell-shaped velocity-related changes of the visual

GR power is their dependency on excitatory drive. In order for the gamma rhythm to be

recorded in LFP or MEG, it is necessary that the membrane potentials of a large number of

principal neurons fluctuate in synchrony [39]. Such synchronous fluctuations are driven by

synchronous perisomatic inhibitory post-synaptic potentials (IPSP) paced by parvalbumin-

positive (PV) fast-firing interneurons [40, 41]. Modeling and experimental results suggest that

a tightly maintained balance between synaptic E and I is critical for neural synchronization

[41]. The E/I ratio in visual cortical networks is not fixed, but changes as a function of excit-

atory drive [42]. For example, by using voltage-clamp measurements in mice, Adesnik et al

have shown that an increase in stimulation intensity (i.e. contrast of a stationary grating)

enhances both synaptic E and I, but concomitantly decreases the E/I ratio due to a steeper

increase in I as compared to E. A further increase in excitatory drive (e.g., via adding motion

to a high-contrast grating) might lead to even greater increase of I and progressively lower E/I
ratio. There is then evidence that disproportionally strong I may disrupt synchronization in

the gamma range [4, 10, 43–46]. It is, therefore, likely that strong I caused by strong excitatory

drive may contribute to the observed nonlinear velocity-related changes in the GR power.

To test these hypotheses we used high-contrast (100%) and low-contrast (50%) gratings

that moved at the same range of velocities. If the ‘velocity-tuning hypothesis’ is correct, then

the maximal GR at lower contrast will be observed at the same or lower motion velocity com-

pared to that found for the higher contrast. The latter can occur according to this hypothesis

because a decrease in the stimulus contrast changes the tuning of the motion-sensitive V1 neu-

rons to lower temporal frequencies [32, 47, 48]. On the other hand, an additive effect of con-

comitant increases in contrast and velocity would favor the ‘excitatory drive hypothesis’. The

latter implies that the critical level of excitatory drive leading to the ‘gamma response maxi-

mum’ would be reached at higher velocity at the low contrast, as compared to the high. If true,

the link between strong excitatory drive and GR attenuation at high stimulation intensities

may have important functional implications: individual variations in velocity-related attenua-

tion of GR may reflect the capacity for inhibitory circuitry to down-regulate excessive E in the

entire V1 network.

The changes in power at the high-frequency part of the neural response spectra are often

accompanied by changes in neural oscillatory power at low-frequencies in the opposite direc-

tion [49, 50]. To test for the specificity of the velocity-related changes in the gamma range, we

analyzed effects of contrast and velocity also in the alpha-beta frequency range.

Methods

Participants

Seventeen neurologically healthy subjects (age 18–39, mean = 27.2, sd = 6.1; 7 males) were

recruited for the study by advertising among students and staff of the Moscow State University

of Psychology and Education (MSUPE). All participants had normal or corrected to normal

vision. None of the participants reported the presence of any psychiatric problems. An

informed consent form was obtained from all the participants. The study has been approved

by the ethical committee of MSUPE.

Experimental task

The visual stimuli were generated using Presentation software (Neurobehavioral Systems Inc.,

USA). We used a PT-D7700E-K DLP projector to present images with a 1280 x 1024 screen
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resolution and a 60 Hz refresh rate. The experimental paradigm is schematically presented in

Fig 1. The stimuli were gray-scale sinusoidally modulated annular gratings presented with

Michelson contrast of ~100% or 50%. Luminance of the display, measured from the eye posi-

tion, was 46 Lux during presentation of both 50% and 100% contrast stimuli and 2 Lux during

inter-stimulus intervals. The gratings had a spatial frequency of 1.66 cycles per degree of visual

angle and covered 18 × 18 degrees of visual angle. They appeared in the center of the screen

over a black background and drifted to the center of the screen immediately upon display with

one of four velocities: 0, 1.2, 3.6, or 6.0˚/s, (0, 2, 6, or 10 Hz temporal frequency) referred to as

‘static’, ‘slow’, ‘medium’, and ‘fast’. Each trial began with a 1200 ms presentation of a red fixa-

tion cross in the center of the display over a black background that was followed by the presen-

tation of the grating that either remained static or drifted with one of the three velocities. After

a randomly selected period of 1200–3000 ms, the movement stopped or the static stimulus dis-

appeared. To keep participants alert, we asked them to respond to the change in the stimula-

tion flow (stop of the motion or disappearance of the static stimulus) with a button press. If no

response occurred within 1 second, a discouraging message, “too late!” appeared and remained

+

timetime

baseline
1.2 s

drifting or 
static grating

1.2-3 s

+

+

rest 
3-6 s

+

timetime

baseline
1.2 s

+

+

rest 
3-6 s

100% 
contrast

50% 
contrast

drifting or 
static grating

1.2-3 s

Fig 1. Experimental design. Each trial began with the presentation of a fixation cross that was followed by an annular grating that remained static (0˚/s) or drifted

inward for 1.2–3 s at one of the three velocities: 1.2, 3.6, 6.0˚/s. The 100% and 50% contrast gratings were presented in separate sessions. Participants responded to the

change in the stimulation flow (disappearance of the static grating or termination of motion) with a button press. Short animated cartoon characters were presented

randomly between every 2–5 stimuli to maintain vigilance and reduce visual fatigue.

https://doi.org/10.1371/journal.pone.0228937.g001
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on the screen for 2000 ms, after which a new trial began. The static stimulus and those drifting

at different rates were intermixed and appeared in a random order within each of three experi-

mental blocks. The participants responded with either the right or the left hand in a sequence

that was counterbalanced between blocks and participants. Each of the stimuli types was pre-

sented 30 times within each experimental block. In order to minimize visual fatigue and bore-

dom, short (3–6 s) animated cartoon characters were presented between every 2–5 stimuli.

The high (100%) and low (50%) contrast gratings were presented in different experimental ses-

sions and the order of these sessions was counterbalanced between subjects.

MEG data recording

Neuromagnetic brain activity was recorded using a 306-channel detector array (Vectorview;

Neuromag, Helsinki, Finland). The subjects’ head positions were continuously monitored dur-

ing MEG recordings. Four electro-oculogram (EOG) electrodes were used to record horizontal

and vertical eye movements. EOG electrodes were placed at the outer canti of the eyes and

above and below the left eye. To monitor heartbeats, electrocardiogram (ECG) electrodes were

placed at the manubrium sterni and the mid-axillary line (V6 ECG lead). MEG, EOG, and

ECG signals were recorded with a band-pass filter of 0.03–330 Hz, digitized at 1 000 Hz, and

stored for off-line analysis.

MEG data preprocessing

The data was first de-noised using the Temporal Signal-Space Separation (tSSS) method [51]

implemented in MaxFilter™ (v2.2) with parameters: ‘-st’ = 4 and ‘-corr’ = 0.90. For all three

experimental blocks, the head origin position was adjusted to a common standard position.

For further pre-processing, we used the MNE-python toolbox [52] as well as custom Python

and MATLAB1 (TheMathWorks, Natick, MA) scripts.

The de-noised data was filtered between 1 and 200 Hz and down sampled to 500 Hz. A dis-

crete Fourier transform filter was applied to remove power-line noise (50 and 100 Hz). To

remove biological artifacts (blinks, heart beats, and in some cases myogenic activity), we then

applied independent component analysis (ICA). MEG signal with too high (4e-10 fT/cm for

gradiometers and 4e-12 fT for magnetometers) or too low (1e-13 fT/cm for gradiometers and

1e-13 fT for magnetometers) amplitudes were excluded from the analysis. The number of

independent components was set to the dimensionality of the raw ‘SSS-processed’ data (usu-

ally around 70). We further used an automated MNE-python procedure to detect EOG and

ECG components, which we complemented with visual inspection of the ICA results. The

number of rejected artifact components was usually 1–2 for vertical eye movements, 0–3 for

cardiac, and 0–6 for myogenic artifacts.

The ICA-corrected data was then epoched from −1 to 1.2 sec relative to the stimulus onset.

We then performed time-frequency multitaper analysis (2.5 Hz step; number of

cycles = frequency/2.5) and excluded epochs contaminated by strong muscle artifacts via

thresholding the high-frequency (70–122.5 Hz) power. For each epoch, the 70–122.5 Hz

power was averaged over sensors and time points and the threshold was set at 3 standard devi-

ations of this value. The remaining epochs were visually inspected for the presence of unde-

tected high-amplitude bursts of myogenic activity and those contaminated by such artifacts

were manually marked and excluded from the analysis. After rejection of artifacts, the average

number of epochs per subject at 100% contrast was 79, 78, 78, and 79 for the ‘static’, ‘slow’,

‘medium’ and ‘fast’ conditions, respectively. For the 50% contrast, the respective values were

79, 80, 80, and 82.

Additive effect of contrast and velocity on visual gamma response
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Structural MRI

Structural brain MRIs (1 mm3 T1-weighted) were obtained for all participants and used for

source reconstruction.

Time-frequency analysis of the MEG data

The following steps of the data analyses were performed using Fieldtrip Toolbox functions

(http://fieldtrip.fcdonders.nl; [53]) and custom scripts developed within MATLAB.

In order to decrease the contribution of phase-locked activity related to appearance of the

stimulus on the screen and 60 Hz refresh rate of the projector, we subtracted the average

evoked response from each data epoch. The lead field was calculated using individual ’single

shell’ head models and cubic 6 mm-spaced grids linearly warped to the MNI-atlas-based tem-

plate grid. Time-frequency analysis of the MEG data was then performed in the following two

steps.

First, we tested for the presence of reliable clusters of gamma enhancement and alpha sup-

pression at the source level using the DICS inverse-solution algorithm [54] and the cluster-

based permutation test [55]. The frequency of interest was defined individually for each subject

and condition based on the sensor data (only the data from gradiometers were used at this

stage). For the gamma range (45–90 Hz), we performed time-frequency decomposition of pre-

stimulus (‘pre’: -0.9 to 0 s) and post-stimulus (‘post’: 0.3 to 1,2 s) MEG signals using 8 discrete

prolate spheroidal sequences (DPSS) tapers with ±5 Hz spectral smoothing. For the alpha-beta

range (7–15 Hz), we used 2 DPSS tapers and ±2 Hz spectral smoothing. We then calculated

the average (post-pre)/pre ratio and found the 4 posterior sensors with the maximal post-stim-

ulus increase in gamma power and those with the maximal post-stimulus power decrease in

the alpha-beta band. By averaging those 4 channels, we identified the frequencies correspond-

ing to the maximal post-stimulus power increase (for gamma) or decrease (for alpha-beta).

The frequency ranges of interest were then established within 35–110 Hz (gamma) and 5–20

Hz (alpha-beta) limits, where the (post-pre)/pre ratios exceeded +/- 2/3 of the peak value (posi-

tive for gamma, negative for alpha-beta). The center of gravity of the power over these fre-

quency ranges was used as the peak frequency for each band. Time-frequency decomposition

was then repeated while centered at these peak frequencies. Common source analysis filters

were derived for combined pre- and post-stimulus intervals using DICS beamforming with a

5% lambda parameter and fixed dipole orientation (i.e, only the largest of the three dipole

directions per spatial filter was kept). The filter was then applied separately to the pre- and

post-stimulus signals. Subsequently, we calculated univariate probabilities of pre- to post-stim-

ulus differences in single trial power for each voxel using t-statistics. We then performed boot-

strap resampling (with 10 000 Monte Carlo repetitions) between ‘pre’ and ‘post’ time windows

to determine individual participants’ maximal source statistics based on the sum of t-values in

each cluster.

Second, in order to analyze response parameters at the source maximum, we used linearly

constrained minimum variance (LCMV) beamformers [56]. The spatial filters were computed

based on the covariance matrix obtained from the whole epoch and for the three experimental

conditions with a lambda parameter of 5%. Prior to beamforming, the MEG signal was band-

pass filtered between 30 and 120 Hz for the gamma range and low-pass filtered below 40 Hz

for the alpha-beta range. The ‘virtual sensors’ time series were extracted for each brain voxel

and time-frequency analysis with DPSS multitapers (~1 Hz frequency resolution) was per-

formed on the virtual sensor signals. For the gamma range, we used ±5 Hz smoothing. For the

alpha-beta range, this parameter was ±2 Hz. The ‘maximally induced’ gamma voxel was

defined as the voxel with the highest relative post-stimulus increase of 45–90 Hz power in the

Additive effect of contrast and velocity on visual gamma response

PLOS ONE | https://doi.org/10.1371/journal.pone.0228937 February 13, 2020 6 / 23

http://fieldtrip.fcdonders.nl/
https://doi.org/10.1371/journal.pone.0228937


‘slow’ motion velocity condition within the visual cortical areas (i.e. L/R cuneus, lingual, occip-

ital superior, middle occipital, inferior occipital, and calcarine areas according to the AAL atlas

[57]). The ‘slow’ condition was selected because the reliability of the GR was highest in this

condition. The ‘maximally suppressed’ voxel in the alpha-beta range was then defined as the

voxel with the strongest relative suppression of 7–15 Hz power. The weighted peak parameters

for the GR and the low-frequency response were calculated from the average spectra of the vir-

tual sensors in 26 voxels closest to, and including, the ‘maximally induced’ and ‘maximally

suppressed’ voxels, respectively, using the approach described for the sensor level analysis. For

each individual and condition, we also assessed the reliability of the pre- to post-stimulus

power changes at these 26 averaged voxels. The change was considered reliable if its absolute

peak value was significant with p<0.0001 (Wilcoxon signed rank test). The coordinates of the

voxels demonstrating the highest power changes were defined in MNI coordinates (S1 Tables

A and B in Supporting Information).

Suppression transition velocity and frequency

We have previously shown that GR power initially increases and then decreases as a function

of velocity of a high-contrast visual grating [18]. For each subject, we approximated the visual

motion velocity at which GR power was maximal—i.e., the ‘suppression transition velocity’

(STVel), as the centre of gravity of the GR power as a function of visual motion velocity:

STVel ¼ ðPow0
�0þ Pow1:2

�1:2þ Pow3:6
�3:6þ Pow6:0

�6:0Þ=ðPow0 þ Pow1:2 þ Pow3:6

þ Pow6:0Þ;

where ‘Pow’ is the center of gravity GR peak power in the respective velocity condition (i.e. 0,

1.2, 3.6 or 6.0˚/s). Although the STVel may not precisely correspond to the velocity for which

the GR was at maximum, it reflects the distribution of power between velocity conditions.

In a similar way, we approximated the GR frequency of the maximal GR–i.e. the suppres-

sion transition frequency (STFreq)—as the center of gravity of the GR power curve as a func-

tion of GR peak frequency for each subject (i.e., in the same way as we did for the STVel):

STFreq ¼ ðPow0
�Freq

0
þ Pow1:2

�Freq
1:2
þ Pow3:6

�Freq
3:6
þ Pow6:0

�Freq
6:0
Þ=ðPow0 þ Pow1:2

þ Pow3:6 þ Pow6:0Þ;

where ‘Freq’ and ‘Pow’ are the peak GR frequency and power in the respective velocity

conditions.

Evaluation of rank-order consistency

To evaluate rank-order consistency of GR parameters at different grating velocities and con-

trasts, we calculated two types of correlations: 1) between contrasts for the respective velocity

conditions and 2) between velocities, separately for each of the contrasts. Since frequency, but

not power, of the visual gamma oscillations is strongly affected by age in adults [18, 58], we cal-

culated its partial correlations with frequency, while using age as a nuisance variable.

Results

Gamma frequency range

Localization and reliability. Fig 2 shows group probability maps of the source localiza-

tion of the induced GR.

For the 100% contrast stimuli, significant (p<0.05) activation clusters with maxima in

visual cortical areas were found in all participants and motion velocity conditions. For the 50%
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contrast, significant activation clusters were absent (p>0.0001, see Methods for details) in one

participant for all velocity conditions (A007), in two participants for the ‘static’ condition

(A008 and A016), and in one participant for the ‘fast’ (6.0˚/s) condition (A008). The grand

average and individual GR spectra at the ‘maximally induced’ group of voxels are shown in

Figs 3 and 4. Aside from the exceptions listed above, increases in gamma power at the selected

voxels were significant in all subjects and conditions according to our criteria.

The peaks that were unreliable according to at least one of the criteria (i.e. either the

absence of an activated cluster or low probability (p>0.0001) of gamma power increase at the

selected voxels) were further excluded from analyses of the peak frequency and the position of

the maximally induced voxel, but not from analysis of the GR power. Note that exclusion of

the unreliable GR peaks affected the degrees of freedom in the corresponding ANOVAs pre-

sented below.

In the majority of cases, the voxel with the maximal increase in gamma power was located

in the calcarine sulcus (see S1A and S1B Table and for coordinates of the ‘maximally induced’

-10

10

0

10
0%

 c
on

tr
as

t

0°/s                    1.2°/s                 3.6°/s                  6.0°/s

50
%

 c
on

tr
as

t

-8

8

0

T-statistic

T-statistic

Fig 2. Grand average statistical maps of the cortical GRs to drifting visual gratings. The maps are given for the weighted peak gamma power, separately for the two

contrasts and four motion velocities. Positive signs of the t-statistics correspond to stimulation-related increases in gamma power. Note the different scales for the 50%

and 100% contrasts and that the magnitude of the GR was affected by both contrast and velocity.

https://doi.org/10.1371/journal.pone.0228937.g002
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voxel). There was a significant effect of Velocity on the ‘z’ coordinates (F(3,39) = 4.7, epsi-

lon = 0.84, p<0.05). In the ‘fast’ condition, the voxel with the maximal increase in gamma

power was located on average 2.6 mm more superior relative to the other 3 conditions (MNI Z

coordinate for the static: 6.1 mm, slow: 5.4 mm, medium: 5.2 mm, fast: 8.2 cm). There was also

a Velocity�Contrast interaction for the ‘y’ coordinate (F(3,39) = 3.6, epsilon = 0.59, p<0.05),

which is explained by a relatively more posterior source location of the gamma maximum in

the ‘fast’ and low-contrast condition than in the ‘fast’ and high-contrast condition (-95 vs -92

mm). Considering the small condition-related differences in the position of the voxel with the

maximal increase in gamma power (<6 mm, which was the size of the voxel used for the

source analysis), all the stimuli activated largely overlapping parts of the primary visual cortex.

Effects of contrast and velocity

Frequency: Fig 5A shows group mean GR peak frequency values for the two contrast and four

velocity conditions. The GR peak frequency was strongly affected by the motion velocity of the

grating (F(3,39) = 78.2, epsilon = 0.62, p<1e-6) and, to a lesser extent, by its contrast (F(1,13) =

14.3, p = 0.0023). Inspection of Fig 5A shows that an increase in velocity resulted in a substan-

tial increase of the GR peak frequency. For the full-contrast grating, the peak frequency

increased from 51.6 Hz (‘static’) to 68.6 Hz (‘fast’). For the 50% contrast, the respective values

were 51.1 and 63.0 Hz. Increasing contrast, on the other hand, led to a 5Hz increase in the

peak frequency of the GR to moving stimuli. The distributions of individual peak frequencies

are shown in S2 Fig in Supporting Materials.

Power: Fig 5B shows group mean GR peak power values for the two contrast and four

velocity conditions. There was a highly significant effect of Contrast (F(1,16) = 66.2,p<1e-6) on

GR peak power, which is explained by a generally higher GR power in case of high, as com-

pared to low, contrast. The significant effect of Velocity (F(3,48) = 9.3, epsilon = 0.46, corrected
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p = 0.003) is due to an initial increase in GR power from the static to slow condition (F(1,16) =

43.1, p<1e-5) followed by a decrease from the medium to the fast velocity condition (F(1,16) =

14.2, p<1e-4). Importantly, there was highly significant Contrast�Velocity interaction effect

(F(3,48) = 12.4, epsilon = 0.78, corrected p<1e-4). Contrast had a stronger effect on GR power

for the static and slowly moving stimuli, as compared to the faster (medium and fast) veloci-

ties. As a result, the maximum of the inverted bell-shaped power vs. motion velocity curve

moved to higher velocity in the low contrast condition, as compared to the full contrast one.

Generally, we confirmed our previous finding [18] of an inverted bell-shaped dependency

of GR power on the motion velocity of full-contrast gratings and found the similar bell-shaped

dependency for the gratings of 50% contrast. The significant Contrast�Velocity interaction

showed that the form of this bell-shaped curve was modulated by the luminance contrast in

such a way that the transition to GR suppression at low contrast occurred at a higher velocity.

Suppression transition. We further sought to investigate whether the shift to higher

velocities in the GR suppression transition point under low contrast is robust enough to be

detected at the individual subject level. For each subject, we calculated the ‘suppression transi-

tion velocity’ (STVel) as described in the Methods. Importantly, the STVel measure allows us

to characterize contrast-dependent shifts in a more rigorous manner than relying exclusively

on the discrete values of motion velocities for which the GR was maximal. Decreasing lumi-

nance contrast resulted in a reliable increase in STVel, and thus the GR suppression transition

point, in all 17 participants (F(1,16) = 202.0; p<1e-9; Fig 6A).

Lowering contrast led to slowing of gamma oscillations; we therefore also tested if, irrespec-

tive of contrast, the point of transition to GR suppression corresponds to a certain GR fre-

quency. To do this we calculated the individual ‘suppression transition frequencies’ (STFreq)

as described in the Methods. The STFreq was slightly, but significantly, lower for the 50% than

for the 100% contrast (60.5 Hz vs 63.1 Hz; F(1, 13) = 10.2, p = 0.007; Fig 6B).

Rank-order consistency of gamma parameters. The correlations between GR frequen-

cies measured in different contrast conditions were generally very high for GR frequency (all

R’s>0.89; all p’s <0.0001), with the noticeable exception of the static stimulus (S3 Table). For

power, all the between-contrast correlations were modestly or highly reliable (Fig 7A).
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The correlations between velocity conditions were also generally high for frequency (S3

Table), but varied in case of power. The power of the GR elicited by static stimuli did not pre-

dict the power of the GR elicited by gratings moving with ‘medium’ or ‘fast’ velocities (Fig 7B).

The results were very similar for the two contrasts (see S1 Fig for the both contrasts).

The correlation between STVel values measured at the 50% and 100% contrast was high

(Fig 7C, STVel: R(17) = 0.91, p<1e-6), suggesting that this measure reliably characterises a sub-

ject’s rank position in the group, irrespective of contrast changes.

To summarize, rank-order consistency for GR frequency was generally high across all con-

ditions except for stationary stimuli. For GR power, a rank-order consistency between station-

ary and medium-to-fast moving gratings was lacking.

Alpha-beta frequency range

Localization and reliability. Fig 8A shows group probability maps for source localization

of the alpha-beta response to the moving visual gratings.

Clusters of significant (p<0.05) alpha-beta power suppression were found in nearly all sub-

jects and conditions. For the 100% contrast stimuli, the clusters were absent in two subjects: in

one subject in all velocity conditions and in yet another subject in the static condition. The

suppression measured at the selection of the ‘maximally suppressed’ voxels was significant in

all motion velocity conditions at 100% contrast. For the 50% contrast stimuli, a significant

cluster for alpha-beta suppression was absent in only one subject and only in response to the

static stimulus. In yet another subject, the alpha-beta suppression measured at the voxels’

selection was not significant (p>0.0001) for the 1.2˚/s condition. The grand average spectra in

the alpha-beta range for the maximally suppressed voxels are shown in Fig 8B.
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ANOVA with factors Contrast and Velocity revealed neither significant main effects of

Contrast and Velocity nor Contrast�Velocity interaction for the ‘x’, ‘y’, or ‘z’ coordinates of the

‘maximally suppressed’ voxel (all p’s>0.15).

We then used ANOVA with factors Band (alpha-beta vs gamma), Contrast, Velocity to

compare the positions of the voxels with a maximal induced power changes in gamma and

alpha-beta frequency ranges. The effect of Band was highly significant for the absolute value of

the ‘x’ coordinate (F(1,16) = 81.9, p<1e-6). The maximally suppressed alpha-beta voxel was

positioned substantially more laterally (on average 25 mm from the midline) than that of the

maximally induced gamma voxel (on average 8 mm from the midline). As can be seen from

S2A and S2B Table, the maximally suppressed alpha-beta voxel was more frequently located in

the lateral surface of the occipital lobe than in the calcarine sulcus or cuneus region. No Band

related differences in the y or z coordinates were found.

Effects of contrast and velocity. To check if the magnitude or peak frequency of the

alpha-beta suppression response depends on the properties of the stimulation, we performed

ANOVA with factors Contrast and Velocity. The peak frequency of the alpha-beta suppression

sightly, but significantly, increased with increasing motion velocity (Velocity: F(3,36) = 7.1, ε =

0.57, p<0.01; 11.8 Hz for 0˚/s, 11.9 Hz for 1.2˚/s, 12.0Hz for 3.6˚/s, 12.2 Hz for 6.0˚/s). There

was no significant effects of Contrast or Velocity or their interaction effect for the alpha-beta

suppression magnitude (all p’s>0.5).
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Discussion

We tested for the combined effect of contrast and velocity of drifting visual gratings on the

power of induced MEG gamma oscillations. For both full-contrast and low-contrast condi-

tions, the GR power initially increased with increasing motion velocity and then decreased at

yet higher velocities, which is consistent with a previous report [18]. Lowering contrast led to a

highly reliable shift of the gamma suppression transition point to higher velocities. This find-

ing points to an additive effect of contrast and velocity and suggests that intensive excitatory

input plays a crucial role in GR suppression. The effects of contrast and velocity were further-

more specific for the GR power and were absent in the alpha-beta frequency range.

The role of excitatory drive in induced gamma response

In line with the previous studies on humans and non-human primates [12, 14–16, 59], we

found that the peak frequency of the visual GR increased with increasing luminance contrast

(Fig 5A). Also in accordance with a number of previous reports [16, 18, 60–62], the GR peak

frequency increased with increasing velocity of visual motion (Fig 5A). The increase in the GR

peak frequency at high contrasts and fast velocities of visual motion is likely to be a consequence

of a growth of tonic excitation of I-neurons that control gamma oscillation frequency [4].

The low-contrast stimuli, as compared with the high-contrast ones, induced GRs of lower

power, which was especially evident at slower velocities (Fig 5B). The weaker GR power at

lower contrast could be explained by a reduced number of neurons involved in gamma genera-

tion [17] and/or poor neural synchronization across distributed cortical populations [63]. The

stronger extrastriate feedback signal to V1 produced by large high-contrast gratings [64] has

been suggested to facilitate visual gamma synchrony at the macroscopic level [63]. Therefore,

the low power of GR at low contrast could be partially explained by lower top-down modula-

tory input to V1.

The most important finding of our study is the effect of luminance contrast on the bell-

shaped velocity-related changes in GR. Although at both low and high contrasts, the initially

facilitative effect of increasing velocity was substituted by a suppressive one, this shift occurred

at a higher velocity for the low contrast condition (Figs 3 and 6A). This contrast-dependency

of the STVel is a robust phenomenon that we observed in all subjects that we tested (Fig 6A).

In general, the results support the ‘excitatory drive’ model, which predicts that GR suppres-

sion should occur at a certain high level of excitatory drive, which is achieved at a relatively

higher velocity when contrast is reduced. Concurrently, our results do not support the ‘velocity

tuning’ hypothesis. Animal studies have shown that at lower contrasts, the majority of respon-

sive neurons in V1 [32, 47, 48], LGN [47], and even the retina [65, 66] are tuned to lower tem-

poral frequencies. Therefore, if the maximal GR would correspond to an ‘optimal’ velocity, the

GR suppression transition point would have shifted to a lower visual motion velocity when

contrast is reduced.

State and trait dependency of visual gamma parameters. Although being mostly geneti-

cally determined [9] and highly reproducible across time [8, 62], visual gamma oscillations are

strongly dependent on the properties of the visual stimulation. This raises the question of

whether gamma measured in response to different visual stimuli—e.g. those having different

contrasts or drifting with different rates—reflect the same or different neurophysiological

traits.

Several studies that sought to find a link between visual gamma oscillations and processes

of neural E and I in the human brain [67–70] analyzed GRs in a single experimental condition.

Such an approach assumes that the features of the GR do not substantially vary with stimulus

properties in terms of the rank-order consistency of the individual values. Recently, van Pelt
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et al [16] reported high between-condition correlations for GR peak frequency and power

measured at two contrasts (50% and 100%) and at three velocities (0, 0.33˚/s, 0.66˚/s) that sup-

port this view. However, the relatively slow velocities chosen by van Pelt et al are all likely to

correspond to the ascending branch of the bell–shaped curve that characterizes the velocity-

dependency of GR power. Using a broader range of velocities, we report a lack of correlations

between the amplitudes of the GR caused by static and rapidly moving (3.2˚/s, 6.0˚/s) stimuli

(Fig 7B). This suggests that the strength of the GR at the ascending and descending branches

of the bell-curve reflects different neural traits and is mediated by distinct neural processes

that remain largely unknown.

In the context of continuing the search for the functional relevance of visual gamma oscilla-

tions, it is important that there was a remarkably strong and highly reliable correlation

between individuals’ GR suppression transition velocities at the high and low contrasts (Spear-

man R(17) = 0.91). This points to a high within-subject reliability of individual STVel values

across a range of experimental conditions. As we discuss in the following section, this rela-

tional gamma-based measure may reflect the regulation of the E-I balance in the visual cortex.

GR suppression transition point and E-I balance in the visual cortex

Active states of the brain associated with processing of sensory information are usually charac-

terized by a relative predominance of high-frequency oscillations and relative suppression of

low-frequency oscillations [49]. In light of this general phenomenon, the suppression of the

GR at high levels of input drive (high contrast and fast velocity) can appear counterintuitive.

However, some modeling studies do predict that gamma synchrony should cease at a suffi-

ciently high level of excitatory drive where I-neurons are excessively excited [43, 45]. The

resulting asynchronous activity of the highly excited I neurons is particularly effective in down-

regulating activity in the excitatory principle cells [43], and therefore play an important role in

homeostatic regulation of the neural E-I balance. Following this line of reasoning, the transi-

tion to suppression of the gamma response and/or shallower slope of gamma suppression at a

relatively higher level of excitatory drive could reflect less effective inhibition. In indirect sup-

port of this assumption, we have recently described a lack of velocity-related gamma suppres-

sion in a subject with epilepsy and occipital spikes [18]. A link between reduced velocity-

related GR suppression and sensory hypersensitivity [71] further supports this conjecture.

The shape of the GR modulation curve and, in particular, the ‘suppression transition veloc-

ity’ parameter evaluated in the present study, may provide important information about regu-

lation of the E-I balance in the visual cortex. Future studies in clinical populations

characterized by elevated cortical excitability would help to assess the potential value of GR

suppression as a biomarker for impaired regulation of the E-I balance. In particular, visual

gamma oscillations are becoming a popular subject of research as a potential biomarker of an

altered E-I balance in neuropsychiatric disorders, such as schizophrenia and autism spectrum

disorders [7, 72–75]. In a majority of these clinically oriented studies, the parameters of

gamma oscillations (power, frequency) were investigated in a single experimental condition.

Our present and previous [18, 71, 76] results suggest that changes of gamma parameters caused

by changes in sensory input intensity may be particularly informative for detecting E-I balance

abnormalities in neuro-psychiatric disorders.

Magnitude of the alpha-beta suppression is not modulated by excitatory

drive

The contrast/velocity-related changes in alpha-beta power were clearly different from the

effects in the gamma range. First, whereas the maximum of the GR was localized near the
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calcarine sulcus, the alpha-beta suppression occurred in more lateral areas of the occipital

lobes (Fig 2 vs. Fig 8; see also S1 and S2 Tables for localization of the maximal effect voxels).

This finding agrees with other studies that found more lateral changes in the alpha-beta than

in the gamma frequency range [8, 77, 78]. Second, neither the contrast nor the velocity of the

gratings affected power in the alpha-beta frequency range. A lack of such effects conflicts with

the idea that variation in alpha power can be used as an index of the excitatory state of the

visual cortex. On the other hand, our findings do not contradict the numerous results associat-

ing alpha-band activity with attention-related processes [79–82].

Limitations of the study and directions for future research

Limitations in this study provide motivation for future studies. Firstly, although our findings

favor ‘the excitatory drive’ explanation of the bell-shaped dependency of gamma oscillations

power on visual motion velocity, further studies are needed to prove this hypothesis. In partic-

ular, the role of the E-I balance in regulating MEG GSS have to be verified using other meth-

ods, e.g. via manipulating cortical excitability with transcranial direct current stimulation

(tDCS), transcranial magnetic stimulation (TMS), or pharmacological drugs while measuring

GSS before and after intervention. Invasive experiments in animals would also provide a

robust validity check of this hypothesis. Computer modeling could further contribute to

understanding neural mechanisms underlying changes in gamma parameters observed in the

present study. Secondly, although the effect of contrast on the ‘suppression transition point’

was very reliable (17 of 17 subjects), replication of such findings in another sample would be

desirable.

Conclusions

Our findings provide strong support for the hypothesis linking velocity- and contrast-related

attenuation of gamma response to the strength of excitatory drive. At the same time, they indi-

cate that ‘velocity tuning’ of V1 neurons does not play a primary role in regulating the magni-

tude of the gamma response.

We anticipate that suppression transition velocity (or related measures) may appear useful

to reveal E-I dysfunctions in brain disorders. Apart from having theoretical relevance, this

index evades several of the limitations of peak gamma amplitude and frequency parameters.

Firstly, it is inherently relational, and is therefore less sensitive to inter-individual differences

in cortical anatomy and SNR. Secondly, it circumvents the ambiguity related to single-condi-

tion assessments of gamma amplitudes, which do not always correlate with each other (e.g.,

when measured with static vs. ‘fast velocity’ conditions). Thirdly, its individual values have

remarkable rank-order consistency when measured at different contrasts, and therefore should

have high test–retest stability. Altogether, these considerations suggest that the gamma sup-

pression transition velocity has a translational potential as an index of the E-I balance for

informing clinical practice and trials.
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