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Mendelian randomization (MR) is a method for estimating the causal relationship between an exposure and an

outcome using a genetic factor as an instrumental variable (IV) for the exposure. In the traditional MR setting, data

on the IV, exposure, and outcome are available for all participants. However, obtaining complete exposure data

may be difficult in some settings, due to high measurement costs or lack of appropriate biospecimens. We used

simulated data sets to assess statistical power and bias for MR when exposure data are available for a subset (or

an independent set) of participants. We show that obtaining exposure data for a subset of participants is a cost-

efficient strategy, often having negligible effects on power in comparison with a traditional complete-data analysis.

The size of the subset needed to achieve maximum power depends on IV strength, and maximum power is

approximately equal to the power of traditional IV estimators. Weak IVs are shown to lead to bias towards the null

when the subsample is small and towards the confounded association when the subset is relatively large. Various

approaches for confidence interval calculation are considered. These results have important implications for reduc-

ing the costs and increasing the feasibility of MR studies.

epidemiologic methods; instrumental variable; Mendelian randomization

Abbreviations: CI, confidence interval; IV, instrumental variable; MR, Mendelian randomization; SE, standard error; SUR, seemingly

unrelated regression.

Mendelian randomization (MR) is a study design used to
test or estimate the causal relationship between an exposure
and an associated outcome using data on inherited genetic
variants that influence exposure status (1, 2). Because asso-
ciations between exposures and outcomes are potentially attri-
butable to unmeasured confounding and reverse causation,
using a genetic determinant of the exposure as an instrumen-
tal variable (IV) allows the causal component of the observed
association to be estimated. An IV is required to be 1) associ-
ated with the exposure, 2) independent of the outcome condi-
tional on the exposure andconfounders of the exposure-outcome
association (measured or unmeasured), and 3) independent
of all unmeasured confounders of the exposure-outcome asso-
ciation (1–3). Genetic variants are attractive as candidate IVs
because they are randomly assigned at conception and are not
affected by potentially confounding environmental factors.

If the exposure and outcome of interest are continuous
traits, and a single IV is used, the MR estimator can be con-
ceived of as a ratio of 2 estimates: the “reduced-form” esti-
mate (the coefficient for the association between the IV and
the outcome) and the “first-stage” estimate (the coefficient
for the association between the IV and the exposure). In the
traditional MR setting, these 2 estimates are obtained using
a single sample, where data on the IV, exposure, and outcome
are available for all participants. However, in practice, com-
plete data may not always be obtainable. For researchers
conducting MR investigations in the context of large genetic
association studies, it may not be possible to obtain exposure
data for all participants. For example, if the exposure is a
biomarker, measurements may be prohibitively expensive to
conduct for a large study or impossible to conduct because
of the lack of appropriate biospecimens available for analysis
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(for example, lack of prospectively collected or adequately pre-
servedsamples forbiomarkermeasurement).Thus, theexposure
of interest may only be measurable for a subset of individuals.
In this paper, we use simulated data to explore the implica-

tions of incomplete exposure data for statistical power and bias
in MR studies using “subsample IV estimators.”We show that
generating exposure data for a subset of study participants,
rather than all participants, does not substantially decrease
power when the IV is relatively strong. In fact, generating
exposure data for all participants can be an extremely cost-
inefficient strategy. We show that this concept also applies
to “2-sample IV estimators” (4–6), where the first-stage and
reduced-form estimates are obtained from independent (non-
overlapping) samples drawn from the same population. In
addition, we demonstrate the effects of weak IVs (genetic
variants that explain a small proportion of the variation in the
exposure) in the context of subsample and2-sample IVmethods
and compare various methods for estimating standard errors
and confidence intervals.
Large sample sizes are needed for MR studies (7, 8), and

the costs associated with exposure measurement can be sub-
stantial. The subsample and 2-sample IV approaches described
here have broad relevance forMR investigations of exposures
that are expensive or impossible to measure for large sam-
ples, including biomarkers. Our findings should increase the
feasibility and cost-efficiency of MR, enabling the use of
existing genetic data sources, such as large-scale genetic asso-
ciation studies, for MR analyses.

MATERIALS ANDMETHODS

We define subsample and 2-sample IV estimation as follows.
Assuming that data on the IV (G) are available for all partici-
pants, subsample IV estimation can occur when data on the
exposure (X) are available for only a subset of participants but
outcome data (Y) are available for all participants. The samples
with data on X and Y have sample sizes defined as nX and nY,
respectively. Subsample IV estimation could also occur when
data on Y are available for a subset of participants but data on
X are available for all participants, although this strategy is not
considered further here. Two-sample IV estimation occurs
when data on G and X are available for one sample and data on
G and Y are available on an independent sample, such that no
participants have data on both X and Y.
We used simulated cohort data sets to investigate the effect

of varying the sample size for subsample and 2-sample IV
estimators on power, precision, and bias. For each simulated
scenario, we generated 10,000 data sets with 10,000 obser-
vations on 4 variables: a genetic susceptibility score used as
the IV (G), an exposure (X) influenced by G, an outcome (Y)
influenced by X, and a confounding variable (U), assumed
to be unmeasured, with effects on both X and Y. G and U
were generated randomly from a standard normal distribution.
X was also a randomly generated standard normal variable
with linear effects exerted by G and U:

xi ¼ βGXgi þ βUXui þ εXi with εXi ∼ Nð0; 1Þ: ð1Þ

X was standardized to have a variance of 1. Values of βGX
were chosen to produce specific R2 values for the first-stage

regression of X on G using the following equation:

R2
GX ¼ Var(βGXG)

VarðβGXGÞ þ Var(βUXU)þ VarðεXÞ : ð2Þ

Y was a randomly generated standard normal variable with
linear effects of X and U:

yi ¼ βXYxi þ βUYui þ ρYi with ρYi ∼ Nð0; 1Þ: ð3Þ

In order to vary nX, X values were randomly set to missing.
IV strength in a given data set is measured by theF statistic from
the first-stage regression of X on G. IVs with an average
first-stage F value less than 10 are conventionally considered
weak, although this threshold is arbitrary, and some bias per-
sists even for nonweak IVs (9). F is defined as the ratio of
the variance explained by the model to the residual variance
in the model. F can be expressed as a function of the first-
stage R2, the sample size (n), and the number of IVs (k):

F ¼ R2ðn� 1� kÞ
ð1� R2Þk : ð4Þ

Thus, F increases as R2 and n increase and as k decreases.
The IV used here is continuous; however, our results apply
to any IV or IV set with the same first-stage R2, including
categorical or ordinal IVs and multi-IV scenarios (7) (see
Discussion).
We conducted 4 sets of simulations in order to assess power

and bias for subsample IV estimators. In order to assess how
power varies according to the size of the subsample (simula-
tion 1), we varied nX from 25 to 10,000 and βXY from 0 to 0.3,
with nY set to 10,000 and the first-stage R2 set to 0.025. In
order to assess how IV strength affects power (simulation 2),
we varied nX from 25 to 10,000 and the first-stage R2 from
0.002 to 0.05, with nY set to 10,000 and βXY set to 0.2. In
order to assess bias when IVs are weak (simulation 3), we
varied the nX:nY ratio from 0.1 (a small subsample) to 1.0 (the
complete-data scenario) and varied the average first-stage F
statistic from approximately 1 to approximately 20, with βXY
set to 0.1. Varying of F was accomplished as follows: For
each nX:nY ratio, the first-stage R

2 was held constant (to a value
that produced an average first-stage F of 20 when nY = 10,000)
and nYwas varied from 100 to 10,000, with the value nX deter-
mined by the nX:nY ratio. This approach allowed us to assess
weak IV biases for a wide spectrum of values for F and nX:nY.
We also evaluated bias for weak IVs by varying nX:nY (from
0.1 to 1.0) and R2 (from 0.001 to 0.03), with βXY set to 0.1
and nY set to 10,000, 3,000, or 1,000 (simulation 4). Similar
simulations were also conducted for 2-sample IV estimators,
where the first-stage sample (nX) and the reduced-form sample
(nY) consisted of independent sets of participants. Confounder
effects βUX and βUY were set to 0.2 in simulations 1 and 2,
leading to positive confounding. βUX and βUYwere set to 0.3 in
simulations 3 and 4 to better demonstrate weak IV bias. Simu-
lations were repeated in the absence of confounding, although
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it is known that X-Y confounding does not produce substantial
bias for traditional IV analyses when IVs are strong (7).

MR estimates were obtained using the Wald ratio method
(1). For each simulation, 2 linear regressions were performed:
a regression of X on G (the first-stage regression) and a regres-
sion of Y onG (the reduced-form regression). The ratio of these
estimates (the Wald estimate) and corresponding confidence
intervals were obtained using the suest and nlcom commands
in Stata (10). The suest (seemingly unrelated regression (SUR))
command combines the regression estimates into 1 parameter vec-
tor and a simultaneous sandwich (robust) variance-covariance
matrix. The nlcom command computes standard errors and
confidence intervals for nonlinear combinations of parame-
ter estimates using the delta method. We did not use the tra-
ditional 2-stage least-squares procedure (11), because this
method discards persons with missing data on X, whereas
the Wald method can include such persons in the reduced-
form regression. Power was defined as the proportion of the
10,000 data sets in which a statistically significant effect of
X on Y was observed (2-sided P < 0.05).

For 3 randomly chosen data sets from simulation 2, com-
prising strong, moderate, and weak IV scenarios, we com-
pared 5 strategies for calculating standard errors and 95%
confidence intervals for the MR estimate. First, we used a
sequential regression approach, where linear regression was
used to generate a coefficient for the G-X association; this
coefficient was then used to generate predicted values of X
for all persons with data on Y (nY). The association between
the predicted X and Y was assessed using linear regression
with robust standard errors to mitigate the failure of the
method to account for the uncertainty in the predicted X. We
also used the SUR/delta method described above; Fieller’s
theorem, which is a method for calculating confidence inter-
vals for a ratio of 2 normally distributed variables (12); and
a Bayesian method using weakly informative prior distribu-

tions (13). Finally, we used a bootstrap method for confi-
dence interval estimation in which 1,000 random samples
equal in size to the original sample were drawn, with replace-
ment, from each of the samples used to generate the first-
stage and reduced-form estimates.

RESULTS

Simulation 1

For a study of 10,000 persons with data on Y, Figure 1
(left panel) shows how varying the size of the subsample
(nX) affects power to detect a significant effect of X on Y. For
all effect sizes considered, the power of the subsample IV
estimator has an upper bound approximately equal to the
power of the reduced-form estimator (shown as horizontal
dashed lines), which is approximately equal to the power for
a traditional IV approach for these scenarios, where com-
plete data are available for all nY individuals. As nX increases,
power approaches this upper bound, and gains in power
diminish. For these scenarios, our results indicate that more
than 90% of the maximum power can be achieved by obtain-
ing exposure data on only 20% of the sample. Figure 1
(right panel) shows the standard errors for these scenarios.
In general, the standard errors for subsample IV estimates
are larger when the effect size is larger, and standard errors
decrease as nX increases. Standard errors converge to the full
analysis standard error of 0.063 for all effect sizes as nX
approaches nY. Using a 2-sample IV approach, results are very
similar (see Web Figure 1, available at http://aje.oxfordjournals.
org/). Power for the 2-sample approach appears to be very
slightly lower than that for the subsample approach, and
standard errors do not converge to a common value as nX
approaches nY.

Figure 1. Power (left) and median standard error (right) of the subsample instrumental-variable (IV) estimate for different values of the causal
effect size (βXY) and the sample size of the first-stage regression (nX), with a strong IV (R2 = 0.025), a sample size for the reduced-form regression
(nY) of 10,000, and a confounding variable with equal effects on X and Y (βUX = βUY = 0.2). βXY values are 0.0 (filled diamond), 0.05 (open
diamond), 0.1 (filled triangle), 0.15 (open triangle), 0.2 (filled square), and 0.3 (open square).
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Simulation 2

When we vary the strength of the IV (as measured by R2),
holding the effect size constant at 0.2, we observe that as R2

decreases, power approaches its maximum more slowly as
nX increases (Figure 2). Thus, the value of nX needed to obtain
more than 90% of the maximum power is higher when the
first-stage R2 is low. In the scenarios simulated here, to achieve
greater than 90% power, nX needed to be approximately 2,000
(20% of nY), 3,500 (35%), 5,000 (50%), and 7,500 (75%)
for first-stage R2 values of 0.015, 0.01, 0.007, and 0.004,

respectively. Using a 2-sample IV approach, results were very
similar (Web Figure 2), with slightly lower power for most sce-
narios compared with the subsample IV approach.

Simulation 3

It is well known that traditional “complete-data” IV esti-
mators are biased towards the confounded association and
that bias is most severe when the IV is weak (7, 14). In con-
trast, 2-sample IV estimates are known to be biased towards

Figure 2. Power (left) and median standard error (right) of the subsample instrumental-variable (IV) estimate for different values of the first-stage
R2 and the sample size of the first-stage regression (nX), with a constant effect size (βXY = 0.2), a sample size for the reduced-form regression (nY)
of 10,000, and a confounding variable with equal effects on X and Y (βUX = βUY = 0.2). First-stage R2 values are 0.002 (filled diamond), 0.004
(open diamond), 0.007 (filled triangle), 0.01 (open triangle), 0.0015 (filled square), 0.2 (open square), 0.03 (filled circle), and 0.05 (open circle).

Figure 3. Bias in the subsample instrumental-variable (IV) estimate in confounded (left) and unconfounded (right) scenarios for different values
of the average first-stage F statistic and the relative size of the subsample used in the first-stage regression (nX:nY), with a constant causal effect
size (βXY = 0.1) and a confounding variable with equal effects on X and Y (βUX = βUY = 0.3). Values for nX:nY are 1 (filled diamond), 0.75 (open
diamond), 0.5 (filled triangle), 0.25 (open triangle), and 0.1 (filled square). The sample size for the reduced-form regression equation (nY, on the
right vertical axis) is shown as dots connected with a dashed line.
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the null, even when the confounded estimate is biased away
from the null (4, 5). In Figure 3 (left panel), we show that
the direction of the weak IV bias for subsample MR analyses
depends on the nX:nY ratio. If nX represents a small percentage
of nY, bias moves towards the null as F decreases, similar to
the 2-sample case. In contrast, if the nX:nY ratio is close to 1,
bias moves towards the observational estimate as F decreases,
similar to the complete-data scenario. The total number of par-
ticipants (nY) is shown as a diagonal line, and the first-stage R

2

is fixed for each ratio. Figure 3 (right panel) shows the same
simulations conducted in the absence of confounding; hence,
no bias towards the confounded association is observed. For
weak IVs, bias towards the null is present for all subsample
scenarios, and the estimate moves closer to the null as nX:nY
decreases. For the 2-sample approach (Web Figure 3), bias
towards the null increases as F decreases, regardless of the
value of nX:nY. This is true for both the confounded and
unconfounded scenarios.

In the traditional complete-data setting, weak IV bias can be
explained as resulting from a correlation between the 2 terms in
the Wald estimator: the first-stage and reduced-form estimates
(14). In the 2-sample setting, these estimates are uncorrelated,
since they are derived from different data sources. In this case,
imprecision in the estimation of the G-X and G-Y associations
is analogous to nondifferential measurement error in an obser-
vational estimate and results in bias towards the null similar to
regression dilution bias (15). In the subsample setting, the bias
towards the null and the bias in the direction of the observa-
tional association (which is usually in the same direction as the
causal effect when this is present) can balance each other out,
as demonstrated in the left-hand panel of Figure 3 when the
ratio nX:nY is 0.5. The precise ratio required to give unbiased
estimates is likely to depend on the characteristics of a given
example rather than to be a generalizable result.

Simulation 4

We assessed weak IV bias for subsample IV scenarios
varying the R2 for the regression of X on G (rather than F),
as R2 may be a more meaningful parameter to MR practi-
tioners (Figure 4). However, because weak IV bias is related
to F rather than to R2, bias does not vary with the nX:nY ratio
in a uniform way, since increasing nX both increases the pro-
portion of participants in the subsample (leading to a greater
bias towards the confounded association) and increases the
F statistic, leading to a reduction in weak IV bias. Thus,
weak IV bias towards the confounded association is much
more pronounced when nY is small, because nY limits the
size of nX, reducing the F statistic.

Calculating standard errors and confidence intervals

All simulations were conducted using SUR and the delta
method (with sandwich variance estimates) for calculating con-
fidence intervals. Stata code for using this method is provided
in the Web Appendix. Table 1 shows results obtained using
several other methods for standard error and confidence inter-
val estimation, for three randomly selected subsample data
sets and three 2-sample data sets. For both the subsample and
the 2-sample strong IV scenarios, the SUR/delta method,

sequential regression, Fieller’s theorem, and theBayesianmethod
produced very similar confidence intervals, with the bootstrap

Figure 4. Bias in the subsample instrumental-variable (IV) estimate
for different values of the first-stage R2 and the relative size of the
sample used in the first-stage regression (nX:nY). The sample size for
the reduced-form regression equation (nY) is 10,000 (top), 3,000 (middle),
and 1,000 (bottom), with a constant causal effect size (βXY=0.1) and a
confounding variable with equal effects on X and Y (βUX= βUY=0.3).
Values for nX:nY are 1 (filled diamond), 0.75 (open diamond), 0.5 (filled
triangle), 0.25 (open triangle), and 0.1 (filled square).
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method producing slightly wider confidence intervals. For
the moderate IV and weak IV scenarios, the delta and sequen-
tial regression methods produce similar results; however, the
Fieller, bootstrap, and Bayesian confidence intervals become
substantially wider than the confidence intervals produced
by these methods and often asymmetrical in the presence of
a weak IV. This reflects the true sampling distribution of
the IV estimate with a weak IV, which has long tails and is
asymmetrical and is modeled poorly by a normal distribution.
In the complete-data MR setting, the reliance on normality
assumptions for constructing confidence intervals has been
shown to lead to poor coverage properties with weak IVs (13).
In our work, coverage under the null was not underestimated
when IVs were strong, but it was overestimated, with increas-
ingly conservative confidence intervals, as IV strength decreased
(Web Table 1).

DISCUSSION

In this paper, we have described how subsample and 2-
sample IV methods can be used to increase the feasibility
and cost-efficiency of MR studies. Our primary conclusion
is that for epidemiologic studies with available genetic data
and outcome data, MR investigations can be conducted by
generating exposure data for a limited representative sample
of the study population with very little loss of power as com-
pared with a study with exposure data for all participants.
For example, in our simulated data set of 10,000 partici-
pants, a realistic sample size for large-scale genetic asso-
ciation studies, obtaining exposure data for approximately
20% of the full sample achieves maximum power when the
first-stage R2 is greater than 0.015. This finding is of critical

relevance for causal evaluations of exposures that are expen-
sive to measure or impossible to obtain for the full set of partici-
pants due to lack of prospectively collected or adequately
preserved samples. For IVs with weaker effects on the expo-
sure of interest (R2 < 0.015), a larger subsample with expo-
sure data may be required. Additional analytical information
clarifying the relationships among nY, nX, R

2, and power is
provided in the Web Appendix.
We have also demonstrated that the upper limit for power

in an MR study is approximately the power for the reduced-
form estimator, although this upper limit appears to be slightly
higher for subsample IV estimators than for 2-sample IV
estimators. This may be due to the slight residual bias in the
direction of the observational estimate in the subsample case
and in the direction of the null in the 2-sample case. Thus, in
theory, exposure data are not needed for a fully powered test
of the hypothesis that an exposure is causally related to an
outcome if the reduced-form estimator is used (2). However,
the reduced-form method does not produce a causal estimate
for the effect of the exposure on the outcome and so does not
allow the researcher to know whether a null finding is due to
lack of a causal association or lack of power (for example, if
the confidence interval for the IV estimate still includes the
observational estimate).
Because the reduced-form power is the approximate upper

limit for power, power for MR is most efficiently increased by
increasing the size of the sample used for estimation of the
reduced-formequation,ratherthanthefirst-stageequation(assum-
ing exposure data are available for a sufficient subset of par-
ticipants). This conclusion is somewhat intuitive because the
reduced-form association (the numerator of theWald estimator)
is typically quite weak and difficult to estimate with statistical

Table 1. AComparison of Different Methods of Estimating 95% Confidence Intervals for Selected Simulated Data Setsa

Strong IV (R2 = 0.025)
(Theoretical F = 50)b

Moderate IV (R2 = 0.005)
(Theoretical F = 10)

Weak IV (R2 = 0.002)
(Theoretical F = 5)

β SE CI β SE CI β SE CI

Subsample IV approach

Delta method 0.148 0.057 0.037, 0.259 0.152 0.132 −0.108, 0.411 0.081 0.161 −0.234, 0.397

Sequential regressionc 0.055 0.039, 0.256 0.128 −0.099, 0.403 0.159 −0.231, 0.394

Fieller’s theorem N/A 0.040, 0.272 N/A −0.108, 0.562 N/A −0.291, 0.602

Bootstrapd 0.068 0.014, 0.280 0.137 −0.117, 0.421 0.551 −0.999, 1.162

Bayesian 0.143 0.056 0.040, 0.258 0.174 0.289 −0.161, 0.778 0.089 0.443 −0.563, 0.975

2-sample IV approach

Delta method 0.117 0.068 −0.015, 0.250 0.051 0.119 −0.182, 0.284 −0.086 0.163 −0.405, 0.232

Sequential regressionc 0.065 −0.011, 0.245 0.118 −0.181, 0.282 0.160 −0.440, 0.227

Fieller’s theorem N/A −0.012, 0.267 N/A −0.201, 0.336 N/A −0.610, 0.280

Bootstrapd 0.071 −0.023, 0.257 0.138 −0.221, 0.322 0.997 −2.041, 1.868

Bayesian 0.119 0.072 −0.013, 0.273 0.055 0.169 −0.232, 0.390 −0.100 0.456 −1.012, 0.554

Abbreviations: CI, confidence interval; IV, instrumental variable; N/A, not applicable; SE, standard error.
a The simulated data sets consisted of 10,000 persons with data on G and Y and 2,000 persons with data on G and X. The true effect of X on Y

was set to 0.1, and a confounding variable U had the effect of 0.2 on both X and Y.
b Theoretical F values were obtained using the following equation: F =R2 (nX− 1)/(1−R2).
c For the second-stage regression (of sequential regression), robust SEs are reported.
d Bootstrapping was conducted using 1,000 replications, with samples of size nX and nY randomly selected (with replacement) from the original

samples of size nX and nY.
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confidence, since the association between the IV and the out-
come is mediated entirely through the exposure. In contrast,
the first-stage association (the denominator) should be well-
established and easily detectable in a large epidemiologic study.

Thus, the potential gains in cost-efficiency we describe in
this paper relate only to reducing the amount of exposure data
that are needed. For most MR studies, genetic data and out-
come data will be needed for very large numbers of partici-
pants to achieve adequate power (7), regardless of how much
exposure data are generated. This is a major challenge for
MR study design, especially considering that most genetic
IVs are not especially strong. A possible solution to this is the
use of multiple IVs, when available (7, 16).

Our simulations also show that similar efficiency gains
can be achieved using 2-sample IV estimators, where the first-
stage and the reduced-form estimation are conducted using
data fromnonoverlapping sets of studyparticipants.Thevalid-
ity of this method depends strongly on the assumption that
the first-stage sample and the reduced-form sample are ran-
domly drawn from the same population (similar to the assump-
tion for subsample IVs, where the first-stage sample is a random
sample of the reduced-form sample).

As compared with standard IV estimators, subsample IV esti-
mators exhibit different behavior in the presence of weak IVs.
For traditional IV estimators, estimates are biased towards the
confounded observational association. In contrast, subsample IV
estimators are biased towards the nullwhen the subsample is rela-
tively small, similar to 2-sample IVestimators (5). However, they
are biased towards the confounded associationwhen the subsam-
ple is increased, similar to traditional IV estimators.

As a guide to practitioners,we describe avarietyofmethods
for obtaining standard errors and confidence intervals for sub-
sample and 2-sample IVestimators.When the IV is strong, the
SUR/delta method used in this work is appropriate and pro-
duces quite similar confidence intervals compared with the
other methods examined. However, for moderate and weaker
IVs, the Fieller, bootstrap, and Bayesian confidence intervals
are considerably larger than those derived from the SUR/
delta methods and sequential regression. The SUR/delta and
sequential regression methods are problematic for weak IV
scenarios, since they do not adequately account for the error
that accompanies estimation of the effect of the IV on the
exposure, and they assume that the sampling distribution of
the IV estimate is normal. Thus, in the presence of a weaker
IV,more robustmethods forconfidence interval calculationmay
be needed, such as bootstrapping. Unfortunately, bootstrapping
was not computationally feasible for the simulation-basedwork
presented here. Fieller’s theorem is a straightforward alterna-
tive strategy for confidence interval calculation without the
assumption of a normal distribution for the IV estimate; details
on how this is implemented are provided in theWebAppendix.
An additional limitation of the SUR/delta method is that it is
only applicable when one IV is used (5, 6).

In this paper, we simulate data sets that represent random
samples drawn from a single population. However, in prac-
tice, MR investigations may be conducted with data from
several studies, using either pooled data or a meta-analysis
approach (17–19). Meta-analyses that derive their first-stage
and reduced-form estimates from different studies are actu-
ally employing a form of 2-sample IV analysis, similar to

that described here. Our results suggest that such approaches
should focus on maximizing the number of participants in
the meta-analysis with data on the IV and the outcome, even
if data on the exposure are absent. A cautionary remark is
that the magnitude of association of the IV with the exposure
may be different in studies which derive their participants
from different underlying populations, and heterogeneity in
this association should be acknowledged where possible (17).
Similarly, subsample IV approaches should utilize subsam-
ples that are representative of the full sample. This issue may
be especially problematic for MR studies of biomarkers if
biospecimens are available for a subsample that is not repre-
sentative of the full sample.

In this work, we have used a continuous variable as an IV,
representing a genetic score comprised of multiple variants.
Such a score may be problematic to obtain for exposures with
few genetic determinants which are valid IVs. However,
we have previously shown that the first-stage R2 is the key
parameter influencing power, regardless of what type of IV
is used (i.e., single or multiple IVs; dichotomous, ordinal, or
continuous IVs). Thus, our findings for a given first-stage R2

will apply to any type of instrument, be it continuous or dis-
crete, or a set of multiple instruments.

In summary, this work has demonstrated how subsample
and 2-sample IV methods can be used to substantially enhance
cost-efficiency for MR studies. For large studies with available
genetic and outcome data, it will not be essential to obtain
exposure data for all participants. Generating exposure data for
a subset of participants will typically have a very limited impact
on power, with the optimal size of this subset being determined
by the strength of the IV. Furthermore, these methods poten-
tially allow for the inclusion of participants for whom it is not
feasible tocollectbiomarkerdata.Thesefindingsshould increase
the feasibility ofMR for epidemiologists, especially those inter-
ested in utilizing existing genetic data or DNA samples from
large-scale genetic association studies.
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