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Since its discovery in 2001, the major focus of TAAR1 research has been on its

role in monoaminergic regulation, drug-induced reward and psychiatric conditions.

More recently, TAAR1 expression and functionality in immune system regulation and

immune cell activation has become a topic of emerging interest. Here, we review the

immunologically-relevant TAAR1 literature and incorporate open-source expression and

cancer survival data meta-analyses. We provide strong evidence for TAAR1 expression in

the immune system and cancers revealed through NCBI GEO datamining and discuss its

regulation in a spectrum of immune cell types as well as in numerous cancers. We discuss

connections and logical directions for further study of TAAR1 in immunological function,

and its potential role as a mediator or modulator of immune dysregulation, immunological

effects of psychostimulant drugs of abuse, and cancer progression.
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INTRODUCTION

The Gs-linked G-protein coupled receptor Trace Amine Associated Receptor 1 (TAAR1) is a target
for a wide variety of agonists including endogenous amines and amphetamine-like drugs of abuse.
Endogenous agonists include common biogenic amines as well as trace amines (TAs) (Borowsky
et al., 2001; Bunzow et al., 2001). TAs are present in the mammalian nervous system at levels much
lower than those of common biogenic amines and include β-phenylethylamine (β-PEA), tyramine,
octopamine, tryptamine, and thyronamine (Boulton, 1976; Juorio, 1982; Burchett andHicks, 2006).
TAs resemble common biogenic amines in terms of subcellular localization, chemical structure, and
metabolism (Borowsky et al., 2001; Lindemann and Hoener, 2005). TAAR1 is also a target of drugs
of abuse including methamphetamine, amphetamine, and 3,4-methylenedioxymethamphetamine
(MDMA) (Bunzow et al., 2001). Unlike common biogenic amines, both TAs and amphetamine-
like drugs show greater selectivity for TAAR1 relative to other aminergic receptors, which we
have hypothesized to underlie both signaling regulation and dysregulation related to imbalances
between these signalingmolecules in psychiatric conditions and in addiction (Xie andMiller, 2008).
Aminergic neurotransmitter imbalance is implicated in several neuropathological conditions and
therefore the major focus of TAAR1 research has been its role in monoaminergic regulation, drug-
induced reward, and psychiatric conditions (Miller, 2011). Less studied is TAAR1 expression and
functionality in immune cells, which is the subject of this review.
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The immune system is a complex collection of organs, tissues,
and cells that serve to protect the host organism from pathogens.
In its simplest form it can be subdivided into the innate and
adaptive immune systems based on the temporal sequence
of the immune response (Janeway, 2001). While immune cell
interactions are extremely complex and the lines separating
branches of immunity are ambiguous at best, for the purpose of
this review we will follow this basic dichotomy. Here, we review
the immunologically relevant TAAR1 literature and incorporate
open-source expression and cancer survival data as a mode
of observational insight into physiologically-relevant topics of
interest not only to the TAAR1 research community, but also
to other life science investigators. We mined the NCBI Gene
Expression Omnibus (GEO) profiles database (Barrett et al.,
2013) which contains gene expression profiles from curated
GEO Datasets (GDS) to find evidence of TAAR1 expression
across various immune cell types and cancers. We then make
connections and suggest logical directions for further study of
TAAR1 in immunological function. We also provide complete
references containing queryable NCBI GEO Profile ID and GDS
accession numbers.

METHODS

Microarray Datasets
Microarray datasets containing normalized counts
corresponding to the TAAR1 gene transcript were obtained
through BioGPS, RefDIC, and NCBI GEO. Normalized counts
were log2 transformed and visualized in R.

BioGPS
Datasets for TAAR1 expression were extracted from http://
biogps.org using the search function to query for “TAAR1.”

RefDIC
Transcriptomic profiling data of immunologically relevant cell
types was obtained from the Reference Database of Immune Cells
(RefDIC, Hijikata et al., 2007). Datasets were extracted using the
“Expression profile” function (available at http://refdic.rcai.riken.
jp/profile.cgi) utilizing the microarray profile type and using the
official gene symbol “TAAR1.” The human and mouse TAAR1
gene was selected (ID 134864 and 111174, respectively). Queries
for various immune cell types were conducted using a text search
within the “Change Dataset” function.

NCBI GEO
The NCBI Gene Expression Omnibus (GEO) includes the GEO
Profiles database (Barrett et al., 2013) which contains gene
expression profiles from curated GEO Datasets (GDS) that
are searchable by gene identifier and by keywords. The GEO
Profiles database was probed by cell type using the advanced
search builder function to build a query containing cell types
of interest. Briefly, to extract all GEO Profiles containing data
for TAAR1 RNA expression in astrocytes, for example, a search
was conducted using the terms “TAAR1 (AND) ASTROCYTES.”
Other immune cell types were similarly queried using this search
method.

GDS accession numbers, literature references, and Profile
ID numbers associated with their respective GEO Profiles are
included in tables to allow for direct access to the expression data
discussed. Individual GEO Profiles discussed in this review may
be freely accessed at https://www.ncbi.nlm.nih.gov/geoprofiles/
by entering the GEO Profile ID provided in the text search box.
Similarly, entire GEO Datasets may be accessed in the same
manner at https://www.ncbi.nlm.nih.gov/gds. As the microarray
technology used to produce GEO Profiles commonly utilizes
an algorithmic detection call to determine cutoffs for positive
signals, some GEO Profiles contained samples in which the
TAAR1 expression signal was below the cutoff for expression,
and those samples are denoted as “Below cutoff” in tables. GEO
Profiles where not all but at least one sample was positive for
TAAR1 expression are denoted as “Partial” in tables, and GEO
Profiles where all samples were negative for TAAR1 expression
signal are denoted as “Negative.”

When available, statistical analysis within a dataset was carried
out using the Analyze Dataset tool located at the bottom of the
dataset of interest’s page.

Tissue Protein Expression Datasets
Human Protein Atlas
Antibody-based protein expression data is freely available online
from the Human Protein Atlas (HPA) at www.proteinatlas.
org (Uhlén et al., 2015; Thul and Lindskog, 2017). This
database was generated by probing various human tissues
for all protein-coding genes and is cataloged in a searchable
module, allowing for tissue-specific exploration of expression
patterns. For antibody-based data, the gene of interest is
assigned an expression level based on staining intensity and
fractional quantity of stained cells in a sample. TAAR1-specific
results can be viewed directly at https://www.proteinatlas.org/
ENSG00000146399-TAAR1/tissue.

RNAseq Datasets
BioXpress
A text query for the HGNC gene symbol “TAAR1” was made
using the mRNA transcript search tool available from https://
hive.biochemistry.gwu.edu.

cBioPortal
Processed RNAseq data representing 41,907 RNAseq samples
across 171 cancer studies was obtained from cbioportal.org using
a text search for “TAAR1” in the gene query tool.

Catalog of Somatic Mutations in Cancer (COSMIC)
A gene query for “TAAR1” was carried out using the Genome
Browser tool available at https://cancer.sanger.ac.uk/cosmic/
browse/genome.

Cancer RNAseq Nexus (CRN)
Datasets were obtained through a text search for “TAAR1” at
http://syslab4.nchu.edu.tw/CRN/.
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The Cancer Genome Atlas (TCGA) Transcriptomic

Profiling
RNA-seq expression profiles for TAAR1 were obtained from the
NIH National Cancer Institute Genomic Data Commons (GDC)
Data Portal at https://portal.gdc.cancer.gov/. RNA-seq datasets
for the TCGA cancer studies discussed can be accessed from the
link above by navigating to the “Exploration” tool, then selecting
“Genes,” entering “TAAR1” in the search bar, then navigating to
“View Files in Repository” and finally selecting “Transcriptome
Profiling.” Cancer RNA-seq expression dataset names begin
with the prefix “TCGA-” followed by the abbreviation for the
appropriate cancer type. Data can be downloaded as.TXT files
and are searchable by text to identify data specific to TAAR1.

ArrayExpress
RNA-seq datasets can be directly accessed through the
ArrayExpress website by accessing https://www.ebi.ac.uk/
arrayexpress/experiments/ followed by the ArrayExpress
experiment number, i.e., https://www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-2706/.

Metanalysis of Cancer Survival Hazard
Ratios
Overall survival trends expressed as hazard ratios (HR) for
80 unique human cancer studies representing 15 cancer types
were obtained from the online databases Prognoscan (Mizuno
et al., 2009) and PROGgene (Goswami and Nakshatri, 2013).
For each PROGgene study (n = 68) the sample population was
bifurcated at the median into high- and low-TAAR1 expression
groups. Study data obtained from Prognoscan (n= 12) utilized a
minimum p-value approach to determine the point of bifurcation
into high and low expression groups. Briefly, the HR obtained
for each study can be explained as the ratio of events (deaths)
in the high TAAR1 expression group to events in the low
TAAR1 expression group. To perform the meta-analysis after
data collection all HR values were log-transformed to normalize
values around zero to enable the calculation of subgroup averages
and then back transformed to produce the average HR value.
Forest plots were created using the R package ggplot2.

Transcription Factor Binding Site Analysis
Transcription factor analysis of the TAAR1 5’ untranslated
region (input sequence: Human DNA sequence from clone
RP11-295F4 on chromosome 6, complete sequence, GenBank:
AL513524.8) was carried out with the transcription factor (TF)
binding site predictor programs LASAGNA-Search 2.0 (Lee and
Huang, 2013, http://biogrid-lasagna.engr.uconn.edu/lasagna_
search/) and MatInspector (Quandt et al., 1995; Cartharius et al.,
2005, Bioinformatics) which is available as a free trial or part
of a software suite from Genomatix available at https://www.
genomatix.de/.

RESULTS

Peripheral Blood and Platelets
The perpetual circulation of blood through the body provides a
constant sentry of diverse immune cells capable of monitoring
homeostatic alterations. This “sentinel principle” posits that

blood cells reflect changes in overall physiology and is the basis
for the practice of biomarker and liquid biopsy research that
is foundational to the detection of many diseases (Burczynski
and Dorner, 2006; Liew et al., 2006). The blood is composed
of erythrocytes, leukocytes, platelets, and plasma. The plasma
represents the largest volume of the blood. It is made up largely of
water which includes various proteins, clotting factors, and other
metabolic constituents. Erythrocytes represent the largest cellular
portion of whole blood and predominantly function as oxygen
carriers in cellular respiration. The remaining 1% of the blood is
made up of leukocytes, which are the immune cells of the blood,
and platelets, which facilitate blood clotting in response to injury
and other homeostatic disruptions. Leukocytes are the mixed cell
population of white blood cells consisting of all the immune cells
of the blood and include cells of both the innate and adaptive
response. More than a decade ago, TAAR1 mRNA was identified
in circulating human leukocytes using RT-PCR (D’Andrea et al.,
2003; Nelson et al., 2007).

Here, we utilized the NCBI GEO Profiles database (Barrett
et al., 2013) to perform a search of TAAR1 RNA expression
in blood, which revealed detectable expression in all of the
20 datasets obtained, representing blood from humans, rhesus
monkeys, and mice. Accession numbers and references for
expression datasets in whole blood, platelets, and PBMCs are
summarized in Table 1. Accordingly, TAAR1 RNA is present in
leukocytes and TAAR1 RNA is consistently detected in whole
blood.

Platelets
In addition to their classic role in clotting, platelets are also
thought to play a role in the initial innate immune response
(Palabrica et al., 1992; Opal, 2000; Esmon, 2004; Theopold et al.,
2004). Neutrophil-derived signals augment the thrombocytic
response and in turn can help isolate pathogens and inhibit
their entry into the system circulation (Hickey and Kubes,
2009; Massberg et al., 2010). In light of the likely possibility
of cross-talk between platelets and innate immune cells it
is interesting to note that there are detectable levels of TAs
present in human platelets, and intra-platelet concentrations are
significantly decreased upon platelet activation (D’Andrea et al.,
2003). These initial data suggested that the release of TAs in
response to injury or immune cell signals could have a functional
role in the innate immune response. Using NCBI GEO data,
we found evidence that platelets express TAAR1 RNA. TAAR1
RNA is detectable in human (Raghavachari et al., 2007, GDS3318;
Piccaluga et al., 2014, GDS5405, GDS5406; Risitano et al., 2012,
GDS4659) and mouse (Wright et al., 2014; Lee et al., 2016,
GDS5320; Paugh et al., 2013, GDS4821) platelets, suggesting a
potential for a possible feedback mechanism in platelet function
(Table 1). The presence of TAAR1 RNA in platelets suggests
a potential for platelet expression of TAAR1 protein and a
potential for responses generated by TAAR1 agonists. It is
important to note, however, that RNAs present in anucleate
platelets are derived from the progenitor megakaryocyte cells
from which platelets are derived, and therefore the TAAR1 RNA
detected may or may not be utilized by platelets to synthesize
TAAR1 protein. Platelets do, however, possess the machinery
needed to translate RNA to protein and as such further
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TABLE 1 | Peripheral blood, platelets, and PBMC RNA expression datasets.

Reference GEO

accession

GEO

profile ID

Species TAAR1

expression

WHOLE BLOOD

Kupfer et al., 2013 GDS6177 132620011 Human Positive

Kupfer et al., 2013 GDS4938 114175011 Human Positive

Bienkowska et al., 2009 GDS5277 120320211 Human Positive

Kwissa et al., 2014 GDS5093 112376811 Human Positive

Wong et al., 2009 GDS4274 96240711 Human Positive

Wynn et al., 2011 GDS4273 96184311 Human Positive

Newell et al., 2010 GDS4266 85973511 Human Positive

Krupka et al., 2012 GDS4259 85768653 Human Positive

van Leeuwen et al., 2008 GDS3325 81580189 Human Positive

Berisha et al., 2011 GDS3881 71184862 Human Positive

Julià et al., 2009 GDS3628 62836833 Human Positive

Dusek et al., 2008 GDS3416 56333511 Human Positive

Dumeaux et al., 2006 GDS1412 13887989 Human Positive

Vanderford et al., 2012 GDS4237 91318763 Rhesus Positive

Sharma-Kuinkel et al., 2013 GDS5315 121855661 Mouse Positive

Tsuge et al., 2014 GDS4854 105758811 Human Positive

(Partial)

Vierimaa et al., 2006 GDS2432 32521911 Human Positive

(Partial)

Pimentel-Santos et al., 2011 GDS5231 118388438,

118388437

Human Negative

Parnell et al., 2013 GDS4971 108634838,

108634837

Human Negative

Parnell et al., 2011 GDS3919 72699438 Human Negative

PLATELETS

Raghavachari et al., 2007 GDS3318 54111911 Human Positive

Nilsson et al., 2011 GDS5181 116562814 Human Positive

PBMCs

Cheadle et al., 2012 GDS5499 127549637,

127549638

Human Positive

Ramos et al., 2014 GDS5363 123464437,

123464438

Human Positive

Arita et al., 2013 GDS4974 108745653 Human Positive

Shi et al., 2014 GDS4882 106226711 Human Positive

Teles et al., 2013 GDS4551 98821011 Human Positive

Hinze et al., 2010 GDS4267 96127911 Human Positive

Moncrieffe et al., 2010 GDS4272 86177011 Human Positive

Papapanou et al., 2007 GDS3326 81602811 Human Positive

Malhotra et al., 2011 GDS4147 80546111 Human Positive

LaBreche et al., 2011 GDS3952 73875811 Human Positive

Merryweather-Clarke et al.,

2011

GDS3860 70483511 Human Positive

Bouwens et al., 2010 GDS3704 65335812 Human Positive

McHale et al., 2009 GDS3561 60938636 Human Positive

Cai et al., 2014 GDS4966 108405411 Human Positive

(Partial)

Ciancanelli et al., 2015 GDS5626 129019876, Human Negative,

129002378 Negative

Dawany et al., 2014 GDS4786 103069376, Human Negative,

103051878 Negative

Sancho-Shimizu et al., 2011 GDS4540 98390876, Human Negative,

98373378 Negative

study of platelet protein expression is needed to determine
whether this cell type can produce functional TAAR1 protein
(Weyrich et al., 2009). With this caveat in mind, TAAR1 protein
expression in platelets could be a contributory mechanism of
psychostimulant-induced effects on platelet-mediated immune
responses, and so further investigation is necessary to examine
protein expression and effects of selective TAAR1-targeted drugs
on platelet function.

PBMCs
Peripheral blood mononuclear cells (PBMCs) are a mixed
subpopulation of leukocytes lacking the more dense, granulated
polymorphonuclear (PMN) cells. PBMCs include the B- and T-
cells of adaptive immunity, as well as the natural killer (NK),
NK T-cells, macrophage and dendritic cells of monocytic lineage
of the innate immunity. Analysis of PBMC gene expression is
widely utilized to identify biomarkers for disease diagnosis for
an array of pathological conditions. PBMC transcriptomics are
used in inflammatory conditions such as arthritis (Boyle et al.,
2003; Shou et al., 2006; Wong et al., 2016), in various cancers
(Burczynski et al., 2005; Showe et al., 2009; Piccolo et al., 2015),
and in numerous psychiatric conditions including depression
(Mendez-David et al., 2013; Fan et al., 2015), schizophrenia (Lai
et al., 2011), and bipolar disorder (Herberth et al., 2011). In lieu of
diseased patient populations, pharmacological cellular activation
with mitogens or foreign antigens in vitro is used to model
immune challenge-mediated changes in cellular function and
gene expression patterns. Cellular mitogen Phytohaemagglutinin
(PHA) stimulation is a well-known model of cellular activation.
PHA has been shown to upregulate TAAR1 mRNA from human
PBMCs relative to low TAAR1 mRNA levels at rest (Nelson
et al., 2007). Analogously, PHA also induced a significant increase
in rhesus monkey PBMC TAAR1 protein from low baseline
levels and this upregulation augmented TAAR1 agonist-induced
PKA and PKC phosphorylation (Panas et al., 2012). These
data suggest that TAAR1 may be present at very low levels in
normal physiological states but is upregulated in activated states,
suggesting that it may be necessary in downstream responses
related to cellular activation. Supporting this concept, work by
Sriram et al. (2016) showed that viral antigenic exposure by
HIV-1 infection upregulates TAAR1 protein in human PBMCs
and that upregulation is augmented by pretreatment with
the TAAR1 agonist methamphetamine (METH). Importantly,
TAAR1 activation with METH increases HIV-1 viral titers
and replication (Sriram et al., 2016). These data suggest that
upregulation and activation of TAAR1 may be a mechanism
by which anti-viral immune processes may be diminished or
viral fitness is altered directly. It is intriguing to speculate that
these effects may also occur in response to upregulation of
TAAR1 resulting from amphetamine-like psychostimulant abuse,
imbalances in TAAR1 ligand availability due to neurotransmitter
level dysregulation as in psychiatric diseases, or modulations
to endogenous TA levels through diet or host-microbiome
interactions.

With regard to viral infections, however, our search of
NCBI GEO revealed expression array studies in which human
PBMC samples were devoid of TAAR1 at baseline (Table 1).
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For example, neither influenza virus infection nor a deficiency
in the IRF7 gene, an important mediator of antiviral defenses,
altered TAAR1 expression (Ciancanelli et al., 2015, GDS5626).
Similarly, data derived from another study indicates that PBMCs
infected with HIV alone or with tuberculosis co-infection were
devoid of TAAR1 expression (Dawany et al., 2014, GDS4786).
Data from another study (Cai et al., 2014, GDS5030, GDS4966)
indicates that human PBMCs infected with active or latent
tuberculosis lacked detectable TAAR1 expression as determined
by a detection call of absent; however, one positive signal
was obtained for a single uninfected sample (Cai et al., 2014,
GDS4966). Furthermore, TAAR1 expression in both normal
human PBMCs and those infected with Herpes simplex (Sancho-
Shimizu et al., 2011, GDS4540) was absent and did not respond
to the bacterial antigen lipopolysaccharide (LPS) or activation
of the single-stranded DNA receptor TLR7/8 suggesting an
inability of these cellular activation pathways to alter TAAR1
expression. It is important to remember, however, that the array-
based technology used to determine presence of expression
in these GEO datasets relies on detection calls derived from
computational algorithms, and as such an “absent” call does
not necessarily mean that the transcript is truly absent (Oudes
et al., 2005). As such, there is a need for more TAAR1-specific
expression profiling through less ambiguous methods such as
RT-PCR and immunological staining.

In contrast to these virally-induced infectious diseases,
our search of NCBI GEO revealed that TAAR1 RNA is
detectable in PBMCs of patients with the inflammatory or
immunological diseases osteoarthritis (Ramos et al., 2014,

TABLE 2 | Granulocyte RNA expression datasets.

Reference GEO

accession

GEO

profile ID

Species TAAR1

expression

MIXED GRANULOCYTES

Lattin et al.,

2008

GSE10246 N/A Mouse Positive

MAST CELLS

Geoffrey

et al., 2006

GDS2742 39436016 Rat Positive

Ito et al.,

2012

GDS4420 89473161 Mouse Positive

(Partial)

EOSINOPHILS

Holmes et al.,

2015

GDS5468 127249361 Mouse Positive

Wen et al.,

2014

GDS5289 120861890 Mouse Positive

Petersen

et al., 2012

GDS4422 89566161 Mouse Positive

NEUTROPHILS

Radom-Aizik

et al., 2008

GDS3073 47890111 Human Positive

Hsu et al.,

2011

GDS3776 67720674 Mouse Positive

Petersen

et al., 2012

GDS4422 89566161 Mouse Positive

GDS5363), juvenile idiopathic arthritis (Hinze et al., 2010,
GDS4267; Moncrieffe et al., 2010, GDS4272), and multiple
sclerosis (Malhotra et al., 2011, GDS4147). TAAR1 RNA is
also present in human PBMCs isolated from gastric, liver,
and pancreatic cancers (Shi et al., 2014, GDS4882), as well
as breast cancer (LaBreche et al., 2011, GDS3952). TAAR1
RNA was also present, but not differentially expressed
from controls, in datasets from pulmonary hypertension
(Cheadle et al., 2012, GDS5499), interleukin-10 treatment
(Teles et al., 2013, GDS4551), nickel exposure (Arita
et al., 2013, GDS4974), and benzene exposure (McHale
et al., 2009, GDS3561), and these data are summarized in
Table 1.

Taken together, our analyses found that TAAR1 expression
in PBMCs varies between studies and significant modulation
of expression has only been demonstrated in vitro in response
to cellular activation or immunological challenge. It may
be that TAAR1 functionality in the immune system may
mediate alterations to immune cell maturation processes.
Our analysis indicates a role for TAAR1 in PBMC-derived
erythroid maturation. TAAR1 levels are significantly higher
(two-tailed t-test, p = 0.05) in the earliest stage of erythropoiesis
(n = 3) vs. the later 3 stages (n = 9) (Merryweather-Clarke
et al., 2011, GDS3860). Activation of TAAR1 present
in these early progenitor cells would predictably alter
signaling cascades involved in the phenotypic development
of these cells. Further investigation into the disparity of
TAAR1 expression between maturation stages may lend
insight into a mechanism by which erythrocytic pathologies
develop.

Granulocytes
Granulocytes, also referred to as polymorphonuclear leukocytes
(PMN), are a type of innate immune cells that act as the first
line of cellular defense due to their ability to be recruited to
the site of infection through chemotaxis. When activated these
cells migrate toward chemoattractants derived from pathogens
or local macrophage (Amulic et al., 2012). Granulocytes include
phagocytic neutrophils that act initially to engulf foreign
invaders and eosinophils that function primarily in defense
against parasitic infections. Basophils are the rarest type of
granulocyte and function in the initial infection response,
allergic reactions, and in the T-cell polarization necessary for
the adaptive immune response (Parham, 2009). Granulocytes
express gene transcripts for TAAR1 and another TAAR family
member, the orphan receptor TAAR2. Both TAAR1 and TAAR2
are co-expressed in subsets of human PMN (Babusyte et al.,
2013). Interestingly, expression of both TAAR1 and TAAR2
was required for the chemosensory migration of PMN toward
TAs, as evidenced by non-functionality when either TAAR was
knocked down (Babusyte et al., 2013). If replicable, these data
suggest the possibility of TAAR1/TAAR2 signaling interactions
and/or dimerization as a prerequisite for chemotaxis of PMN
toward TAs. Further studies are necessary to confirm if
TAAR1 and TAAR2 form functional dimers. Although studies
reporting functional subsets for blood granulocytes are few,
there is an emerging indication for subset-specific markers
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TABLE 3 | Monocyte RNA expression datasets.

Reference GDS

accession

GEO

profile ID

Species TAAR1

expression

MONOCYTES

Zaritsky et al.,

2015

GDS6082 132462276 Human Positive

Bergenfelz et al.,

2015

GDS5819 131699876,

131682378

Human Positive

Hou et al., 2012 GDS4825 104614241,

104614242

Human Positive

Sun et al.,

unpublished

GDS3088 48293635 Human Positive

Maouche et al.,

2008

GDS3555 60701719 Human Positive

Maouche et al.,

2008

GDS3554 60614511 Human Positive

Papapanou et al.,

2007

GDS3326 81602811 Human Positive

Schirmer et al.,

2009

GDS3690 64988198 Human Positive

Boomgaarden

et al., 2010

GDS3676 64485211 Human Positive

Mosig et al., 2008 GDS3668 64121011 Human Positive

(Partial)

Dower et al., 2008 GDS3499 58902411 Human Positive

(Partial)

Ancuta et al., 2009 GDS4219 90466711 Human Positive

(Partial)

Menssen et al.,

2009; Kyogoku

et al., 2013

GDS4890 113484911 Human Positive

(Partial)

Menssen et al.,

2009; Kyogoku

et al., 2013

GDS4889 113428511 Human Positive

(Partial)

Maouche et al.,

2008

GDS3553 60587246 Human Below Cutoff

Woszczek et al.,

2008

GDS3469 57728411 Human Below Cutoff

Wheelwright et al.,

2014

GDS4860 112723411 Human Below Cutoff

Rosas et al., 2014 GDS5060 111205861 Mouse Below Cutoff

Konuma et al.,

2011

GDS3997 75442861 Mouse Below Cutoff

Schirmer et al.,

2010; van der

Laan et al., 2012

GDS3658 63728398 Human Negative

MACROPHAGES

Mabbott et al.,

2013

GSE49910 N/A Human Positive

Zahoor et al., 2014 GDS5294 121029711 Human Positive

Gleissner et al.,

2010

GDS3787 68032211 Human Positive

Thuong et al.,

2008

GDS3540 65911811 Human Positive

Lee et al., 2009 GDS3595 61836153 Human Positive

Maouche et al.,

2008

GDS3555 60701719 Human Positive

(Continued)

TABLE 3 | Continued

Reference GDS

accession

GEO

profile ID

Species TAAR1

expression

Maouche et al.,

2008

GDS3554 60614511 Human Positive

Maouche et al.,

2008

GDS3553 60587246 Human Positive

Chang et al., 2008 GDS3258 52891211 Human Positive

Woodruff et al.,

2005

GDS1269 1269 Human Positive

Sirois et al., 2011 GDS4232 91083411 Human Positive

Wu et al., 2012 GDS4258 85690111 Human Positive

Verway et al., 2013 GDS4781 02866053 Human Positive

Zaritsky et al.,

2015

GDS6082 132462276 Human Positive

Khajoee et al.,

2006

GDS2182 27351937 Human Positive

Lattin et al., 2008 GSE10246 N/A Mouse Positive

Waugh et al., 2014 GDS5356 123165461 Mouse Positive

Franco et al., 2014 GDS4941 107744861 Mouse Positive

Petersen et al.,

2012

GDS4422 89566161 Mouse Positive

Severa et al., 2014 GDS5605 128145261 Mouse Positive

Zigmond et al.,

2014

GDS5668 130496090 Mouse Positive

An et al., 2014 GDS5422 125715974 Mouse Positive

Satpathy et al.,

2014

GDS5413 125332490 Mouse Positive

Satpathy et al.,

2014

GDS54134 125369190 Mouse Positive

Kuo et al., 2011 GDS4527 97860725 Mouse Positive

Woods et al., 2009 GDS3670 64239261 Mouse Positive

Rivollier et al.,

2012

GDS4369 84624390 Mouse Positive

Goodridge et al.,

2007

GDS2686 37829561 Mouse Positive

Woodruff et al.,

2005

GDS1874 1874 Mouse Positive

Koziel et al., 2009 GDS4931 107562411 Human Positive

(Partial)

Kazeros et al.,

2008

GDS3496 58799611 Human Positive

(Partial)

Chen F. et al.,

2011

GDS4432 92283261 Mouse Positive

(Partial)

Rosas et al., 2014 GDS5060 111205861 Mouse Below Cutoff

Zhang, 2013 GDS5634 129339861 Mouse Below Cutoff

Bok et al., 2009 GDS3549 60421061 Mouse Below Cutoff

El Kasmi et al.,

2007

GDS3190 50927861 Mouse Below Cutoff

Yamamoto et al.,

2007

GDS2944 44607561 Mouse Below Cutoff

Comer et al., 2006 GDS2410 31741561 Mouse Below Cutoff

Edwards et al.,

2006

GDS2041 2041 Mouse Below Cutoff

Shell et al., 2005 GDS1285 1285 Mouse Below Cutoff

Irvine et al., 2009 GDS3686 64840633 Human Negative

(Continued)
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TABLE 3 | Continued

Reference GDS

accession

GEO

profile ID

Species TAAR1

expression

DENDRITIC CELLS

Bajwa et al., 2016 GDS6063 132375976,

132358478

Human Positive

Salvatore et al.,

2015

GDS5817 131566311 Human Positive

Kerkar et al., 2014 GDS5384 124249353 Human Positive

McGovern et al.,

2014

GDS5349 122926242,

122926241

Human Positive

Favila et al., 2014 GDS5086 112063411 Human Positive

Kron et al., 2013 GDS4567 99378211 Human Positive

Mezger et al.,

2008

GDS2749 39640411 Human Positive

Manel et al., 2010 GDS4225 90771211 Human Positive

Kissick et al., 2014 GDS5631 129180561 Mouse Positive

Balachander et al.,

2015

GDS5665 130393390 Mouse Positive

Bielinska et al.,

2014

GDS5601 127969861 Mouse Positive

Ippagunta et al.,

2011

GDS5183 116636461 Mouse Positive

Rivollier et al.,

2012

GDS4369 84624390 Mouse Positive

Frericks et al.,

2006

GDS3504 82370750 Mouse Positive

Weiss et al., 2010 GDS3813 68797261 Mouse Positive

Fulcher et al.,

2006

GDS2221 28328711 Human Positive

(Partial)

Macagno et al.,

2006

GDS2216 28254211 Human Positive

(Partial)

Napolitani et al.,

2005

GDS1249 10991311 Human Positive

(Partial)

Bosco et al., 2011 GDS3858 70380611 Human Below Cutoff

Njau et al., 2009 GDS3573 61231811 Human Below Cutoff

Ricciardi et al.,

2008

GDS2750 39696811 Human Below Cutoff

Szatmari et al.,

2006

GDS2453 32923011 Human Below Cutoff

Cisse et al., 2008 GDS3519 59489161 Mouse Below Cutoff

(Clemmensen et al., 2012; Pillay et al., 2012). As such, TAAR1
and TAAR2 may represent markers for a granulocyte subset
capable of chemosensory migration to TAs and other TAAR1
(and potentially TAAR2) ligands. These data also raise the
possibility that the potent TAAR1 agonist METH and other
TAAR1-targeted compounds could act in the same manner
to alter chemotactic activity of particular subsets of PMN.
Potentially, drugs that selectively target TAAR1 could potentially
be used to treat migratory granulocyte dysfunction. Our NCBI
GEO analysis revealed array-based evidence to support TAAR1
expression in granulocytes (Lattin et al., 2008, GSE10246).
Overall, expression data for mixed granulocytes, eosinophils,
neutrophils, and mast cells revealed a consistent TAAR1 signal
(Table 2). No basophil-specific samples were available from the
GEO database, so our analysis could not determine basophilic

TAAR1 expression. While the relatively low-abundance of
basophils could make the detection of low-level TAAR1 difficult,
their role in the initial immune response and T-cell function
necessitate targeted expression analysis of this cell type. Babusyte
et al. (2013) provides convincing evidence that TAAR1 is in fact
present in granulocytes but does not specify cellular subsets,
so cell-type specific investigation is needed. Our analysis also
indicates that mast cells, which are primarily involved in the
allergic reaction and histamine release, also express TAAR1
(Lattin et al., 2008, GSE10246; Ito et al., 2012, GDS4420; Geoffrey
et al., 2006, GDS2742). Finally, as all the granulocytes profiled in
these GEO datasets were normal cells, it would be interesting to
investigate any changes in TAAR1 expression levels with cellular
activation.

Monocytes
Monocytes represent a short-lived subset of leukocytes with
phagocytic ability that matures into macrophages and dendritic
cells. At the time of initial immunological challenge, these
monocytic cells of the innate immune system are the first to
arrive and provide a rapid response to engulf pathogens and
induce inflammation. Local phagocytic macrophages possess
receptors called pattern recognition receptors that can recognize
conserved pathogen antigens. Phagocytic cells engulf invaders on
site while also releasing cytokines and chemokines that induce
inflammation and the recruitment of other innate immune cells
such as neutrophils and antigen-presenting cells (APCs). APCs
are a bridge between the innate and adaptive immune response,
processing antigens and presenting them to helper T-cells (Th)
cells that will in turn undergo clonal expansion and activate
cytotoxic T-cells (Tc) and B-cells. The result of this process is
pathogen-specific immunological memory consisting of clonal
populations of T- and B-cells that recognize and react to the
initial specific antigen expressed by the pathogen (Janeway,
2001; Mogensen, 2009; Turvey and Broide, 2010; Monie,
2017). Babusyte et al. (2013) reported that human monocytes
demonstrate variation in TAAR subtype mRNA expression as
20% of monocytes screened did not express any of the TAAR
genes. There was some level of monocytic expression of all TAAR
genes except TAAR8, and the TAAR2 signal was particularly
high in this cell type (Babusyte et al., 2013). Our analysis of
transcriptomic data for TAAR1 expression in mixed monocytic
cell samples obtained from NCBI GEO (n = 22) strengthen
the argument for TAAR1 presence in these cells, as 72.7%
of datasets with measurements for TAAR1 contained positive
signals for expression above detection threshold.Table 3 includes
complete references containing queryable GEO Profile ID and
GDS accession numbers. Notably, the only other manuscript
published to date explicitly describing TAAR expression in
monocytic cell types found that primary mouse macrophage and
dendritic cells are devoid of all nine TAARs and are unresponsive
to LPS or mouse gamma-herpes virus. TAAR1 was similarly
absent in freshly isolated bone marrow cells and maturing
bone marrow-derived dendritic cells and macrophages (Nelson
et al., 2007). However, in contrast to this study are the various
RNA expression datasets that reveal detectable expression of
TAAR1 in macrophage. A search of datasets containing a probe
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TABLE 4 | Lymphocyte RNA expression datasets.

Reference GEO

accession

GEO

profile ID

Species TAAR1

expression

Mabbott et al.,

2013

GSE49910 N/A Human Positive

NATURAL KILLER CELLS

Sitrin et al., 2013 GDS4948 114385090 Mouse Positive

Sitrin et al., 2013 GDS4946 114348390 Mouse Positive

Stegmann et al.,

2010

GDS4163 81241711 Human Positive

(Partial)

Fehniger et al.,

2007

GDS2957 45000961 Mouse Positive

(Partial)

Dybkaer et al.,

2007

GDS3191 50968911 Human Below Cutoff

NATURAL KILLER T-CELLS

Verykokakis et al.,

2013

GDS5602 128016361 Mouse Positive

B-CELLS

Berglund et al.,

2013

GDS5242 118877053 Human Positive

Jelicic et al., 2013 GDS4863 112858353 Human Positive

Lattin et al., 2008 GSE10246 N/A Mouse Positive

Kong et al., 2014 GDS5428 125919274 Mouse Positive

Stolp et al., 2012 GDS4340 83554161 Mouse Positive

Chen S. S. et al.,

2011

GDS4178 82996861 Mouse Positive

Chang et al., 2007 GDS2762 40097861 Mouse Positive

Luckey et al., 2006 GDS1695 18100861 Mouse Positive

Kim et al., 2006 GDS1807 20253311 Human Below Cutoff

Fleige et al., 2007 GDS2805 41122650 Mouse Below Cutoff

Patke et al., 2006 GDS2408 31695061 Mouse Below Cutoff

Sato et al., 2005 GDS1467 14578761 Mouse Below Cutoff

Garaud et al.,

2011

GDS4193 95490311 Human Negative

T-CELLS

Palau et al., 2013 GDS5260 119509076,

119491578

Human Positive

Sanda et al., 2013 GDS4754 101686911 Human Positive

Twiner et al., 2008 GDS3433 56890700 Human Positive

Twiner et al., 2008 GDS3429 56743700 Human Positive

Villarroya-Beltri

et al., 2013

GDS5639 129530637 Human Positive

Lattin et al., 2008 GSE10246 N/A Mouse Positive

Trandem et al.,

2011

GDS4217 90374190 Mouse Positive

Jabeen et al.,

2013

GDS5343 122668612 Mouse Positive

Jabeen et al.,

2013

GDS5291 120914412 Mouse Positive

Heinemann et al.,

2014

GDS5166 116131590 Mouse Positive

Rudra et al., 2012 GDS5164, 116106850 Mouse Positive

Chang et al., 2011 GDS4795 103262982 Mouse Positive

West et al., 2011 GDS4555 98989561 Mouse Positive

Kim et al., 2012 GDS4554 98947990 Mouse Positive

Yang et al., 2011 GDS4572 94508161 Mouse Positive

(Continued)

TABLE 4 | Continued

Reference GEO

accession

GEO

profile ID

Species TAAR1

expression

Yang et al., 2011 GDS4434 92366461 Mouse Positive

Trandem et al.,

2011

GDS4217 90374190 Mouse Positive

Lee et al., 2012 GDS4334 88072790 Mouse Positive

Sharma et al.,

2011

GDS4333 88031161 Mouse Positive

Pomi et al., 2011 GDS4373 84767690 Mouse Positive

Johnson et al.,

2012

GDS4355 84078490 Mouse Positive

Kitoh et al., 2009 GDS3577 61386561 Mouse Positive

Fontenot et al.,

2005

GDS1113 10303961 Mouse Positive

Fang et al., 2012 GDS4363 84350161 Mouse Positive

(Partial)

Kang et al., 2011 GDS3840 69765961 Mouse Positive

(Partial)

Setoguchi et al.,

2009

GDS3566 61025461 Mouse Positive

(Partial)

Zhang et al., 2007 GDS3222 51651861 Mouse Positive

(Partial)

Kakoola et al.,

2014

GDS5020 109918461 Mouse Positive

(Partial)

Fernandez et al.,

2009

GDS4719 101630511 Human Below Cutoff

Fernandez et al.,

2009

GDS4188 95294411 Human Below Cutoff

Wang et al., 2007 GDS2883 43226211 Human Below Cutoff

Ndolo et al., 2006 GDS2164 26955811 Human Below Cutoff

Kakoola et al.,

2014

GDS5019 109871961 Mouse Below Cutoff

Kakoola et al.,

2014

GDS5018 109825461 Mouse Below Cutoff

Su et al., 2005 GDS2717 38629261 Mouse Below Cutoff

Zeng et al.,

unpublished

GDS1030 9277550 Mouse Below Cutoff

Eom and Choi,

2010; Eom et al.,

2014

GDS3783 67913172 Human Negative

representing the TAAR1 gene yielded 34 results of which 24
contained macrophage samples positive for TAAR1 expression
(Table 3). Nine of the remaining ten datasets had a signal for
TAAR1 expression that fell below the threshold for detection.
Notably, a TAAR1 signal was completely absent in only one of
the 34 data sets (Table 3). Our analysis of a macrophage gene
expression profile (Gleissner et al., 2010, GDS3787) revealed
significant TAAR1 upregulation with in vitro exposure to CXCL4,
a cytokine released by activated platelets that plays a role in T- and
NK cell migration and angiostatic activity.

Lymphocytes
Natural Killer and Natural Killer T-Cells
Natural Killer (NK) cells are a type of cytotoxic lymphocyte
important in the response to viral infection, the detection
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of tumor formation, and in the promotion of self-tolerance
(Terunuma et al., 2008). 86.7% of NK cells isolated from
human buffy coat samples had some level of mRNA for
TAAR1,−2,−5,−6, or −9 that was detectable (Babusyte et al.,
2013). NK cells isolated from mouse spleen also had detectable
levels of gene transcripts for TAAR1,−2,−3, and −5 (Nelson
et al., 2007), which is in agreement with our analysis of
transcriptomic profiling (Table 4) of mouse spleen and pancreas
(Fehniger et al., 2007, GDS2957; Sitrin et al., 2013, GDS4948,
GDS4946). Array-based expression data exists to further support
TAAR1 expression in NK cells (Table 4). A unique cell type
that combines phenotypic characteristics of both NK cells and
T-cells, termed NKT-cells, possess enhanced killing ability and
have displayed significant antitumor function in preclinical
studies (Schmidt-Wolf, 1991; Kim et al., 2007). Our analysis
reveal TAAR1 RNA expression is detectable in mouse NKT-cells
(Verykokakis et al., 2013, GDS5602), and therefore a targeted
analysis of TAAR1 presence and function in this unique cell type
is needed.

T-cells
T-cells are a lymphocytic subset of immune cells that are
important in cell-mediated immunity. Stimulation with specific
factors differentially activates T-cells to illicit the development
of specific regulatory, effector, and helper functions and
these phenotypes in turn shape the nature of the immune
response (Barnes, 2011). Identifying physiological perturbations
in T-cell function is crucial to understanding possible TAAR1
function in the immune system. There is a lack of both
agreement and availability of literature exploring TAAR1
expression and function in T-cells and to date the only three
manuscripts published on the topic have yielded opposing
results. Observationally, the potent TAAR1 agonist METH alters
T-cell function through mitochondrial injury, oxidative stress,
and alterations to cytokine production (Potula et al., 2010). More
specifically, work by Sriram et al. (2016) found that METH
treatment increases TAAR1 mRNA and functional protein
expression in human T-cells associated with a METH-induced
decrease in secretion of the proinflammatory cytokine IL-2 and
altered cAMP production. Importantly, these METH-induced
effects were TAAR1-dependent (Sriram et al., 2016) suggesting
that TAAR1 is expressed in T-cells and is capable of altering
T-cell function. The same study also reported that HIV-1 positive
METH users displayed enhanced expression of TAAR1 protein in
T-cells of the lymph nodes compared to non-users. Elucidating
the biology of HIV-1 infection in the context of concomitant
chronic drug abuse is clinically important as METH-induced
immunomodulation in HIV-1 infection could have a significant
impact on treatment modulation and HIV-1 pathogenesis
(Boddiger, 2005). Overall, current data suggest an association of
TAAR1 expression, HIV-1 infection and METH and therefore
more study of this possible connection is warranted. Supporting
the hypothesis of lymphocytic modulation by TAAR1 is the
observation that T-cells expressing TAAR1 and TAAR2 treated
with TAs in vitro displayed increased secretion of IL-4, a cytokine
that stimulates the proliferation of T- and B-cells (Babusyte et al.,
2013). It is important to note that this effect was reportedly due

to TA interaction with both TAAR1 and TAAR2, as the effect was
lost with siRNA knockdown of either receptor (Babusyte et al.,
2013), and therefore exploration of TAAR1/TAAR2 interactions
is needed to replicate and elucidate this effect. To the contrary
of the work of Sriram et al. (2016) and Babusyte et al. (2013),
mouse splenic T-cells were earlier reported as devoid of TAAR1,
TAAR2, TAAR3, and TAAR5 (Nelson et al., 2007). Our analysis
reveals that 62% (n = 29) of the available RNA expression array
datasets obtained from GEO profiles containing a TAAR1 probe
were positive for measurable gene expression in T-cells in all
samples, and 86% of datasets included one or more samples with
measurable TAAR1 expression (Table 4). Accordingly, there is
sufficient data pointing toward the presence of TAAR1 to warrant
further research of its expression, signaling, and function in
T-cells.

B-cells
B-cells are the antibody secreting lymphocytes and have been
shown to express TAAR1 and other TAAR family members. B-
cells isolated from human blood express TAAR1 and TAAR2 as
well as TAAR5,−6, and−9 at lower levels (Babusyte et al., 2013).
Panas et al. (2012) observed expression of functional TAAR1
that exhibits METH-induced TAAR1-dependent PKA and PKC
phosphorylation in immortalized rhesus monkey B-cells. As
immortalized cells may exist in a state mimicking constant
immune activation, these investigators sought to recapitulate
the TAAR1-dependent PKA and PKC phosphorylation in
primary rhesus PBMCs. Indeed, PHA-activated primary rhesus
PBMCs have upregulated TAAR1 mRNA expression and display
the same PKA and PKC phosphorylation when treated with
METH; however TAAR2 expression was uninvestigated. Similar
cellular signaling governs the TAAR1-dependent, METH-
induced modulation of monoamine transporter kinetic and
internalization functions, discussed elsewhere (Miller et al., 2005;
Xie and Miller, 2007, 2009). Notably, mouse B-cells were shown
to express mRNA for TAAR1-4 at a moderate level and low-
level expression was apparent for TAAR5-9 (Nelson et al.,
2007). B-cells play a critical role in allergic inflammation by
synthesizing and secreting antibodies such as IgE. TAs were
demonstrated to induce secretion of IgE in purified human
B-cells in a TAAR1/TAAR2-dependent manner (Babusyte et al.,
2013). The ability of TAAR1 and TAAR2 co-expression to trigger
IgE secretion in B-cells in response to TAs represents a new
mechanism by which TAs directly alter immune cell function,
and also raise the possibility that selective TAAR1 compounds
may act similarly.

Our analysis of complementary GEO datasets confirmed B-
cell TAAR1 expression in all but one (n = 13) dataset obtained
(Table 4), supporting the expression of TAAR1 in this cell
type.

It is interesting to note that TAAR1 expression in B-cells may
vary based on maturation stage, as we had previously speculated
for PBMC-derived erythroid progenitor cells. Retrospective
analysis carried out with the NCBI GEO “Analyze DataSet” tool
of the 2006 study of Luckey et al., 2006, GDS1695) revealed that
TAAR1 transcripts are significantly higher in plasma B-cells than
in more mature memory B-cells (two-tailed t-test, p ≤ 0.05).
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Cellular Distribution of TAAR1 in the
Neuroimmune System
Neuronal expression of TAAR1 is documented in human
dopaminergic brain regions including the ventral tegmental
area, substantia nigra, hippocampus, amygdala, and other
major regions (Borowsky et al., 2001; Espinoza et al., 2015).
The interface between the immune system and the brain,
commonly referred to as the neuroimmune system, is distinct
in both its cellular population and physical permeability. The
resident immune cells of the brain consist of astrocytes,
microglia, and a unique type of macrophage that inhabits
the perivascular and subarachnoid space (Engelhardt et al.,
2017). The brain’s lack of native T- and B-cells that make up
the adaptive immune response in the periphery is due to a
largely impenetrable physical barrier between the tissue of the
brain and the blood circulation, known as the blood brain
barrier (BBB).

Astrocytes
Astrocytes make up the largest population of brain cells and
represent a dynamic component of neurological homeostasis,
cell signaling, and immunological responses (Schubert et al.,
1997; Ransohoff and Brown, 2012; Bazargani and Attwell, 2016).
Some of the most critical astrocytic functions are perturbed by
METH, namely disruption of the blood-brain barrier (Kousik
et al., 2012; Ramirez et al., 2012; Northrop and Yamamoto,
2015; Turowski and Kenny, 2015) and glutamate clearance
functionality (Cisneros and Ghorpade, 2014a). The role of
TAAR1 in astrocytes was addressed by Cisneros and Ghorpade
(2014a,b), who showed that TAAR1 was both present and
functional in primary human astrocytes and signaled through
cAMP. Importantly, TAAR1mRNA and protein was upregulated
by both METH and HIV-1 exposure. METH and/or HIV-1
treatment also increased the nuclear localization of TAAR1.
Even more interesting was the apparent synergistic upregulation
with combinatorial METH/HIV-1 treatment, observed in both
immunological staining of protein as well as by assessment
of mRNA expression. TAAR1 activation functionally altered
the activity of the glutamate transporter EAAT-2, signifying
the ability of TAAR1 agonists to modulate extracellular
glutamate and therefore potentially mediate excitatory
neurotoxicity.

Our analysis (Table 5) revealed that TAAR1 RNA is present
in mouse forebrain astrocytes (Lau et al., 2012, GDS3944),
normal human astrocytes (Grzmil et al., 2011, GDS4467), and
epidermal growth factor-treated rat astrocytes (Liu et al., 2006,
GDS2146). TAAR1 is also expressed in the human astrocyte cell
line U251 (Lin et al., 2015, GDS6010) and embryonic stem cell
(ESC) line H9-derived astrocytes (Lafaille et al., 2012, GDS4538).
Another microarray experiment by the same group assessed
expression profiles in induced astrocytes deficient in the UNC-
93B protein (GDS4669), which produces a phenotype unable
to signal through the viral antigen recognition receptors TLR3,
TLR7, and TLR9 (Casrouge et al., 2006; Tabeta et al., 2006).
Interestingly, the UNC-93B deficient astrocytes expressed higher
TAAR1 RNA levels than cells normally expressing the protein.

TABLE 5 | Neuroimmune cell RNA expression datasets.

Reference GEO

accession

GEO

profile ID

Species TAAR1

expression

ASTROCYTES

Mabbot et al., 2013 GSE49910 N/A Human Positive

Lin et al., 2015 GDS6010 132273437 Human Positive

Lafaille et al., 2012 GDS4538 98288041,

98288042

Human Positive

Lafaille et al., 2012 GDS4669 101498241,

101498242

Human Positive

Simpson et al., 2011 GDS4135 80120811 Human Positive

Grzmil et al., 2011 GDS4467 93316011 Human Positive

Lau et al., 2012 GDS3944 73585774 Mouse Positive

Liu et al., 2006 GDS2146 26366816 Rat Positive

(Partial)

Zhang et al.,

unpublished

GDS2919 44030411 Human Below Cutoff

Mense, 2006 GDS1779 19624611 Human Below Cutoff

Mense et al., 2006 GDS2215 28197811 Human Below Cutoff

Sharma et al., 2007 GDS3366 82062161 Mouse Below Cutoff

Takasaki et al., 2007 GDS2725 38937116 Rat Below Cutoff

MICROGLIA

Yoshino et al., 2011 GDS4151 80724853 Human Positive

Lattin et al., 2008 GSE10246 N/A Mouse Positive

Dirscherl et al., 2010 GDS3613 62315661 Mouse Positive

Therefore, TAAR1 upregulation may occur as a compensatory
mechanism when anti-viral immune processes are disturbed.

Our analysis of the dataset by (Simpson et al., 2011)
(GDS4135) revealed that TAAR1 RNA expression is positively
correlated with increasing Braak staging, a clinical measurement
of the progression of Alzheimer’s and Parkinson’s disease.
Conversely, our analysis of a dataset obtained from the BioGPS
database in which normal mouse astrocytes were incubated with
brain slices from a beta-amyloid overexpressing mouse model
of Alzheimer’s disease (Kurronen et al., unpublished, dataset
available from http://ds.biogps.org/?dataset=E-GEOD-29317&
gene=111174) revealed that TAAR1 RNA expression was reduced
relative to cells incubated with normal brain slices, and this
difference could not be accounted for by age or developmental
stage. Affymetrix microarray technology utilizes “detection calls”
as a method of determining whether a gene transcript is present
and allows for correction of noisy probe sets or error (Archer
and Reese, 2010). While datasets with “absent” detection calls
cannot be considered positive, it is still interesting to note that
TAAR1 RNA was still measurable in other astrocytic samples
from six other datasets (Table 5). Complementary searches of
similar Affymetrix microarray experiments in BioGPS (Wu et al.,
2013) further confirmed GEO results for expression in mouse
(Beckervordersandforth et al., 2010; Zamanian et al., 2012),
and suggests a bias in astrocytic TAAR1 expression toward
the subventricular zone and hippocampal region relative to
the ventral encephalon and the olfactory bulb (Mireia and
Helena, 2012, unpublished; dataset available from http://ds.
biogps.org/?dataset=E-GEOD-36456&gene=111174). These data
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TABLE 6 | The Human Protein Atlas TAAR1 protein expression data in immune

system tissues.

Immune tissue Protein expression level (HPA)

APPENDIX

Glandular cells High

Lymphoid tissue High

Bone marrow Medium

LYMPH NODE

Germinal centers Medium

Non-germinal centers Low

TONSIL

Germinal centers High

Non-germinal centers Medium

Squamous epithelial cells Medium

SPLEEN

White pulp High

Red pulp High

and numerous other datasets for human TAAR1 expression can
be freely browsed at http://biogps.org/gene/134864.

Microglia
Microglial cells are a distinct lineage of macrophage derived
from the yolk sac that exists exclusively in the brain. These
innate immune cells act analogously to the bone-marrow
derived macrophage in the tissues and periphery to survey
the microenvironment and respond to pathogens via pattern
recognition receptors and toll-like receptor binding activity
(Ginhoux et al., 2010; Saijo and Glass, 2011). Moreover,
microglial expression of major histocompatibility complex-
I (MHC-I) and MHC-II make them capable of antigen
presentation to T-cells, required for adaptive immune responses
(Hauser and Knapp, 2014). Our analysis of datasets accessed
from NCBI GEO Profiles revealed that TAAR1 expression is
detectable in the human microglial cell line HMO6 (Yoshino
et al., 2011, GDS4151) and in mouse BV-2 microglia (Dirscherl
et al., 2010, GDS3613). Further analysis of the array-based
study by Yoshino et al. (2011, GDS4151) revealed that ethanol
treatment induced a 1.4-fold increase in TAAR1 expression
in HMO6 microglia relative to DMSO control, suggesting a
potential interaction between the ubiquitous drug of abuse and
TAAR1 modulation of functioning in the brain’s major first
line of immunological defense. Microglial TAAR1 signaling
has yet to be directly studied, but considerable overlap exists
between the immune activated state and TAAR1 expression. The
potent TAAR1 agonist METH enhances HIV-1 replication in
microglia and in vivo exposure to MDMA causes rat microglia
to become activated (Pubill et al., 2003; Liang et al., 2008).
Thomas et al. (2004) noted that the transcription factors (TF)
NFκβ, cFos, and AP-1 needed for microglial activation are
also upregulated by METH. Intriguingly, our analysis of the
TAAR1 promoter carried out with the TF binding site predictor
program LASAGNA-Search 2.0 (Lee and Huang, 2013) revealed
that these same TFs are predicted to bind in the upstream

untranslated region of the TAAR1 promotor, and these data
are in agreement with an analogous search we conducted
utilizing the similar program MatInspector (Quandt et al.,
1995; Cartharius et al., 2005, Bioinformatics). In regard to
astrocytes and microglia, in addition to the TAAR1 expression
described in the literature, our analyses indicate that TAAR1
RNA is present in these neuroimmune cell types. Aberrant
microglial activation, signaling, and function may be due to
monoamine excess. Increased levels of the neurotransmitters
dopamine and norepinephrine paramount to sympathetic
nervous system activation may act in a positive feedback loop
to mimic and perpetuate the immunologically activated state of
microglia and this prolonged cellular activation could lead to
cellular damage through production of reactive oxygen species
and neuroinflammation. Alternatively, pathological changes in
endogenous agonists for TAAR1, as seen in psychiatric disorders,
could underlie alterations in microglial functions. While these
proposed mechanisms are in contrast they are not mutually
exclusive; it is likely that these pathways are intimately connected
in a sensitive network of microenvironmental surveillance and
homeostasis in response to trace and monoamine levels.

TAAR1 Is Widely Expressed in Tissues of
Immune Organs
Extensive antibody-based protein expression data is freely
available online from the Human Protein Atlas (HPA) at
www.proteinatlas.org (Uhlén et al., 2015; Thul and Lindskog,
2017). This database was generated by probing various human
tissues for all protein-coding genes and is cataloged in a
searchable module, allowing for tissue-specific exploration of
expression patterns. Results of a June 2017 query of the HPA for
TAAR1 protein expression yielded detection of TAAR1 in bone
marrow and immune organs that included the appendix, spleen,
bone marrow, tonsils, and lymph nodes (Table 6). Importantly,
TAAR1 protein has been detected at appreciable levels in sites
of immune cell maturation and activation, namely germinal
centers in both lymph nodes and tonsils. As germinal centers
are the location of B-cell maturation and fine-tuning of the
adaptive immune response these data suggest that TAAR1 may
be important in the B-cell mediated response. Similarly, TAAR1
protein is highly expressed in both the white and red pulp of
the spleen and tonsillar germinal centers. TAAR1 protein is also
highly expressed in lymphoid tissue and glandular cells of the
appendix as well as glandular adrenal cells. Protein expression
is summarized in Table 6, and histological images and details
for these data are available online at http://www.proteinatlas.org/
ENSG00000146399-TAAR1/tissue/primary$+$data.

Our retrospective analysis of a microarray dataset fromHIV-1
infected lymphatic tissues (Li et al., 2009, GSE16363) containing
gene probes for TAAR1,−2,−3,−5,−8, and −9 obtained from
NCBI GEO revealed expression of all TAARs in normal tissue
and tissue in acute and asymptomatic stages as well as fully
progressed AIDS. TAAR1 was expressed at the lowest level of
all TAARs and TAARs−2,−3, and −5 were most abundant. To
explore changes in transcript levels of TAAR1 and related TAARs
over the course of infection we obtained the raw count data for all
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FIGURE 1 | Differential RNAseq expression data for TAAR1 in human cancers. A TAAR1 mRNA transcript query in BioXpress (Wan et al., 2015) revealed that TAAR1

is upregulated in esophageal, lung, and stomach cancers, and downregulated in sarcoma, cervical, renal, kidney, liver, pancreas, pituitary, prostate, urinary, and

uterine cancers. This differential expression is statistically significant in esophageal (*p = 0.023) and prostate (**p = 0.000043) cancers.

samples and calculated log2 fold-change values for each infection
stage relative to control tissues. All TAARs were downregulated
in the asymptomatic stage of HIV-1 infection and all TAARs
except TAAR3 were upregulated in acute HIV-1 infection. It
is interesting to note that for TAAR1, expression appears to
increase upon initial infection, decrease once the asymptomatic
phase is reached, and return to control-baseline levels with
progression to AIDS. TAARs are not significantly altered in HIV-
1 infection, but trend toward upregulation with acute infection
and downregulation with asymptomatic infection, corresponding
to active viral replication and latent infection progressions. This
finding agreed with our analysis of another GEO dataset of
Dengue virus-infected blood in which TAAR1 RNA expression
levels were significantly lower in convalescent infection vs. active
viremia (Kwissa et al., 2014, GDS5093). The apparent increase in
TAAR1 RNA in periods of active viral replication suggest that its
expression could be modulated by the presence of viral antigen.
Similarly, the downregulation of TAAR1 seen in asymptomatic
infection, which corresponds to a period of viral latency, suggests
that TAAR1 could play a role in the viral life cycle.

Recent online compilation of open-source transcriptomic
profiling of immunologically relevant cell types is available
through the Reference Database of Immune Cells (RefDIC),
http://refdic.rcai.riken.jp (Hijikata et al., 2007). Our query for the
TAAR1 gene revealed detection in numerous immunologically
relevant cell types in two microarray datasets for human and one
for mouse immune cells, representing three different Affymetrix
GeneChip platforms. The acquired dataset of the Affymetrix
GeneChip Mouse Array included the raw log2 expression values
for a single probe representing TAAR1 RNA levels in 19 different
cell types. TAAR1 was found to be expressed at low levels in
various mouse immune cells and expression varied within cell

types. Highest expression levels were observed in B-cells, T-cells,
dendritic cells, macrophages, and mast cells. While the majority
of TAAR1 expression-level counts for all immune cell types tend
to be low, the distribution of the outlier cell types with higher
expression counts, namely macrophage, appear to be skewed
toward the innate branch of the immune system. This is likely
because of a disproportionate amount of macrophage samples, so
although observationally interesting this finding is not definitive.

The online repository BioGPS (http://www.biogps.org) is
another abundant source of processed and searchable microarray
expression datasets (Wu et al., 2013). A retrospective analysis
of three microarray datasets retrieved from BioGPS (Mabbott
et al., 2013, available from http://ds.biogps.org/?dataset=
BDS _00013&gene=134864) representing 1,049 human cell
samples revealed TAAR1 gene expression in various immune
cells including astrocytes, peripheral blood cells, leukocytes,
monocytes, macrophage, and neutrophils. TAAR1 was also
detected in mixed lymphocytes and in the lymphocytic subsets
T-cells, Pre-, Pro-, and normal B-cells, and NK cells. TAAR1 was
also present in low-medium levels in pancreatic islets. Similarly,
analysis of two microarray datasets retrieved from BioGPS
representing 232 mouse cell samples revealed detectable TAAR1
RNA in myeloid progenitor cells, thymocytes, CD4+ and CD8+
T-cells, NK cells, B-cells, mast and dendritic cells, macrophage,
granulocytes, microglia, lymph node, and bone marrow (Lattin
et al., 2008; Wu et al., 2013, dataset available from http://ds.
biogps.org/?dataset=GSE10246 &gene=111174).

TAAR1 in Cancers
The potent downregulation of the tumor-promoting gene SPP-
1 as a result of TAAR1 activation has been previously described
in T-cells (Babusyte et al., 2013). Notably, SPP-1 upregulation
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is inducible by PKC activation, a signaling pathway triggered
by TAAR1 agonists, and its expression is inversely related to
cancer prognosis as tumors rich in the SPP-1 gene have an
enhanced ability to grow and invade other tissues to ultimately
metastasize (Wai and Kuo, 2007). While no data currently exists
for TAAR1-specific effects on cancer progression, a literature
search for TAAR1 agonists in cancer revealed a small subset of
manuscripts describing amphetamine as a tumor-promoter. The
potent TAAR1 agonist amphetamine has been linked to cancer
pathology since at least the 1990s, when daily amphetamine
injections were found to increase tumor incidence, growth and
metastases in virally-induced cancers on rats (Freire-Garabal
et al., 1992, 1998). Similarly, a more recent human study
(Chao et al., 2008) found that recreational amphetamine use
correlates with increased risk of Non-Hodgkin’s lymphoma
(NHL). Specifically, hazard ratios determined from the study
predicted that patients with weekly or more frequent use of
amphetamines were 1.75 times as likely to develop NHL vs.
their control counterparts and that recent use increased that risk

TABLE 7 | Cancer RNA-seq Nexus datasets with differential TAAR1 RNA

expression (adjusted P-value < 0.01) in differential expression analysis.

Cancer type Differential TAAR1

RNA expression

adjusted P-Value

Adrenocortical carcinoma No

Breast carcinoma Yes 0.000106887

Carcinoma of bladder Yes 0.006578489

Cervical squamous cell carcinoma Yes 0.000690563

Colon carcinoma Yes 0.003349739

Colorectal carcinoma No

Cutaneous melanoma No

Endometrial carcinoma No

Esophageal carcinoma No

Glioblastoma No

Glioma No

Leukemia No

Liver carcinoma No

Lung adenocarcinoma No

Lung squamous cell carcinoma Yes 0.004341319

Malignant neoplasm of colon with

rectum

No

Mesothelioma No

Ovarian serous adenocarcinoma No

Pancreatic carcinoma Yes 0.008584279

Pheochromocytoma and

paraganglioma

No

Prostate carcinoma Yes 0.00704065

Renal cell carcinoma Yes 0.00095

Sarcoma No

Squamous cell carcinoma of

the head and neck

No

Stomach carcinoma Yes 0.000878328

Testicular germ cell tumor No

Thyroid carcinoma Yes 3.82E-06

to 4.3 times. Patients with 3 years prior use were three times
as likely to develop NHL as drug-free patients. In contrast to
the cancer-promoting effects of amphetamine are those of the
potent endogenous TAAR1 ligand, 3-Iodothyronamine (T1AM).
T1AM is a derivative of thyroid hormone and has been shown
to inhibit growth of cancerous cells in-vitro. Specifically, in-vitro
incubation of MCF7 human breast adenocarcinoma cells or
HepG2 heptocellular carcinoma cells with T1AM resulted in
reduced proliferation in an MTT assay. Further, IC50 values of
T1AM were twice as high for control human foreskin fibroblast
cells (Rogowski et al., 2017).

PKA, triggered by TAAR1 activation, is thought to act
upstream in activation of the transcription factor NFKB (Bhat-
Nakshatri et al., 2002). Chronic inflammation in the tumor
microenvironment feeds forward to activate NFKB, which in
turn perpetuates the inflammatory state that allows tumors
to thrive (Karin, 2009). Constitutive activation of NFKB is

TABLE 8 | Cancer cell lines expressing TAAR1 RNA.

Cell line TPM FPKM

QGP-1, pancreas, pancreatic islet cell

carcinoma

241 69

UMC-11, lung, lung carcinoid tumor 130 37

VMRC-LCD, lung, lung adenocarcinoma 33 8

NCI-H810, lung, non-small cell lung carcinoma 24 6

NCI-H1092, lung, small cell lung carcinoma 21 6

BEN, lung, lung carcinoma 19 5

NCI-H2081, lung, small cell lung carcinoma 10 3

DMS 454, lung, small cell lung carcinoma 6 2

NCI-H889, lung, small cell lung carcinoma 5 2

NCI-H146, lung, small cell lung carcinoma 3 0.8

NCI-H820, lung, lung adenocarcinoma 2 0.6

PK-59, pancreas, pancreatic carcinoma 2 0.5

HCC1359, lung, large cell lung carcinoma 2

SNU-16, stomach, gastric carcinoma 2 0.5

NCI-H716, caecum, cecum adenocarcinoma 1

NCI-H2369, lung, mesothelioma 1

NCI-H2122, lung, non-small cell lung

carcinoma

1

SW 780, urinary bladder, urinary bladder

transitional cell carcinoma

1

RPMI 2650, nasal septum, nasal septum

squamous cell carcinoma

0.8

KP-3, pancreas, pancreatic adenosquamous

carcinoma

0.7

OCI-LY-10, lymph node, B-cell lymphoma 0.7

OV-90, ovary, ovarian papillary serous

adenocarcinoma

0.5

NCI-H727, lung, lung carcinoid tumor 0.5

NCI-H2052, pleura, mesothelioma 0.5

KARPAS-1106P, lymph node, B-cell lymphoma 0.5

COR-L47, lung, small cell lung carcinoma 0.5

Baseline RNAseq analysis of 622 human cancer cell lines obtained from EMBL-EBI

ArrayExpress tool. TPM, Transcripts Per Kilobase Million; FPKM, Fragments Per Kilobase

Million.
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associated with increased cancer risk and enhanced malignancy
(Hoesel and Schmid, 2013). RNAseq data from 12 published
cancer studies obtained from cBioPortal (Cerami et al., 2012;
Gao et al., 2013) detected RNA for TAAR1, TAAR2, TAAR5,
TAAR6, TAAR8, and TAAR9 in various cancers. A TAAR1
mRNA transcript query in BioXpress (Wan et al., 2015) revealed
that TAAR1 is upregulated in esophageal, lung, and stomach
cancers, and downregulated in sarcoma, cervical, renal, kidney,
liver, pancreas, pituitary, prostate, urinary, and uterine cancers
(Figure 1). This differential expression is statistically significant
in esophageal (p = 0.023) and prostate (p = 0.000043) cancers.
A gene query for TAAR1 in the online Catalog of Somatic
Mutations in Cancer (COSMIC, Forbes et al., 2017) using
the Genome Browser tool (https://cancer.sanger.ac.uk/cosmic/
browse/genome) revealed that TAAR1 is overexpressed in at least
19 cancer types and in 16% of esophageal cancers. A similar
gene-specific query in the Cancer RNA-Seq Nexus (Li et al.,
2016) revealed that human TAAR1 is statistically differentially
expressed in breast, bladder, cervical, lung, pancreatic, stomach,
renal, and thyroid cancer (Table 7). Reexamining TCGARNAseq
data with respect to the TAAR1 gene (Figure 3) revealed varying
RNA expression levels across cancer types. Overall, most cancer
types displayed median TAAR1 RNA expression levels of zero,
which is in agreement with the well-known phenomenon of
TAAR1 expression detection being challenging (Liberles and
Buck, 2006). Interestingly, cancer types containing a majority
of samples without detectable TAAR1 expression also contained
a number of samples with vastly varied expression levels,
suggesting that TAAR1 expression varies in a patient-dependent
manner even within a given cancer type. Lowest non-zero
levels of TAAR1 RNA expression (maximum value for log2
TAAR1 expression < 1.5, which roughly represents values three
times that of non-expression) were observed in Adrenocortical
carcinoma [ACC, n = 80], Lymphoid Neoplasm Diffuse Large
B-cell Lymphoma [DLBC, n = 48], Glioblastoma multiforme
[GBM, n = 528], Glioma [GBMLGG, n = 696], Brain Lower
Grade Glioma [LGG, n = 515], Pancreatic adenocarcinoma
[PAAD, n = 185], Prostate adenocarcinoma [PRAD, n = 498],
Stomach and Esophageal carcinoma [STES, n = 237], Testicular
Germ Cell Tumors [TGCT, n = 150], Uterine Carcinosarcoma
[UCS] n = 57. In summary, TAAR1 RNA was present at the
lowest levels in cancers of the brain, pancreas, prostate, adrenal
gland, stomach and esophagus, sex organs, and B-cells of the
blood. As previously stated a large majority of samples in
each cohort datasets lacked detectable RNA as represented by
a median value of zero; however, median TAAR1 RNA levels
were noticeably higher in the pan-kidney cohort representing
KICH + KIRC + KIRP [KIPAN, n = 1020], Kidney renal
clear cell carcinoma [KIRC, n = 607], Pheochromocytoma and
Paraganglioma [PCPG, n= 179], and Skin CutaneousMelanoma
[SKCM, n= 470] cohorts. Therefore, TAAR1 RNA is most highly
expressed in cancers of the kidney, skin, and neuro-endocrine
cancers. It is interesting to note the substantial difference in
TAAR1 RNA expression levels between the anatomically closely
related adrenocortical cancers and the neuroendocrine cancers
pheochromocytoma/paraglioma. An RNA-seq dataset containing
675 commonly used human cancer cell lines obtained from

Array Express (Klijn et al., 2015, ArrayExpress experiment E-
MATB-2706), 622 of which contained data for TAAR1 RNA
expression, revealed that TAAR1RNA ismost highly expressed in
the pancreatic somatostatinoma cell line QGP-1, lung carcinoid
tumor cell line UMC-11, and the lung adenocarcinoma cell line
VMRC-LCD. This dataset is summarized in Table 8 and directly
available at https://www.ebi.ac.uk/arrayexpress/experiments/E-
MTAB-2706/. Another Array Express RNA-seq dataset of long
poly adenylated RNA and long non-poly adenylated RNA
from ENCODE cell lines (Djebali et al., 2012, ArrayExpress
experiment E-GEOD-26284) revealed that TAAR1 RNA is
most highly expressed in the bone marrow neuroblastoma cell
line SK-N-SH, normal human lung fibroblast cell line NHLF,
human skeletal muscle cells, and the myoblast cell line HSMM.
Further exploration of TAAR1 expression in cancers utilizing
the COSMIC database revealed TAAR1 deletions in two cancer
cell lines. a B-cell NHL subtype, mantle cell lymphoma, JEKO-1
cell line and malignant melanoma cell line Hs940.T. These data
support the hypothesis that TAAR1 is modulated in cancers and
therefore may serve a functional role in cancer physiology.

TAAR1 signaling may modulate tumor cell function
to alter malignancy and tumor progression and therefore
TAAR1-specific compounds could potentially have oncological
therapeutic potential and represent a novel approach to
modulating cancer physiology. Accordingly, our analyses of
TAAR1 expression trends in overall survival cancer studies
raises speculation of TAAR1 as a possible prognostic marker.
Serendipitously during the writing of this review, the first
manuscript to posit TAAR1 as a predictor of overall survival in
cancer was published. In histologically-based experiments, Vattai
et al. (2017) found TAAR1 expression to correlate with longer
overall survival in early breast cancer.

Overall survival trends expressed as hazard ratios (HR) for
80 unique human cancer studies representing 15 cancer types
were obtained from the online databases Prognoscan (Mizuno
et al., 2009) and PROGgene (Goswami and Nakshatri, 2013).
For each PROGgene study (n = 68) the sample population was
bifurcated at the median into high- and low-TAAR1 expression
groups. Study data obtained from Prognoscan (n= 12) utilized a
minimum p-value approach to determine the point of bifurcation
into high and low expression groups. Briefly, the HR obtained
for each study can be explained as the ratio of events (deaths) in
the high TAAR1 expression group to events in the low TAAR1
expression group (Abel et al., 1984; Mizuno et al., 2009). To
perform themeta-analysis after data collection all HR values were
log-transformed to normalize values around zero to enable the
calculation of subgroup averages and then back transformed to
produce the average HR value denoted in Figure 2. An HR value
of 1 denotes that survival was not different between the high
and low expression groups, whereas an HR > 1 denotes that
survival was poorer in the high expression group and conversely
an HR < 1 means that survival was greater in the low expression
group.

Our meta-analysis revealed that higher expression of TAAR1
correlates to longer median survival time in gastric, ovarian,
colorectal, bladder, blood, rectal, and bone cancers. Conversely,
lower TAAR1 expression correlated to longer median survival
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FIGURE 2 | Meta-analysis of the prognostic value of TAAR1 expression in overall cancer survival. Forest plot of hazard ratios for survival in 80 human cancer studies

representing 15 cancer types were obtained from open-source repositories (PROGgene n = 68, Prognoscan n = 12). Hazard ratios were determined for TAAR1

expression bifurcated into high and low expression and all HR values were log-transformed to normalize values around zero to enable the calculation of subgroup

averages and then back transformed to produce the average HR value for each cancer type.

FIGURE 3 | RNAseq analysis of TAAR1 expression in human TCGA cancer cohorts. RNAseq expression datasets representing cohorts from 36 cancer types were

downloaded from The Cancer Genome Atlas (TCGA) using the R package RTCGA.rnaseq and values for the TAAR1 gene transcript were extracted, log2

transformed, and plotted with ggplot2. The minimal non-zero value for RNA expression levels was set to 1 to facilitate log2 transformation.

in head and neck, skin, and brain cancers (Figure 2). Breast
cancer studies (n = 12) yielded an average HR of 1.05 which
would suggest no differential effect of TAAR1 on cancer survival.

Although these findings contradict the recent finding of Vattai
et al. (2017), it is important to note that our meta-analysis did
not account for progression stage, and as such a further analysis
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would be needed to directly compare our data with that of
the early-stage breast cancer described in the 2017 manuscript.
Overall survival analysis of a pancreatic cancer dataset (Grimont
et al., 2015, GSE50827) stratified by cancer stage using PROGene
V2 revealed that survival of stage IIB cancer that had spread
from the pancreas to the lymph nodes is significantly higher
(HR= 4.79, p= 0.025) vs. stage IIA cancer that lacks lymph node
involvement, suggesting the possibility that TAAR1 may play a
role in lymphoid cancer progression or pathways.

DISCUSSION

This review of current literature and meta-analyses of array-
based evidence confirms that TAAR1 is expressed throughout
various immune cell types and cancers. The ability of TAAR1 to
signal in response to endogenous common biogenic amines and
trace amines implicates the receptor as a mediator of aminergic
regulation of immune function. Its ability to respond to
exogenous amphetamine-like drugs implicates it as a modulator
of at least some of the immunological actions of these drugs.
Importantly, its ability to respond to dopamine implicates the
receptor in the immunological action of drugs of abuse more
generally, including drugs that do not directly bind to and/or
activate the receptor directly, such as cocaine, but act through
elevated dopamine levels. Additionally, its ability to be agonized
or antagonized by newly developed synthetic drugs that are
currently under development and investigation as psychiatric and
addition therapeutics, respectively, mandate a greater definition
of the immunological action of TAAR1-targeted drugs.

Our analyses further implicate TAAR1 as a logical target
for studying the interplay between stimulant use and immune
function. Modulation of neurotransmitter concentrations by
METH and cocaine, for example, may act on TAAR1 either
directly or indirectly to alter homeostatic immune cell signaling,
in effect mimicking a prolonged state of immune activation,
or by downstream changes in cellular function such as
cytokine secretion, phagocytosis, and chemotaxis, for which
there is emerging evidence.TAAR1-specific compounds could
be efficacious therapeutics for infections and cancers, as well as
valuable pharmacological tools for dissecting stimulant-induced
changes and damage to immune function.

The expression of TAAR1 in various cancers and its functional
significance is an intriguing yet largely unexplored area. Our
analyses show that expression of TAAR1 is modulated in
cancers, suggesting that TAAR1 serves a functional role in
cancer physiology. We provide evidence for a differential pattern
of cancer survival based on TAAR1 expression in multiple
cancer types. The analyses indicate a potential prognostic value
of TAAR1 detection in cancer survival that depends on the

cancer type. Cancer pathologies differ widely and as such the
observation that potentially protective effects of TAAR1 are type-
specific supports the hypothesis that TAAR1 is utilizing cell
type-specific signaling or collaborating with host cell receptor
signaling in a cell type-specific manner to alter cellular function
and cancer physiology.

The observational data gathered in previous decades linking
amphetamine use to cancer progression needs to be revisited
in light of the de-orphanization of TAAR1. As both illicit drug
use and cancer incidence continue to increase globally it will
be imperative to investigate TAAR1 signaling in cancer. TAAR1
signaling may play a role in the progression of many cancers, and
accordingly TAAR1-specific compounds may serve as potential
therapeutic additions to current clinical practices to improve
survival. Pharmacologically elucidating TAAR1 signaling in
cancer can lead to a better understanding of the mechanisms
by which cancer eludes the immune system, and moreover,
how drugs of abuse can contribute to cancer development and
prognosis. Pharmacologically elucidating TAAR1 signaling, both
generally with regard to TAAR1 as a protomer in receptor-
receptor and/or receptor-protein complexes, or more specifically
in cancer cellular phenotypes, will predictably lead to a better
understanding of the mechanisms by which cancer alludes
the immune system, and moreover, how drugs of abuse and
other ligands for TAAR1 can contribute to cancer development,
prognosis, and treatment. The current identification of TAAR1
as a marker in numerous cancers, potentially functional and
therapeutically targetable, provides a logical direction for future
studies on the effects of drugs targeting TAAR1. Our present
analyses expand the spectrum of immune cells known to express
TAAR1 and also provide a queryable roadmap for further
investigation. The identification of TAAR1 across immune cell
types presents an avenue for exploring both the role of TAAR1 in
normal immune function as well as its potential role as amediator
or modulator of immune dysregulation. Immune susceptibilities
in disease states and in particular those seen in drug users
may involve aberrant TAAR1 regulation and function, and
may be therapeutically targetable with drugs that interact with
TAAR1.
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