
1. Introduction
The ability to accurately measure and forecast the Earth system is increasingly important as climate change 
drives transformation across all scales (IPCC, 2021). In the last decade, various remote sensing satellite instru-
ments have increased the range, scale, and impact of Earth observations, leading to important breakthroughs 
across Earth Science. The National Aeronautics and Space Administration (NASA) launched the Gravity Recov-
ery and Climate Experiment (GRACE) missions to provide valuable data on water storage and glacier wasting 
(Landerer et al., 2020; Landerer & Swenson, 2012; Schmidt et al., 2006). The European Space Agency (ESA) 
designed the Soil Moisture and Ocean Salinity mission to understand two important parts of the water cycle 
(Jackson et al., 2011; Kerr et al., 2001). The Orbiting Carbon Observatory missions improve our understanding 
of the global carbon cycle (Crisp et al., 2004; Eldering et al., 2017), and the ECOsystem Spaceborne Thermal 
Radiometer Experiment on Space Station (ECOSTRESS) provides critical metrics on plant heat stress and water 
uptake (Fisher et al., 2020; Pascolini-Campbell et al., 2021; Xiao et al., 2021). These missions were each opti-
mized to measure a specific quantity or for a particular application that dictated all hardware and mission design 
decisions. In contrast, the next generation of NASA missions will be increasingly interdisciplinary, delivering a 
variety of measurements that touch on many science topics and aspects of the Earth System. For example, the 
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NISAR mission will deliver products related to water availability, geologic hazards, and ecosystem biomass. Such 
missions cannot be traced to a single measurement objective, and when discipline requirements conflict, it is not 
clear how to make design decisions with finite mission resources. A consistent metric is necessary to understand 
the data needs and applications across diverse ecosystems.

As an example of how discipline needs may conflict with each other, consider the problem of orbit selection. 
A geostationary orbit provides the opportunity to continuously monitor ∼30% of the Earth's surface in its field 
of view, but the ∼30,000 km orbit altitude and constraints on optics size and mass effectively limits GSD; for 
example, the latest GOES satellites have 500 m GSD in the visible, 1 km GSD in the near-infrared, and 2 km 
GSD in the thermal infrared (TIR). Polar-orbiting satellites acquire data at fine spatial scales (5–30  m) less 
frequently (5–16  days revisit). Thus, there is a trade-off between spatial and temporal resolution, and these 
dynamics compete with challenges in available instrument technology. Determining the optimal satellite revisit 
and resolution is often dependent on the application. There are also interlinked relationships between spectral 
resolution and spectral range, spatial resolution and swath width, radiometric resolution and saturation, and many 
other considerations that need to be optimized. Better integration of this great diversity of measurements would 
benefit the state of the science.

We address this problem through the lens of intrinsic dimensionality (ID), a universal performance metric, and its 
implications for an important new NASA mission: the Surface Biology and Geology (SBG) investigation. SBG 
will employ high GSD hyperspectral visible to shortwave infrared (VSWIR) and multi-spectral TIR imagery 
to meet diverse science and applications needs (Stavros et al., 2022). In theory, each of these observations is 
constrained by its own set of high-priority parameters (Cawse-Nicholson et al., 2021). For instance, geologists 
might be more interested in high spectral resolution than frequent revisit (Swayze et al., 2003). Aquatic scientists 
might be more interested in minimal instrument noise over dark targets than <100 m GSD (Dierssen et al., 2021), 
and volcanologists might prioritize revisit frequency (Francis & Rothery, 2000). As the measurement science 
advances, instruments are also drafted into roles beyond their original design purpose, such as the use of airborne 
VSWIR instruments to monitor greenhouse gas point sources (Duren et al., 2019). Rather than trying to arbi-
trate between all possible measurement objectives—an impossible and ever evolving task—we propose an alter-
native  standard of instrument performance related to the information captured from the upwelling light field. 
Specifically, we show how the ID, which quantifies the number of measurable free parameters in a data set, is a 
reasonable and objective standard of SBG observing system performance that broadly captures diverse science 
and application needs.

2. Intrinsic Dimensionality
ID is a measure of information content that has been used to determine components of chemical mixtures from 
hyperspectral data (Kritchman & Nadler, 2008), retrieve speech signals from noisy audio (Park et al., 1999), 
measure the impact of data fusion (Cawse-Nicholson et  al., 2019), and determine unique classes in remotely 
sensed imagery (Asner et al., 2012; Boardman & Green, 2000; Small, 2001; Thompson et al., 2017). ID quan-
tifies the number of significant principal components. If a hyperspectral image 𝐴𝐴 𝐴𝐴 , of size 𝐴𝐴 𝐴𝐴 × 𝑏𝑏 , where 𝐴𝐴 𝐴𝐴 is the 
number of pixels and 𝐴𝐴 𝐴𝐴 is the number of spectral bands, can be written as a linear combination of signal (𝐴𝐴 𝐴𝐴 ) and 
noise (𝐴𝐴 𝐴𝐴 ), such that 𝐴𝐴 𝐴𝐴 = 𝑆𝑆 + 𝑁𝑁 , then the ID is the rank of the signal subspace (i.e., the maximum number of 
linearly independent components when noise is disregarded).

We assume that each pixel 𝐴𝐴 𝐴𝐴𝑖𝑖 ∈ 𝑋𝑋 can be written as a linear combination of endmembers 𝐴𝐴 𝐴𝐴𝑗𝑗 (objects contained 
within the scene with unique spectral properties), such that:

𝑥𝑥𝑖𝑖 =

𝐾𝐾
∑

𝑗𝑗=1

𝑎𝑎𝑖𝑖𝑗𝑗𝑣𝑣𝑗𝑗 + 𝜀𝜀𝑖𝑖 (1)

where 𝐴𝐴 𝐴𝐴𝑖𝑖 ∈ 𝑁𝑁 is the noise present in the ith pixel, 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 is the abundance of the jth endmember in the ith pixel, and 
𝐴𝐴 𝐴𝐴 is the ID. Here, the noise encapsulates all causes of uncertainty that might cause a deviation from the true 

radiance, including photon shot noise, electronic noise, read noise, dark current noise, quantization noise, and 
other calibration uncertainties. If the endmembers 𝐴𝐴 𝐴𝐴𝑗𝑗 are known (from field measurements or an existing spectral 
library), then the abundances can be determined using fully constrained least squares (C.-I. Chang & Heinz, 2000) 
or other optimization techniques. To be meaningful, 𝐴𝐴 0 ≤ 𝑎𝑎𝑖𝑖𝑖𝑖 ≤ 1 ∀𝑖𝑖𝑖 𝑖𝑖 , and 𝐴𝐴

∑

𝑗𝑗
𝑎𝑎𝑖𝑖𝑗𝑗 = 1∀𝑖𝑖 . If the endmembers are 
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not known, as is often the case, 𝐴𝐴 𝐴𝐴𝑗𝑗 can be estimated from the image if 𝐴𝐴 𝐴𝐴 is known, using simplex algorithms or 
other techniques. Simplex algorithms assume that all mixed pixel vectors can be enclosed by a K-dimensional 
simplex, where the simplex endpoints are the vectors representing pure spectra (e.g., C.-I. Chang et al., 2006; 
Nascimento & Bioucas Dias, 2005; Winter, 1999).

In natural ecosystems, there is some inherent variability within classes, representing for example, different nutri-
ent levels within trees of the same species. In such cases, the endmember can be thought of as the center or most 
representative spectrum from a class, and highly variable species may be represented by multiple classes. Natural 
variation is distinguished from noise by the assumption that naturally varying spectra within a class will, for the 
most part, change smoothly across the electromagnetic spectrum, whereas the noise is random between spectral 
channels.

Several methods have been proposed to estimate 𝐴𝐴 𝐴𝐴 in Equation 1, which is the ID (e.g., Bachmann et al., 2008; 
Berman, 2019; Bioucas-Dias & Nascimento, 2005; Cawse-Nicholson et al., 2012; C.-I. Chang & Du, 2004). We 
use random matrix theory (RMT) to estimate ID (Cawse-Nicholson et al., 2012, 2019). If the noise is assumed 
to be Gaussian, we can construct a “random matrix” 𝐴𝐴 Σ = 𝑁𝑁

𝑇𝑇
𝑁𝑁 , where each column of 𝐴𝐴 𝐴𝐴 is a random vector 

that has been drawn from a Gaussian distribution. The eigenvalues of these random matrices have been stud-
ied (Baik & Silverstein, 2006; Johnstone, 2001). While it is possible that there are non-Gaussian contributors 
to the noise term in Equation 1, the Gaussian assumption is common and has been shown to be sufficient in 
practice (Bioucas-Dias & Nascimento,  2008a; Cawse-Nicholson et  al.,  2012). Assuming scaled and centered 
data, we will consider the eigenvalues 𝐴𝐴 𝐴𝐴𝑘𝑘 of the image covariance matrix 𝐴𝐴 𝐴𝐴 = 𝑋𝑋

𝑇𝑇
𝑋𝑋 and those eigenvalues that 

behave  like  those of a random matrix will be considered due to noise. An eigenvalue is regarded as signal if:

𝜆𝜆𝑘𝑘 > 𝜌𝜌𝑘𝑘 𝑐𝑐(𝑛𝑛𝑛 𝑛𝑛) (2)

𝜌𝜌𝑘𝑘 =

𝑒𝑒
𝑘𝑘

Π

𝑇𝑇

Σ 𝑒𝑒
𝑘𝑘

C

𝑒𝑒
𝑘𝑘

Π

𝑇𝑇

𝑒𝑒
𝑘𝑘

C

 (3)

where 𝐴𝐴 Π = 𝐶𝐶 − Σ , and 𝐴𝐴 𝐴𝐴
𝑘𝑘

Π
 and 𝐴𝐴 𝐴𝐴

𝑘𝑘

C
 are the 𝐴𝐴 𝐴𝐴

𝑡𝑡𝑡 eigenvectors of 𝐴𝐴 Π and 𝐴𝐴 𝐴𝐴 , respectively. The constant 𝐴𝐴 𝐴𝐴 depends on 
the number of pixels and the number of channels and has been fully defined by Cawse-Nicholson et al. (2012). 
Pseudo-code for the ID algorithm is provided in Appendix A. It is important to note that the variables 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 and 𝐴𝐴 𝐴𝐴𝑗𝑗 are 
not required for the ID estimation. This means that for any combination of endmembers (e.g., mineral, vegetation, 
water, or entirely unknown) and wavelength range, the method is the same, and nothing needs to be known about 
scene constituents in advance. Thus, this method is entirely applications agnostic, and requires only the input 
image and an estimate of noise.

The noise covariance matrix 𝐴𝐴 Σ should be estimated from the data themselves. Here, we use the multiple regres-
sion approach used by Bioucas-Dias and Nascimento (2008a). Since inherent spectral correlation between chan-
nels implies that the signal spectrum is a smoothly varying function, the noise-free spectrum in each spectral band 

𝐴𝐴 𝐴𝐴𝑙𝑙 can be estimated from the other bands 𝐴𝐴 𝐴𝐴𝑐𝑐 𝐴𝐴 ∀𝑐𝑐 ≠ 𝑙𝑙 . The difference between the estimated and observed values 
is assumed to be noise. Specifically, if we write image 𝐴𝐴 𝐴𝐴 as a collection of bands such that 𝐴𝐴 𝐴𝐴 = [𝐵𝐵1, 𝐵𝐵2, . . . , 𝐵𝐵𝑏𝑏] , 
then for each band 𝐴𝐴 𝐴𝐴𝑙𝑙 , we can represent 𝐴𝐴 𝐴𝐴𝑙𝑙 =

∑

𝑐𝑐≠𝑙𝑙
𝐴𝐴𝑐𝑐 + �̃�𝜀𝑙𝑙 . Solving band-by-band for 𝐴𝐴 𝐴𝐴𝐴𝑙𝑙 , we can construct the 

noise matrix 𝐴𝐴 𝐴𝐴 (size 𝐴𝐴 𝐴𝐴 × 𝑏𝑏 ) such that 𝐴𝐴 𝐴𝐴 = [�̃�𝜀1, �̃�𝜀2, . . . , �̃�𝜀𝑏𝑏] . The noise covariance matrix 𝐴𝐴 Σ = 𝑁𝑁
𝑇𝑇
𝑁𝑁 . Note that this 

method is only applicable to surface reflectance data, since a signal that passes through the atmosphere will not 
be smoothly varying. Atmospheric correction is discussed in more detail in Section 3.

Where such inherent spectral correlation does not exist, we consider Meer's method (Cawse-Nicholson 
et al., 2012), which uses the variance of small, homogeneous regions in images to estimate the noise in each 
band. The spatial regions with the smallest variance are thought to be homogeneous, although a series of tests 
are performed to eliminate outliers. In this case, the noise covariance matrix will be diagonal. Note that the ID 
Equations 2 and 3 are band-order independent—in other words, the spectral shape could be disassembled and 
reordered without impacting the mathematical result. However, the most important input for RMT is the random 
matrix, and this is best estimated by assuming a contiguous spectrum in order to extract the noise profile. Thus, 
this method is best applied to hyperspectral imagery and is not well suited to discrete-multi-channel imagery.

Each observed pixel has a general shape that represents the background continuum, which varies by scene as a 
function of the incoming solar spectrum, albedo, and scattering processes. Within this continuum, unique spectral 
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signatures identify each object or class within the image. These are often absorption features that may have small 
amplitude and/or cover a small wavelength range. High noise levels will obscure these features to the point where 
two similar classes are no longer separable. Similarly, wider spectral channels will not differentiate between two 
classes with absorption features at similar wavelengths. Also, RMT assumes that each pixel is a mixed pixel, but 
when the spectral contribution of a class to the overall pixel spectrum is small enough to fall within the noise 
levels, then that class will no longer be detectable. This means that small objects will no longer be detected with 
coarse GSD. Since ID is the number of unique, discernible classes in a hyperspectral image, we can use this 
metric to evaluate how different instrument design parameters, such as spectral resolution, GSD, and signal-to-
noise ratio (SNR), impact the measurable signal content.

3. Data and Tools
We have considered several real data sets in order to compute ID. For GSD, spectral resolution, and SNR, airborne 
hyperspectral data sets provide a good test environment for the simulation of coarser spaceborne imagery, and 
these are described in Section 3.1. The simulation environment that allows us to resample the relevant parameters 
is described in Section 3.2. We currently lack a hyperspectral data set with high temporal resolution (although the 
SBG High-Frequency Time Series airborne campaign—SHIFT—is underway at time of writing), so this param-
eter is considered separately using multiband daily satellite data, described in Section 3.3.

3.1. Ground Sampling Distance (GSD), Spectral Resolution, and SNR

To evaluate sensitivity to GSD, spectral resolution (bandwidth), and signal-to-noise ratio, we considered airborne 
hyperspectral imagery over multiple biomes, including Chaparral, Desert, Mangrove, Temperate Forest, Dry 
Tropical Forest, Grasslands, Tundra, Boreal Forest, Coral Reefs, Agriculture, and Urban environments. See 
Figures 1 and 2. We assume contiguous spectral coverage with a fixed range of 400–2,500 nm.

We use actual spectra from three airborne hyperspectral instruments to represent realistic spatial, spectral, and 
noise characteristics. The Airborne Visible InfraRed Imaging Spectrometer - Next Generation (AVIRIS-NG) is an 

Figure 1. RGB composites of representative AVIRIS-NG images.

Figure 2. RGB composites of representative Portable Remote Imaging Spectrometer coastal ocean images.
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airborne spectrometer that acquires data in the spectral range 380–2,510 nm; 
the orthorectified and atmospherically corrected reflectance product was 
obtained from https://avirisng.jpl.nasa.gov/dataportal/. The National Ecolog-
ical Observatory Network (NEON) Airborne Observing Platforms acquire 
data in the spectral range 380–2,500 nm using spectrometers closely related 
to AVIRIS-NG; the orthorectified and atmospherically corrected reflec-
tance product was obtained from https://data.neonscience.org/data-products/
DP1.30006.001 (NEON, 2021). The Portable Remote Imaging Spectrometer 
(PRISM) is an airborne spectrometer that acquires data in the spectral range 
350–1,050 nm; the orthorectified and atmospherically corrected reflectance 
product was obtained from https://prism.jpl.nasa.gov/dataportal/. PRISM has 
a spectral resolution of 2.83 nm, and the AVIRIS-NG and NEON spectrom-
eters have a spectral resolution of 5 nm. These spectrometers, along with the 

upcoming Earth Mineral dust source InvesTigation (EMIT) and the notional SBG spectrometer are described in 
Table 1.

A wide range of scenes was considered over different landcover types, spatial regions, and seasons to encapsulate 
a wide range of conditions. Each scene is described in Table 2, and further detail is provided in Appendix B. As a 
default, each image is resampled to 30 m GSD using bilinear interpolation, and the spectral bands are resampled 
to 10 nm spectral channels unless specified otherwise. Bands that may be impacted by water vapor or other arti-
facts (<400, 1,260–1,560, 1,760–1,960, and >2,450 nm) were excluded before computing the ID.

While most scenes were downloaded in their publicly available form, two scenes were specially processed: the 
desert scene in Nevada and the dry tropical forest in India. In certain images, slight artifacts remain after standard 
atmospheric correction. Ordinarily, this is not of great concern, and the ID computation was not significantly 

Instrument Spectral range
Spectral 

resolution
Spectral 
FWHM

Number 
of bands

AVIRIS-NG 380–2,510 nm 5 nm 5 nm 425

NEON 380–2,500 nm 5 nm 7.5 nm 426

PRISM 350–1,050 nm 2.8 nm 3.5 nm 92

EMIT 380–2,500 nm 7.4 nm 8.5 nm 288

SBG-VSWIR (notional) 400–2,500 nm 5–10 nm TBD TBD

Table 1 
AVIRIS-NG, NEON, PRISM, EMIT, and SBG Instrument Performance 
Parameters

Biome Location #Bands GSD Sensor Date of acquisition

Chaparral California 432 3.7 m AVIRIS-NG 2014-06-03

Desert a Nevada 432 3.7 m AVIRIS-NG 2014-06-25

Mangrove Louisiana 432 3.8 m AVIRIS-NG 2015-05-09

Temperate Forest Wisconsin 432 4.4 m AVIRIS-NG 2015-09-04

Dry Tropical Forest a India 425 3.6 m AVIRIS-NG 2016-01-07

Grasslands Oklahoma 425 3.1 m AVIRIS-NG 2017-06-14

Tundra Alaska 425 5.3 m AVIRIS-NG 2018-07-29

Boreal Forest Canada 425 5.1 m AVIRIS-NG 2018-08-11

Wetlands Florida (OSBS) 426 1 m NEON 2019-04-16

Mixed Forest Michigan (UNDE) 426 1 m NEON 2019-06-06

Grasslands Kansas (KONZ) 426 1 m NEON 2019-07-12

Evergreen Forest Alabama (DELA) 426 1 m NEON 2019-04-29

Mixed Forest California (SOAP) 426 1 m NEON 2019-06-14

Mixed Forest California (TEAK) 426 1 m NEON 2019-06-14

Coral Reef Australia 92 7.9 m PRISM 2016-09-17

Coral Reef Hawaii 92 7.8 m PRISM 2017-03-06

Coral Reef Palau 92 8 m PRISM 2017-05-16

Note. The difference in the number of available bands for AVIRIS-NG between 2015 and 2016 reflects changes made to the 
internal processing pipeline. The total number of bands reflects the original image size, before masking of bands that may 
be influenced by atmospheric effects.
 aThese two scenes were processed to reflectance separately using the optimal estimation algorithm in ISOFIT (Thompson 
et al., 2018) and evaluated manually to ensure the best atmospheric correction.

Table 2 
A List of the AVIRIS-NG, NEON, and PRISM Images Used to Evaluate Intrinsic Dimensionality

https://avirisng.jpl.nasa.gov/dataportal/
https://data.neonscience.org/data-products/DP1.30006.001
https://data.neonscience.org/data-products/DP1.30006.001
https://prism.jpl.nasa.gov/dataportal/
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impacted by these features. However, for the SNR experiments, the noise needed to be added at the sensor level. 
When a spectrum containing artifacts is propagated back through a modeled atmosphere, and noise is then added, 
these features are amplified in the final atmospheric correction, adding extraneous noise that is not defined by 
the SNR input. In order to minimize introduction of additional noise, the Nevada and India scenes were atmos-
pherically corrected using the Imaging Spectrometer Optimal FITting (ISOFIT) tool (Thompson et al., 2018) and 
manually evaluated for the best correction. ISOFIT is an atmospheric correction tool which performs Maximum 
a Posteriori inversion of a forward radiative transfer model. In our configuration, the state vector contains atmos-
pheric variables such as water vapor and aerosol optical depth in addition to surface reflectance. A nonlinear 
optimization finds the optimal state configuration to match the predicted radiance to the actual measurement, 
while accounting for the uncertainty due to instrument noise and systematic calibration errors. The forward 
model can accommodate any radiative transfer assumptions including variable viewing angles and elevations 
within a scene. The code has been validated across many airborne campaigns (Brodrick et al., 2022; Greenberg 
et al., 2022; Thompson et al., 2019) and is being used by the EMIT mission (Connelly et al., 2021). ISOFIT is 
publicly available via Zenodo.

The SBG mission architecture described in the 2017 Earth Science and Applications from Space Decadal Survey 
(National Academies of Sciences, Engineering, & Medicine, 2018) consists of high-GSD visible-to-shortwave 
infrared hyperspectral and multi-channel TIR imagers. The AVIRIS-NG and NEON data sets are very good prox-
ies for the VSWIR spectrometer and were used to evaluate GSD, spectral resolution, and SNR. Because the ther-
mal imager will be a multiband (<10 channels) instrument, spectral dimensionality is not an appropriate metric. 
However, the thermal instrument was considered in the temporal resolution assessment in Section 4.

3.2. Simulation Environment

The Py-Hypertrace environment enables users to simulate accurate spectral imagery given as input a reflectance 
(“truth”) image. The forward model uses sRTMnet (Brodrick et al., 2021) to simulate sensor noise, view and 
sun geometry, and atmospheric spectral signatures. The inverse model uses ISOFIT to retrieve the atmospheric 
parameters and surface reflectance simultaneously, and the difference between the true and estimated reflectance 
images provides an estimate of accuracy. Py-Hypertrace is available through the ISOFIT Zenodo repository.

Preliminary testing showed that the spatial and spectral resolution experiments were unchanged when running 
through ISOFIT or on the original reflectance product, so Hypertrace was only used for the SNR experiment. In 
addition, some publicly available reflectance products had minor spectral artifacts from atmospheric correction. 
While these are often inconsequential, in this case, adding atmosphere and noise enhanced artifacts and often 
dominated the signal. Because of this, only the two scenes with negligible artifacts (Nevada and India) were used 
for the SNR experiment.

By default, our Hypertrace runs assumed a “mid-latitude summer” atmospheric profile (a standard MODTRAN 
atmosphere defined in Anderson et al., 1986), an aerosol optical depth of 0.1, an atmospheric water vapor content 
of 1 cm, a nadir viewing angle, and a 10:00 local solar time acquisition (solar zenith angle of 37.21° and solar 
azimuthal angle of 53.82°, at the equator on the 200th day of the year). These atmospheric parameters are fixed 
in the forward model, and the inverse model independently solves for the aerosol optical depth and atmospheric 
water vapor content in addition to the surface reflectance profile.

Realistic SNR was simulated using an instrument model that considers detector design parameters to account for 
different noise sources, including dark current, electronic readout noise, etc. It also includes precise calculation of 
photon shot noise based on efficiencies of the instrument components, internal reflections off telescope surfaces, 
throughput loss due to grating, dark current, electronic readout, etc (described in detail in Thompson et al., 2020). 
The noise depends on signal and wavelength and is drawn from a multivariate Gaussian distribution defined by 
three parameters, such that the noise-equivalent change in radiance 𝐴𝐴 𝐴𝐴𝑙𝑙 = 𝑎𝑎

√

𝑏𝑏 ⋅ 𝑙𝑙𝑜𝑜𝑏𝑏𝑜𝑜 + 𝑐𝑐 , where 𝐴𝐴 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜 is the observed 
radiance at the center wavelength of each spectral band (Thompson et al., 2020). The parameters we used were 
modeled for the EMIT instrument, a spectrometer that will launch in 2022 and will serve as a precursor instru-
ment to SBG (Connelly et al., 2021). EMIT is also closely related to AVIRIS-NG and the NEON instruments in 
terms of spectral resolution, range, number of channels, and SNR (see Table 1).
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3.3. Temporal Resolution

While the GSD, spectral resolution, and SNR could be evaluated using existing airborne hyperspectral data sets, 
there are currently insufficient hyperspectral data that is sampled frequently enough (less than 5 days revisit over 
at least one annual cycle) for a sensitivity study of temporal resolution. Instead, we have used daily multispectral 
data as a proxy. In this case, the image matrix 𝐴𝐴 𝐴𝐴 is of size 𝐴𝐴 𝐴𝐴 × 𝑡𝑡 , where 𝐴𝐴 𝐴𝐴 is the number of temporal observations, 
and the image covariance matrix will be size 𝐴𝐴 𝐴𝐴 × 𝐴𝐴 . Spectral dimensionality has been well established as a metric 
in other applications, but to our knowledge, this is the first use of temporal dimensionality. Instead of determin-
ing unique classes by their spectral features, we are now defining classes by phenological patterns. For example, 
while the normalized difference vegetation index (NDVI) over deserts might remain essentially unchanged, the 
NDVI of forests will fluctuate according to seasonal change, and different crops will be separable by their plant-
ing and harvest times. With fewer observations, all crops planted within a single season might be grouped, but 
frequent observations would result in higher information content. The temporal patterns seen in multispectral 
data have already been incorporated into the classification of agricultural and unmanaged landscapes (e.g., J. 
Chang et al., 2007; Foerster et al., 2012; Lobell & Asner, 2004; Sakamoto et al., 2005; Zhang et al., 2003).

The Visible Infrared Imaging Radiometer Suite (VIIRS) acquires daily optical data globally in 22 spectral chan-
nels at two GSDs: 375 and 750 m. These were resampled to 1 km for consistency with MODIS heritage, and 
five bands (bands I1-5) were resampled to 500 m GSD. This daily global data set forms a valuable basis for 
studying the impact of revisit time on information content. We used two VIIRS standard products in this analy-
sis: the VNP43IA4.001 nadir BRDF-adjusted daily reflectance product at 500 m (Schaaf et al., 2018); and the 
VNP21A1D.001 land surface temperature (LST) and emissivity daytime product at 1 km (Hulley & Hook, 2018). 
The red high-resolution reflectance band I1 was used to evaluate temporal dimensionality in the visible part of the 
spectrum. The daily LST product was used to evaluate temporal dimensionality in the TIR.

We evaluated 11 sites in highly biodiverse regions (Myers et  al.,  2000), as well as two agricultural regions, 
described in Table 3 and shown in Figure 3. All products were cropped to the area of interest and downloaded 
using AppEEARs (AppEEARS, 2021). The site extents are provided in Appendix B.

The VIIRS nadir BRDF-adjusted daily reflectance product is accompanied by quality flags that indicate the 
complete inversion's success and quantify the impact of clouds. The daytime LST product is also accompanied 
by quality flags that indicate clouds, calibration quality, and algorithm convergence speed. Only the best quality 
pixels were used. For both products, pixels containing fill values were also discarded.

Biome Location Site size (km 2)  aDate of acquisition

Southwest Australia Australia 48,000 Jan–Dec 2020

Amazon Forest Brazil 34,000 Jan–Dec 2020

Caucasus Bulgaria 20,000 Jan–Dec 2020

Boreal Forest Canada 28,000 Jan–Dec 2020

Tropical Forest Democratic Republic of Congo 51,000 Jan–Dec 2020

Eastern Afromontane Ethiopia 41,000 Jan–Dec 2020

Mediterranean Basin Portugal 42,000 Jan–Dec 2020

Boreal Forest Russia 27,000 Jan–Dec 2020

Cape Floristic Region South Africa 5,000 Jan–Dec 2020

Indo-Burma Biodiversity Hotspot Thailand 112,000 Jan–Dec 2020

Sierra Nevada USA (California) 14,000 Jan–Dec 2020

Agriculture USA (California) 12,000 Jan– Dec 2020

Agriculture USA (Iowa) 32,000 Jan–Dec 2020

 aDaily reflectance and LST were retrieved for each site.

Table 3 
VIIRS Sites Used to Evaluate Temporal Dimensionality
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Each image contained between 20,000 and 500,000 pixels (each manually selected to capture landcover heteroge-
neity). For each pixel, a time series was constructed for reflectance band I1 and LST, building up three-dimensional 
image stacks that are similar in format to a hyperspectral image. Images at a particular timestamp were removed 
from analysis where more than 20% of the image was masked due to cloud or other flags indicated lower quality 
data. The resulting image and noise estimates were used as inputs in the RMT method to determine the tempo-
ral dimensionality. This method was repeated for different temporal sampling strategies. The image stack was 
sampled at regular intervals to simulate different revisit frequencies (i.e., to simulate a 16-day revisit cycle, only 
every 16th observation was used to compute the temporal dimensionality. If that 16th observation was cloudy in 
the VIIRS data, then it would not be used as input into the ID computation). The increasing temporal gap between 
observations necessitated Meer's method to estimate the noise since the statistical methods rely on a high corre-
lation between neighboring observations to compute the noise contribution.

To demonstrate that temporal dimensionality translates to real quantities, we compared it to estimates of peak 
greenness over the California agricultural site. To derive peak greenness, we compiled a temporal stack of NDVI, 
as described for I1 and LST above. We define NDVI = (I2 – I1)/(I2 + I1), where I2 is the VIIRS high-resolution 
near-infrared band. Five hundred pixels were randomly selected for analysis, and each pixel was processed to 
better represent the seasonal growing cycle. This was repeated for five different start times to reduce the effect of 
revisit periodicity linking up with a seasonal peak, yielding 2,500-time series vectors. First, the pixel was subsam-
pled to the revisit period under consideration; any gaps were filled using forward and reverse autoregressive fits 
from the remaining time series; outliers were removed, where outliers were defined as points more than three 
standard deviations from the mean of a 5-point moving window; and a squared exponential curve approximation 
was used to represent the time series while removing unexpected drops in NDVI due to undetected cloud. Finally, 
the maximum value of the squared exponential curve is set as the peak greenness.

4. Experiments and Results
4.1. Ground Sampling Distance

To quantify the impact of GSD on ID, we evaluated the ID for all scenes listed in Table 2, resampled to GSDs 
of 5, 10, 20, 30, 40, 50, and 60 m. In each case, the original image was spatially resampled using bilinear inter-
polation, and all images were resampled to a fixed spectral resolution of 10 nm. No additional noise was added 
to the original reflectance images, which means that the coarser resolution images have a higher SNR due to the 
averaging effect. This is in line with the assumption that a real instrument with larger GSD will have longer inte-
gration time per pixel and therefore a higher SNR. This is discussed further in Raiho et al. (2022), and explored in 
more detail in further experiments described below. Since the atmospheric correction is run pixel-by-pixel, there 
was no need to include additional instrument or atmospheric parameters beyond the original reflectance product.

We calculated the ID for each scene from Table 2 at every GSD using RMT and the multiple regression noise 
estimation described in Section 2. For each scene, the ID was normalized to the ID calculated for the GSD = 5 m 

Figure 3. The biodiversity hotspots (red) and agricultural regions (green) selected for temporal dimensionality evaluation. 
See Table 3.
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case. The normalized ID value was used since there was a large amount of 
variation in the information content of each scene (ranging from ID = 3 in the 
Great Barrier Reef to ID = 34 in the boreal forest at 10 nm spectral resolution 
and 30 m GSD). Figure 4 shows that the normalized IDs (NID) decrease as 
GSD increases, but there is a significant variation at coarser GSD since heter-
ogeneous scenes are more sensitive to GSD than homogeneous scenes. On 
average, images from an instrument with a 60 m GSD will have roughly 30% 
lower information content than images from an instrument with a 30 m GSD.

We recognize that the bilinear interpolation we used to resample our images 
spatially might average out some of the noise, thereby conflating two varia-
bles. To account for this, we estimated the noise present in the image (already 
done as part of the ID computation). We added Gaussian noise so that the 
overall standard deviation of noise in each band remained similar for each 
image. One image, in particular, was an outlier to Figure 4. The NEON ever-
green forest site DELA had ID values of 8, 7, 8, 11 for GSDs of 30, 40, 50, 
60 m. We hypothesized that a higher ID at 60 m (contrary to Figure 4) was 
due to the noise suppression of the image resampling. When we included 
additional noise, the ID values became 8, 7, 7, 7 for GSDs of 30, 40, 50, 
60 m. This progression is more in line with the other data sets. More telling 
is that the other data sets captured in the 25th–75th percentile shading shown 
in Figure 4 did not change ID values when noise consistency was ensured. 
We conclude that images that are especially sensitive to noise may behave 
differently, but overall the ID analysis of resampled reflectance imagery was 
robust.

Another area worth considering is the impact of the number of pixels on the overall analysis. The ID method, 
particularly when using a statistically derived noise estimate, does not utilize the spatially contiguous nature of a 
scene (i.e., the pixels could be randomly reordered without changing the ID). However, a certain number of pixels 
are required in order to meaningfully represent a scene. To illustrate this, we chose a diverse site (in this case 
the boreal forest AVIRIS-NG image) and randomly subsampled the scene, computing ID on the subset. Figure 5 
shows that a subsample of fewer than 500 pixels failed to accurately detect all the unique components within 
the scene. The other scenes performed similarly, with less complex scenes having a lower limit for the required 
number of pixels.

4.2. Spectral Resolution

To quantify the impact of spectral resolution on ID, we evaluated the ID for 
all scenes listed in Table 2 spectrally resampled to 5, 15, 20, 25, and 30 nm. In 
each case, the original image was spectrally resampled using linear interpo-
lation, and all images were resampled to a fixed GSD of 30 m. No additional 
noise was added to the original reflectance images.

Using RMT and the multiple regression noise estimation described in 
Section 2, we calculated the ID for each scene at each spectral resolution. 
For each scene, the ID was normalized to the ID calculated for the spec-
tral resolution = 5 nm case. Figure 6 shows that the scaled ID decreases as 
spectral resolution varies from 5 to 30 nm, with a relatively steep drop-off 
from 5 nm and less variation than seen in Figure 4. In this case, changing the 
spectral resolution could also impact the atmospheric correction by affecting 
the ability to measure spectrally sharp water vapor absorption features. We 
tested this by running Hypertrace simulations on two scenes (Nevada and 
India) and comparing the results to the spectral resampling performed on the 
original reflectance data. Figure 6 shows that coarser spectral resolution does 
impact the atmospheric correction, resulting in slightly lower ID values, but 

Figure 4. Intrinsic dimensionality (ID) decreases with larger pixel sizes. 
The thick line shows the median ID across all 17 scenes, and the shaded area 
encompasses the 25th–75th percentile of normalized IDs across all scenes. 
The ID values are normalized to a reference ID at 5 m GSD.

Figure 5. When evaluating diverse sites, such as the boreal forest scene shown 
here, the intrinsic dimensionality (ID) is not accurately determined once fewer 
than 500 pixels are sampled.
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the overall shape remains comparable. There is an information loss of ∼40% 
moving from 10 to 20 nm spectral resolution.

4.3. Signal-To-Noise Ratio

Unlike the GSD and spectral resolution experiments, realistic SNR could not 
be easily simulated at the reflectance level. Therefore, we used Hypertrace to 
simulate realistic radiance data using the atmospheric, instrument, and noise 
models and computed ID on the reflectance output using ISOFIT. SNR, in 
this case, was set by adjusting the integration time within the noise model—
higher integration times meant increased signal and therefore a higher SNR, 
and vice versa.

As discussed in Section 3.1, only the Nevada and India scenes were used for 
the Hypertrace experiment to minimize the propagation of spectral artifacts. 
These images were resampled to 30 m GSD and 10 nm spectral resolution. 
We varied SNR by varying integration times in the simulation. We used inte-
gration times of 0.0015, 0.003, 0.0045, 0.006, 0.0075, 0.009 s which corre-
sponded to average SNR values of approximately 170, 250, 300, 350, 390, 
and 430, respectively. Figure 7 shows that lower ID values are detected in 
noisier scenes since distinguishing spectral features may be obscured by high 
noise variance. Figure 8 shows the SNR values for all wavelengths for each 
choice of integration time.

4.4. Temporal Resolution

The tropical forest sites in South America (Brazil) and Central Africa (DRC) 
and the Boreal Forest in Northern Russia were cloud contaminated to the 

point of algorithm failure. This will be a problem to consider for SBG and other missions that hope to acquire data 
in these regions. We anticipate that SBG will have better sampling statistics due to its 30 m GSD; however, cloud 
shadows and other interferences may still make these challenging regions. These sites were removed from further 

analysis, leaving 11 remaining sites. Other sites such as Canada, Ethiopia, and 
Thailand had ID values that dropped to zero with revisits exceeding 4–8 days 
(in other words, with weekly sampling there were insufficient pixels to track 
over time for the ID computation). Figure  9 shows the decrease in NDVI 
temporal dimensionality with increased revisit time by combining the tempo-
ral ID estimates for all sites with ID > 0. There is rapid information loss in 
the 1–5 days revisit range, which would capture weather-related phenologi-
cal perturbations on synoptic time scales and separate classes with similar 
growth patterns. SBG anticipates a 16-day revisit for the VSWIR instrument, 
but there is potential for harmonization with temporally intersecting missions, 
such as the ESA's Copernicus Hyperspectral Imaging Mission for the Envi-
ronment (CHIME). We have shown the ID curve normalized (NID) by an 
8-day baseline to illustrate the benefits to harmonization (Figure 9). Moving 
from a 16-day (NID ∼ 0.60) to a 30-day revisit (NID ∼ 0.36) would result in 
the loss of about 40% of the dimensionality, which means that fewer classes 
would be seasonally separable. In contrast, a harmonized SBG-CHIME 
data set that reduced the revisit time from 16 days (NID ∼ 0.60) to 8 days 
(NID  ∼  1.0) would increase the ID by 67%. This analysis is significantly 
impacted by clouds, which is a realistic problem that will be faced by all 
optical systems including SBG.

Figure 10 shows the results of a similar experiment for LST, except here the 
dimensionality normalization was performed against a 1-day revisit due to 
the intrinsic timescale of LST variability. This is reflected in the rapid decay 

Figure 6. Normalized intrinsic dimensionality (ID) decreases with coarser 
spectral resolution. The thick blue line shows the median ID across all scenes, 
and the shaded area encompasses the 25th–75th percentile of scaled ID across 
all scenes. The red curve (the average from the Nevada and India scenes) 
shows that coarser spectral resolution negatively impacts ID when considering 
atmospheric correction, but this effect is negligible (generally <10% of the 
maximum ID).

Figure 7. Intrinsic dimensionality (ID) decreases as the signal-to-noise ratio 
(SNR) decreases. Since only two scenes were considered here, the shading 
encapsulates the range of scaled ID between the Nevada and India scenes. 
Note that the x-axis has been reversed, to reflect the decrease in ID from low 
noise (high SNR) to high noise (low SNR).
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of temporal dimensionality for the thermal regime compared to the VSWIR. 
As seen in the plot, the normalized ID decreases to ∼0.65 going from 1-day 
to 2-day revisit, drops to ∼0.40 for a 3-day revisit, and is less than 0.20 for 
a 6-day revisit. This is reasonable since evapotranspiration and LST change 
far more rapidly than vegetation greenness. There is potential for harmoniza-
tion with the Indian Space Agency/French National Center for Space Stud-
ies TIR Imaging Satellite for High-resolution Natural resource Assessment 
(TRISHNA) and the ESA's Copernicus Land Surface Temperature Monitor-
ing missions. Harmonization between the three TIR missions could deliver 
an effective 1-day global revisit, significantly enhancing the science return 
over what any of the three missions could achieve individually.

Figure 11 shows that temporal dimensionality is a good proxy for ecosys-
tem variables such as the NDVI value at peak greenness in their dependence 
on revisit. Estimates of maximum NDVI values can be biased by up to 5% 
with an increased revisit time. This suggests that peak NDVI is relatively 
slowly varying and is consistent with the ∼1 week time scale on which NDVI 
varies significantly. The dimensionality shows a much larger decrease (85%) 
in information content because it represents more than the simple metric of 
peak greenness and is analogous to the sum of the impact faced by a wide 
array of more complex algorithms.

5. Discussion
We illustrate ID as a metric for mission design, and we have shown how 
ID is sensitive to changes in GSD, spectral resolution, SNR, and temporal 

resolution. Our experiments show that ID consistently decreased for larger pixels, wider spectral channels, lower 
SNR, and less frequent observations even over multiple different biomes. All of these results are as expected 
since we intuitively understand that large pixels will contain mixtures of many—sometimes small—objects, and 
their individual contribution to the overall pixel spectrum will be small; wider spectral channels will mean that 

spectrally narrow diagnostic spectral features will be undetectable; noise will 
overpower small-amplitude spectral characteristics, and important events 
may not be adequately captured with infrequent acquisitions. While it might 
seem best to simply design a mission with the highest possible resolutions 
in all variables, realistically there are relationships and trade-offs between 
these variables. For instance, the same detector could be used in a design to 
improve SNR by increasing GSD (due to increased integration time), but both 
parameters cannot be optimized at the same time. Similarly, the same detec-
tor with a different telescope could acquire small GSD (and consequently 
smaller swath) with infrequent acquisitions, or a wider swath (and conse-
quently larger GSD) more frequently. In order to balance these trade-offs, a 
consistent metric is needed. The importance of our investigation has been to 
demonstrate that ID is a consistent, objective, quantitative metric that can be 
used to measure expected performance over many mission design parameters 
and different landcover types.

In a traditional sensitivity analysis for remotely sensed products, the sensitiv-
ity will be dependent on the algorithm used to derive the product and will be 
in the associated product units. In a multi-faceted mission such as SBG, how 
would one weigh the importance of for example, Kaolinite fractional abun-
dance (%) relative to that of leaf mass per unit area (g/m 2), or compare the 
accuracy of snow grain size (𝐴𝐴 𝐴𝐴 m) to sulfur dioxide emissions from volcanoes 
(kt)? There is a critical need for an applications-agnostic, data-driven metric 
to enable a fair comparison. We propose that ID is such a metric.

Figure 8. Signal-to-noise ratio (SNR) varies by channel, decreasing at longer 
wavelengths due to both lower radiance levels and higher noise. Here, the 
modeled SNR curve at each wavelength is shown for each choice of average 
SNR (with associated integration time). Note that the intense atmospheric 
water absorptions (SNR = 0) near 1,400 and 1,900 nm effectively remove 
all light from the spectrum, and these bands have been removed from the ID 
analysis.

Figure 9. Temporal dimensionality of Visible Infrared Imaging Radiometer 
Suite band I1 normalized by the intrinsic dimensionality at 8-day revisit is 
shown as a function of revisit time. Going from a 16-day (proposed by SBG) 
to a 30-day revisit results in approximately 40% of the information content 
being lost. The solid line represents the 50th percentile of all sites, and the 
shading represents the 25th and 75th percentiles.
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We used airborne hyperspectral imagery over multiple biomes, including 
Chaparral, Desert, Mangrove, Temperate Forest, Dry Tropical Forest, Grass-
lands, Tundra, Boreal Forest, Coral Reefs, Agriculture, and Urban environ-
ments. There was some variability in response to GSD—some heterogeneous 
scenes experienced a significant drop in ID for coarser pixels, whereas homo-
geneous scenes were less sensitive. However, the response to spectral reso-
lution was fairly consistent across all scenes, highlighting the importance of 
hyperspectral over multispectral data.

We also introduced the concept of temporal dimensionality, using phenologi-
cal patterns to define information content over time, and using this to demon-
strate the impact of revisit over both the VSWIR and TIR. This metric could 
also be used to evaluate optimal overpasses for complementary missions to 
maximize science value.

In future work, real instrument configurations can be compared to opti-
mize data rates, determine the optimal configuration within a design space, 
cost savings can be paired with measurable science consequences, and data 
harmonization can be explored.

6. Conclusion
The SBG mission will be an essential part of the NASA Earth System Obser-
vatory, and optimal mission design is vital for answering science questions 
and meeting applications needs across diverse fields. Individual geophysical 
products relating to terrestrial and aquatic ecosystems, natural disasters, and 

the cryosphere might benefit from different mission design parameters according to each algorithm's unique 
sensitivities, and so overall mission optimization is difficult. Here we have introduced the concept of ID as a 
metric to be considered in future mission design since it provides a single quantitative evaluation for a combi-
nation of design parameters, irrespective of higher-level algorithms, products, applications, or disciplines. ID is 
simple to compute, yet it captures the maximum data content achievable for a combination of parameters and 
indicates the potential of optimal algorithmic performance. We found that the ID decreases for coarser GSD, 
decreased spectral resolution, less frequent acquisitions, and lower signal-to-noise levels. This behavior impacts 
the quality and accuracy of all derived products. Furthermore, because ID is application-agnostic, it can be 
applied to other hyperspectral missions in Earth and planetary sciences.

Figure 10. Temporal dimensionality of Visible Infrared Imaging Radiometer 
Suite daytime LST normalized by the intrinsic dimensionality at daily revisit is 
shown as a function of revisit time. There is a decrease in information content 
with increasing revisit time, with a faster decay than the visible. In going 
from a 3-day to 6-day revisit, approximately 60% of the information content is 
lost. The solid line represents the 50th percentile of all sites, and the shading 
represents the 25th and 75th percentiles.

Figure 11. The difference in peak normalized difference vegetation index (NDVI), scaled by peak NDVI at a daily revisit 
(left), tracks well with dimensionality for different revisit times (left).
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Appendix A
This appendix provides pseudocode for the ID calculation, as described in Cawse-Nicholson et  al.  (2013). It 
assumes inputs of a 3-dimensional hyperspectral image (“img”) of size rows x columns x bands, and a noise 
covariance matrix (“N”) of size bands x bands. One method for estimating the matrix “N” can be implemented 
in MATLAB using the publicly available code “estNoise.m” posted by Bioucas-Dias and Nascimento (2008a, 
2008b).
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Appendix B
Table  B1 lists the filenames of the hyperspectral data sets used in this analysis. AVIRIS-NG data can 
be downloaded from https://avirisng.jpl.nasa.gov/dataportal/; PRISM data can be downloaded from 
https://prism.jpl.nasa.gov/dataportal/; and the NEON data can be downloaded from https://data.neonscience.org/
data-products/DP1.30006.001.

Biome Location Filename

Chaparral California ang20140603t185211_corr_v1e_img

Desert Nevada ang20140625_corr_v2gx_mosaic (*enhanced atmospheric correction)

Mangrove Louisiana ang20150509t213032_corr_v1e_img

Temperate Forest Wisconsin ang20150904t163629_corr_v1e.img

Dry Tropical Forest India ang20160107t062934_rfl (*enhanced atmospheric correction)

Grasslands Oklahoma ang20170614t171958_corr_v2p6_img

Tundra Alaska ang20180729t211026_corr_v2r2_img

Boreal Forest Canada ang20180811t212826_corr_v2r2_img

Wetlands Florida (OSBS) NEON_D03_OSBS_180.tif

NEON_D03_OSBS_181.tif

NEON_D03_OSBS_182.tif

Mixed Forest Michigan (UNDE) NEON_D05_UNDE_182.tif

NEON_D05_UNDE_183.tif

NEON_D05_UNDE_184.tif

Grasslands Kansas (KONZ) NEON_D06_KONZ_153.tif

NEON_D06_KONZ_153b.tif

NEON_D06_KONZ_154.tif

Evergreen Forest Alabama (DELA) NEON_D08_DELA_145.tif

NEON_D08_DELA_145b.tif

NEON_D08_DELA_150

Mixed Forest California (SOAP) NEON_D17_SOAP_185.tif

NEON_D17_SOAP_191.tif

NEON_D17_SOAP_191b.tif

Mixed Forest California (TEAK) NEON_D17_TEAK_173.tif

NEON_D17_TEAK_173b.tif

NEON_D17_TEAK_174.tif

Coral Reef Australia prm20160917t001910_rb_v1w2_img

Coral Reef Hawaii prm20170306t194614_rb_v1w3_img

Coral Reef Palau prm20170516t003534_rb_v1w4_img

Note. The VIIRS data were downloaded from the AppEEARS tool (https://appeears.earthdatacloud.nasa.gov/) using the 
spatial constraints listed in Table B2. For each site, the following products were downloaded.

• VIIRS/NPP BRDF/Albedo Nadir BRDF-Adjusted Ref Daily L3 Global 500m SIN Grid V001.
• VIIRS/NPP Land Surface Temperature and Emissivity Daily L3 Global 1 km SIN Grid Day V001.

Table B1 
The Filenames of the Hyperspectral Data Sets Used in This Analysis

https://avirisng.jpl.nasa.gov/dataportal/
https://prism.jpl.nasa.gov/dataportal/
https://data.neonscience.org/data-products/DP1.30006.001
https://data.neonscience.org/data-products/DP1.30006.001
https://appeears.earthdatacloud.nasa.gov/
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Data Availability Statement
AVIRIS-NG reflectance data are available from https://avirisng.jpl.nasa.gov/dataportal/. NEON reflectance data 
are available from https://data.neonscience.org/data-products/DP1.30006.001. The code for both ISOFIT and 
Hypertrace is available via Zenodo: https://doi.org/10.5281/zenodo.4614337.
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