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Accumulating studies indicated that gut microbial changes played key

roles in the progression of multiple diseases, which seriously threaten

the host health. Gut microbial dysbiosis is closely associated with the

development of diarrhea, but gut microbial composition and variability in

diarrheic horses have not been well characterized. Here, we investigated

gut fungal compositions and changes in healthy and diarrheic horses

using amplicon sequencing. Results indicated that the alpha and beta

diversities of gut fungal community in diarrheal horses changed significantly,

accompanied by distinct changes in taxonomic compositions. The types of

main fungal phyla (Neocallimastigomycota, Ascomycota, and Basidiomycota)

in healthy and diarrheal horses were same but di�erent in relative

abundances. However, the species and abundances of dominant fungal

genera in diarrheal horses changed significantly compared with healthy

horses. Results of Metastats analysis indicated that all di�erential fungal

phyla (Blastocladiomycota, Kickxellomycota, Rozellomycota, Ascomycota,

Basidiomycota, Chytridiomycota,Mortierellomycota, Neocallimastigomycota,

Glomeromycota, and Olpidiomycota) showed a decreasing trend during

diarrhea. Moreover, a total of 175 di�erential fungal genera were identified

for the gut fungal community between healthy and diarrheal horses, where

4 fungal genera increased significantly, 171 bacterial genera decreased

dramatically during diarrhea. Among these decreased bacteria, 74 fungal

genera even completely disappeared from the intestine. Moreover, this is the

first comparative analysis of equine gut fungal community in di�erent health

states, which is beneficial to understand the important role of gut fungal

community in equine health.
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Introduction

As a forgotten or hidden organ, the role of the gut microbiota is increasingly

recognized (1, 2). Studies showed that there are more than 100 trillion of microorganisms

in the intestine including bacteria, fungi and protists, approximately 10 times the

total number of host cells (3–5). Gut microbiota can not only synthesize nutrients
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such as amino acids, vitamins, and short-chain fatty acids

required for host growth, but also play key roles in digestion,

absorption and metabolism (6, 7). Additionally, gut microbiota

is also involved in the construction of the intestinal barrier and

the maturation of the immune system, suggesting its vital role in

disease resistance (8, 9). However, the gut microbial homeostasis

is easily disrupted by several host- and environmental-related

factors (10, 11). The execution of intestinal functions depends

on the normal gut microbial structure, whereas gut microbial

dysbiosis may cause aetiopathologic consequences (12, 13). For

instance, it has been demonstrated that gut microbial dysbiosis

is an important driver of diarrhea (14, 15). Moreover, disrupted

gut microbiota may result in the development of other diseases

such as obesity, diabetes and hypertension (16, 17).

Diarrhea is deemed as the major factor impeding the

development of livestock industry because of it could cause

reduced growth performance and a large number of deaths of

farmed animals (18, 19). Increasing surveys demonstrated that

diarrhea occurs in almost all animals, causing huge economic

losses every year (20, 21). Diarrhea could cause the body

to lose a great of water and nutrients, thus resulting in

energy imbalances, weakness, starvation or even death (22, 23).

Moreover, it may also cause inappetence, lassitude and weight

loss, seriously affecting animal health and growth performance

(24). Given the adverse effect of diarrhea on the livestock

industry, investigating its treatment and etiology is of great

significance. Research showed that gut microbial community

is closely related to the development of diarrhea (14). For

instance, early studies indicated that the compositions and

structures of gut bacterial and fungal communities changed

significantly in many diarrheal mammals (25, 26). Additionally,

fecal microbiota transplantation was shown to alleviate diarrhea

in some exploratory experiments, suggesting important roles of

gut microbiota in diarrheal prevention and control (8).

Recently, metagenomics has developed into an effective tool

for analyzing the gut microbiota (27, 28). By deep sequencing of

intestinal contents or fecal samples, we can reveal the complex

composition of the gut microbiota and explore gut microbial

changes during disease, which contribute to understanding

the pathological mechanism of disease and the role of gut

microbiota (29, 30).Meanwhile, it also beneficial to diagnose and

treat diseases from the microbiological perspective and decrease

animal mortality and economic losses (31, 32). Horses (Equus

caballus) are closely related to human life and development.

In the past, the main uses of horses included meat, dairy,

agricultural production, transportation, and the military. With

the development of society, horses are mainly used for sports

entertainment at this stage. However, horses are prone to

diarrheal diseases due to stress response, excessive exercise and

other factors. Currently, the characteristics of gut microbiota in

many diarrheic animals such as giraffe, sheep and pigs have been

detected by amplicon sequencing and revealed the changes in

gut microbiota (14, 33). However, knowledge regarding diarrhea

influence on gut microbiota in horses remains scarce. Here,

we investigated the alterations of gut fungal community in

diarrheic horses.

Materials and methods

Sample acquisition

In this research, 16 fecal sample collected from eight

healthy and eight diarrheic horses were applied for amplicon

sequencing. These horses were raised at the Wuhan Business

University (Wuhan, China) and have similar age (∼2 years

old) and breeding conditions. Prior to sample acquisition, the

diarrheic horses were assessed and diagnosed by professional

veterinarian. To collect clean samples, the sterile swabs

were used for swabbing rectum in a rotating fashion. The

collected fecal sample were immediately sub-sampled from the

intermediate region to maximally decrease pollution and then

snap-frozen utilizing liquid nitrogen and stored at −80◦C for

further study.

DNA extraction and illumine MiSeq
sequencing

Fecal sample collected from different groups were thawed

and then subjected to bacterial genome DNA extraction

using QIAamp DNA Mini Kit (QIAGEN, Hilden, Germany)

based on the manufacturer’s instructions. The gDNA were

subjected to quality evaluation via using 0.8% (w/v) agarose gel

electrophoresis, while its concentration was quantified by using

UV-Vis spectrophotometer (NanoDrop 2000, United States).

Subsequently, we amplified the V3/V4 regions of 16S rRNA

using the primers (338F: ACTCCTACGGGAGGCAGCA

and 806R: GGACTACHVGGGTWTCTAAT) synthesized

from conserved regions. PCR amplification procedure was

determined based on previous reports (34). The amplified

products were conducted quality inspection, target fragment

recovery, fluorescent quantitation and purification. The PacBio

platform (Biomarker Technologies, China) was applied to

construct sequencing libraries and qualified libraries were

paired-end sequenced on MiSeq sequencing machine according

to the standard protocols. The raw data generated by amplicon

sequencing were filtered and identified to eliminate short

sequences, mismatched primers and chimera. After quality

assessment, the qualified sequences were clustered and OTUs

partitioned based on 97% similarity. Moreover, we also

calculated multiple alpha diversity indices and generated PCoA

plots to further dissect changes in gut microbial abundance,

diversity and principal components. Metastats analysis and

LEfSe were used to distinguish differential taxa. P-values (means

± SD) <0.05 were considered statistically significant.

Frontiers in Veterinary Science 02 frontiersin.org

https://doi.org/10.3389/fvets.2022.1047412
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Lan et al. 10.3389/fvets.2022.1047412

TABLE 1 Gut fungal sequence data of the samples.

Sample Raw

reads

Clean

reads

Effective

reads

AvgLen

(bp)

GC

(%)

Q20

(%)

Q30

(%)

Effective

(%)

C1 80175 79788 76634 290 47.5 99.6 98.1 95.6

C2 79705 79297 78271 286 29.9 99.8 98.6 98.2

C3 79961 79540 78572 284 30.8 99.8 98.7 98.3

C4 80220 79801 78919 249 48.4 99.9 99.2 98.4

C5 79848 79414 78392 244 48.3 99.9 99.2 98.2

C6 79956 79514 78475 249 48.4 99.9 99.1 98.2

C7 80221 79823 78541 249 48.3 99.9 99.2 97.9

C8 79850 79402 78543 251 48 99.9 99.1 98.4

D1 79827 79369 78020 286 33.2 99.8 98.5 97.7

D2 79937 79577 78621 292 31.2 99.8 98.6 98.4

D3 80128 79714 78775 290 31.2 99.8 98.6 98.3

D4 79757 79355 77485 285 34.2 99.8 98.6 97.2

D5 79473 79074 78208 289 31.8 99.8 98.5 98.4

D6 79973 79582 78755 293 30.3 99.8 98.5 98.5

D7 79809 79455 78625 294 30.6 99.8 98.5 98.5

D8 79754 79353 78061 292 29.8 99.8 98.5 97.9

Results

Data acquisition and analysis

In this study, we amplified 16 fecal samples from healthy and

diarrheic horses to assess changes in the gut fungal community

during diarrhea. Results of amplicon sequencing indicated that

127,8594 (C = 639,936, D = 638,658) raw sequences were

totally generated, with an average of 79,912 (varying from

79,473 to 80,221) sequences per sample (Table 1). After quality

evaluation, a total of 1252,897 (C = 626,347, D = 626,550)

qualified sequences were collected, with a qualification rate of

over 60%. The rarefaction curve and species rank curve in each

sample were wide and decreased slowly, showing the satisfactory

sequencing evenness and richness (Figures 1A–C). According

to 97% nucleotide-sequence similarity, the qualified sequences

were clustered into 1341 OTUs, ranging from 329 to 562 OTUs

per sample (Figures 1D,E). Among identified OTUs, 889 OTUs

are common in both groups, accounting for approximately

66.29% of the total OTUs.Moreover, there are 433 and 19 unique

OTUs in the healthy and diarrheic horses.

Diarrhea reduces the diversity of gut
fungal community

To further investigate the influences of diarrhea in gut

fungal community, we comparatively analyzed shifts in gut

fungal diversity index between healthy and diarrheic horses.

Good’s coverage estimations in each sample ranged from 99.90

to 99.97%, covering nearly all fungal phenotypes. Statistical

analysis of alpha diversity indicated that there were statistically

distinct differences in the Chao1 (626.07 ± 54.84 vs. 422.88 ±

54.21, P < 0.01), ACE (763.48 ± 195.95 vs. 396.00 ± 54.65,

P < 0.01), Simpson (0.93 ± 0.084 vs. 0.67 ± 0.094, P <

0.01) and Shannon (6.74 ± 1.94 vs. 3.06 ± 0.68, P < 0.01)

indices between the control and diarrheic groups, indicating

that diarrhea significantly reduced the gut fungal diversity and

abundance (Figures 2A–D). Additionally, beta-diversity analysis

showed that the dots in healthy and diarrheic group were

separated, demonstrating that diarrhea dramatically changed the

gut fungal main components (Figures 2E,F).

Comparative analysis of the gut fungal
composition between healthy and
diarrheic groups

We also visualized the composition and abundance of gut

fungal community at different taxonomical levels through

species distribution histograms and observed considerable

variability. There were nine phyla and 119 genera detected

in 16 samples, ranging from 5 to 7 phyla per sample. The

phyla Neocallimastigomycota (21.30%, 85.59%), Ascomycota

(55.01%, 10.87%), and Basidiomycota (12.49%, 1.89%) were

abundantly present in the healthy and diarrheic groups,

accounting for over 80% of total taxonomic groups recognized

(Figure 3A). Other phyla such as Chytridiomycota (1.83%,

0.22%), Glomeromycota (0.16%, 0.018%), Olpidiomycota

(0.060%, 0.0051%), Blastocladiomycota (0.031%, 0.00%), and
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FIGURE 1

Gut fungal feasibility analysis and OTUs distribution. Rarefaction curves (A,B) and rank abundance curve (C) were used to evaluate the

sequencing depth and evenness. (D) Venn diagrams for core and unique OTUs in the healthy and diarrheic groups. Histogram showing the

number of OTUs in each sample. (E) Histogram showing the number of OTUs in each sample. C and D represent healthy and diarrheic groups,

respectively.
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FIGURE 2

E�ects of diarrhea on gut fungal diversity in horses. (A–D) represents the Chao1, ACE, Simpson and Shannon indices that can reflect the

diversity of gut fungal community (E,F) Principal Coordinate Analysis (PCoA) of gut fungal community in healthy and diarrheic groups. C and D

represent healthy and diarrheic groups, respectively. Data was presented as the mean ± SD. **P < 0.01.

FIGURE 3

E�ects of diarrhea on gut fungal composition in horses. (A) The composition of dominant fungi at the phylum level. (B) The composition of

dominant fungi at the genus level. C and D represent healthy and diarrheic groups, respectively.
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FIGURE 4

Heatmap of the most abundant fungal genera in both groups. The values of color in the heat map indicate the normalized relative richness of

species. C and D represent healthy and diarrheic groups, respectively.

Kickxellomycota (0.023%, 0.00%) in healthy and diarrheic groups

were recognized in low abundances. Among identified genera,

Anaeromyces (12.74%), Aspergillus (5.56%), Fusarium (4.00%),

and Kazachstania (3.68%) were the four predominant fungal

genus in the control groups, accounting for more than 20.00% of

the total composition (Figure 3B). Furthermore, the dominant

fungal genus observed in gut fungal community in the diarrheic

group were Piromyces (51.73%), Anaeromyces (23.61%),

Caecomyces (6.29%), and Aspergillus (1.14%), accounting

for over 80.00% of the total composition. Additionally, gut

fungal distribution and variability between both groups

could also be observed by the visualized clustering heatmap

(Figure 4).

At the phylum level, Blastocladiomycota, Kickxellomycota,

Rozellomycota, Ascomycota, Basidiomycota, Chytridiomycota,

Mortierellomycota, Neocallimastigomycota, Glomeromycota,

and Olpidiomycota in the healthy group were significantly

preponderant than diarrheic group (Table 2). Moreover,

we also observed that 175 fungal genera were significantly

different between the control and diarrheic groups
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TABLE 2 Comparative analysis of di�erential fungal phyla between

control and diarrheic groups.

Taxa C (%) D (%) P

Blastocladiomycota 0.0313± 0.0213 0± 0 0

Kickxellomycota 0.0229± 0.0229 0± 0 0

Rozellomycota 2.13± 0.54 0.287± 0.0373 0

Ascomycota 55± 8.53 11± 1.87 0

Basidiomycota 12.5± 2.2 1.92± 0.409 0

Chytridiomycota 1.82± 0.437 0.226± 0.0446 0

Mortierellomycota 2.95± 0.543 0.578± 0.146 0

Neocallimastigomycota 21.4± 12.5 85.5± 2.57 0

Glomeromycota 0.165± 0.0509 0.0178± 0.00765 0.01

Olpidiomycota 0.0605± 0.0237 0.0052± 0.00218 0.01

C and D represent healthy and diarrheic groups, respectively.

(Supplementary Table 1). Among these differential taxa,

the relative abundances of 171 fungal genera (Achroiostachys,

Acremoniopsis, Alatospora, Alternaria, Apodus, Arthrocladium,

Aschersonia, Ascobolus, Aspergillus, Bartalinia, Berkleasmium,

Brunneomyces, Butlerelfia, Candida, Coprinellus, Coryne,

Craterellus, Cystodermella, Deconica, Didymella, Duddingtonia,

Edenia, Entrophospora, Eremothecium, Erysiphe, Gamsia,

Geminibasidium, Golovinomyces, Grammothele, Graphilbum,

Gymnopilus, Hanseniaspora, Hypholoma, Kalmusia,

Keissleriella, Leohumicola, Leucoagaricus, Leucosphaerina,

Limnoperdon, Linderina, Microdochium, Microglossum,

Minutisphaera, Monocillium, Myxospora, Panaeolus,

Paraconiothyrium, Paracremonium, Phomatospora, Pleuroascus,

Polyscytalum, Porodiplodia, Psathyrella, Pseudocoleophoma,

Psilocybe, Pyrenochaeta, Ramichloridium, Ramularia,

Rigidoporus, Roussoella, Scedosporium, Schizophyllum,

Sclerostagonospora, Sebacina, Simplicillium, Spizellomyces,

Sporormiella, Stellatospora, Strelitziana, Taifanglania,

Talaromyces, Torula, Toxicocladosporium, Trichomerium,

Trichometasphaeria, Trichomonascus, Trichophyton,

Ustilaginoidea, Uwebraunia, Vishniacozyma, Wickerhamomyces,

Wilcoxina, Xanthothecium, Archaeorhizomyces, Botryotrichum,

Campylospora, Chaetomium, Fusarium, Kazachstania,

Meyerozyma, Mortierella, Paecilomyces, Pichia, Russula,

Saitozyma, Trichosporon, Cladosporium, Coniochaeta,

Oidiodendron, Penicillium, Wallemia, Chaetomidium,

Cladorrhinum, Hannaella, Humicola, Schizothecium,

Trichocladium, Cephalotrichum, Entoloma, Ophiostoma,

Setophoma, Acremonium, Enterocarpus, Sampaiozyma,

Apiotrichum, Articulospora, Debaryomyces, Gibellulopsis,

Lasiobolidium, Lecanicillium, Marquandomyces, Solicoccozyma,

Staphylotrichum, Plectosphaerella, Pseudogymnoascus,

Condenascus, Marasmius, Cladophialophora, Olpidium,

Epicoccum, Pseudaleuria, Thelephora, Dactylonectria,

Metacordyceps, Chrysosporium, Inosperma, Podospora,

Rhodotorula, Pyrenochaetopsis,Monascus, Neomicrosphaeropsis,

Tetracladium, Trechispora, Purpureocillium, Tausonia,

Cercophora, Cercospora, Fusariella, Pseudeurotium,

Thanatephorus, Preussia, Teunomyces, Exophiala, Amphinema,

Cortinarius, Filobasidium, Zygosaccharomyces, Arxiella,

Trichoderma, Thermoascus, Paraphaeosphaeria, Myriococcum,

Triangularia, Cylindrobasidium, Knufia, Symmetrospora,

Fusicolla, Byssochlamys, Gliocladiopsis, Stagonosporopsis, and

Trametes) dramatically decreased, whereas the relative richness

of four fungal genera (Claviceps, Piromyces, Geosmithia, and

Caecomyces) significantly increased during diarrhea. Notably, 74

genera even cannot be detected in the gut fungal community of

diarrheic horses. Considering this discriminant analysis cannot

found all the taxon, LEfSe combined with LDA scores were

used to recognize the specific fungi associated with diarrhea

(Figure 5).

Correlation network analysis

Erysiphe was positively associated with Campylospora

(0.8706), Russula (0.8735), Pseudaleuria (0.8824),

Trichoderma (0.7882), Setophoma (0.8471), Marasmius

(0.8676), Purpureocillium (0.8324), Alternaria (0.8176),

Humicola (0.8971), Entoloma (0.8500), Plectosphaerella

(0.8941), Enterocarpus (0.6706), Thermoascus (0.6529),

Chaetomium (0.8529), Didymella (0.8000), Candida

(0.8735), Archaeorhizomyces (0.6412), Saitozyma (0.8971),

Meyerozyma (0.7765), Vishniacozyma (0.8176), Thelephora

(0.8029), Rhodotorula (0.7059), Trichocladium (0.6559),

Gibellulopsis (0.8706), Sebacina (0.7640), Debaryomyces

(0.5618), Paecilomyces (0.7206), Acremonium (0.7559),

Tetracladium (0.6412), Lecanicillium (0.6785), Pseudeurotium

(0.6500), Ophiostoma (0.7794), Condenascus (0.7176),

Podospora (0.8971), Solicoccozyma (0.7108), Preussia (0.6176),

Schizophyllum (0.8529), Fusariella (0.6882), Monascus

(0.8647), Trichosporon (0.7647), Cephalotrichum (0.8176),

Tausonia (0.6902), Pyrenochaetopsis (0.5765), Cladorrhinum

(0.6941), Trechispora (0.6941), Staphylotrichum (0.6735),

Coniochaeta (0.7029), Oidiodendron (0.7618), Cercospora

(0.5471), Filobasidium (0.7882), Zygosaccharomyces (0.6896),

and Schizothecium (0.7403) (Figure 6). Podospora was positively

related to Solicoccozyma (7285), Schizophyllum (0.7588),

Fusariella (0.8618), Monascus (0.7324), Trichosporon (0.7588),

Cephalotrichum (0.7118), Tausonia (0.8859), Pyrenochaetopsis

(0.7176), Cladorrhinum (0.7500), Trechispora (0.6882),

Staphylotrichum (0.5853), Coniochaeta (0.6706), Oidiodendron

(0.6588), Cercospora (0.5941), Filobasidium (0.8324),

Zygosaccharomyces (0.8031) and Schizothecium (0.6652).

Fusarium was positively associated with Kazachstania (0.8353),

Cladosporium (0.9147) Mortierella (0.9794), Metacordyceps

(0.6971), Penicillium (0.8824), Botryotrichum (0.8882), Erysiphe

(0.8971), Talaromyces (0.8941), Campylospora (0.8382),

Frontiers in Veterinary Science 07 frontiersin.org

https://doi.org/10.3389/fvets.2022.1047412
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Lan et al. 10.3389/fvets.2022.1047412

FIGURE 5

The identification of di�erential fungi associated with diarrhea. (A) Cladogram indicating the phylogenetic distribution of microbiota correlated

with the healthy or diarrheic horses. (B) The di�erences in abundance between the healthy and diarrheic horses. C and D represent healthy and

diarrheic groups, respectively.
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FIGURE 6

Correlation network analysis of gut fungal diversity. The correlation between fungi is represented by lines of di�erent colors. The orange lines

represent the positive correlation, whereas the green lines represent negative correlation. Detailed data were shown in the Supplementary

Table 2.

Russula (0.8765), Pseudaleuria (0.8618), Trichoderma (0.7059),

Setophoma (0.9118), Marasmius (0.8824), Purpureocillium

(0.8059), Alternaria (0.8647), Humicola (0.8794), Entoloma

(0.9176), Plectosphaerella (0.9147), Enterocarpus (0.7294),

Thermoascus (0.7029), Chaetomium (0.9176), Didymella

(0.8794), Cadida (0.8529), Archaeorhizomyces (0.7147),

Saitozyma (0.8618), Meyerozyma (0.8441), Vishniacozyma

(0.8941), Thelephora (0.7765), Rhodotorula (0.75),

Trichocladium (0.7324), Gibellulopsis (0.8559), Sebacina

(0.823), Debaryomyces (0.5176), Paecilomyces (0.7618),

Acremonium (0.7941), Tetracladium (0.7647), Lecanicillium

(0.4993), Pseudeurotium (0.5412), Ophiostoma (0.8294),

Condenascus (0.7029), Podospora (0.8765), Solicoccozyma

(0.7403) and Preussia (0.5529). Schizophyllum (0.7559),

Fusariella (0.6912), Monascus (0.7294), Trichosporon

(0.8324), Cephalotrichum (0.7676), Tausonia (0.727),

Pyrenochaetopsis (0.8029), Cladorrhinum (0.8324), Trechispora

(0.8088), Staphylotrichum (0.6059), Epicoccum (0.5882),

Coniochaeta (0.7382), Oidiodendron (0.7353), Filobasidium

(0.7235), Zygosaccharomyces (0.6866), Leptobacillium

(0.6206), Schizothecium (0.8109), Knufia (0.5158) and

Thanatephorus (0.6342).

Discussion

Numerous studies have indicated that gut microbiota

played key roles in resisting the invasion of pathogenic

bacteria and regulating the intestinal homeostasis, whereas gut

microbial dysbiosis may cause many gastrointestinal disease

or even systemic effects (35–37). Therefore, investigating

thoroughly the changes of gut microbiota in different health

status is of great significance for the disease prevention and

treatment. Meanwhile, it also contributes to understanding the

pathogenesis and developing novel methods for diagnosing

the disease (38, 39). Diarrhea is a common gastrointestinal

disease present in various animals, which results in a enormous

threat to economic development, livestock production and

animal welfare (20). Notably, the prevention and control

of diarrhea-related diseases is difficult due to many factors

including pathogenic bacteria, oxidative stress, environmental

change and intoxication (40, 41). Diarrhea is often accompanied

by intestinal damage, suggesting that the gut microbiota is

inevitably affected by diarrhea (42, 43). Presently, many studies

have been performed to explore gut microbial changes in sheep,

yaks, dogs and chickens during diarrhea, but little is known
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about the characteristics of gut microbiota in diarrheic horse. In

this study, we first systematically explored the shifts of gut fungal

community in diarrheic horse.

Gut microbiota is a complex and dynamically changing

system that is susceptible to a many factors including elevation,

temperature, age, diet and species (44–46). However, this normal

fluctuation of gut microbiota does not affect the execution of

complex intestinal functions (47, 48). However, strong stimulus

such as various gastrointestinal diseases, antibiotics, heavy

metal and microplastics could cause significant variation in

gut microbial diversity and composition, causing gut microbial

dysbiosis (49–51). Increasing investigations showed that the

occurrence of diarrhea is often accompanied by significant

changes in the gut microbiota. For instance, Li et al. showed

that diarrhea can cause dramatic changes in gut microbial

composition as well as obvious reduction in gut microbial

diversity (14). In addition, Hong et al. the gut fungal diversity

of patients with diarrhea-predominant irritable bowel syndrome

was dramatically different from that of healthy population

(52). Therefore, gut fungal community of diarrheal horses

may also undergo significant changes. Consistent with previous

investigations, this research demonstrated an significantly

reduced alpha-diversity indices in the gut fungal community

of diarrheal horses, indicating gut microbial dysbiosis. As

an important component of the gut microbiota, gut fungal

community also plays key roles in intestinal homeostasis and

function (53). Early investigations indicated that the execution

of intestinal function depended on normal gut microbiota,

thus disordered gut microbiota inevitably affected the intestinal

functions including energy utilization, nutrient absorption and

metabolism (46, 53, 54). Moreover, disrupted gut microbial

homeostasis also affects intestinal barrier function and mucosal

immunity, which may increase disease susceptibility (7, 55,

56). Consequently, diarrheic horses may be infected with

other diseases during gut microbial imbalance. PCoA was

also conducted to evaluate the shifts in gut microbial main

components to further explore the effects of diarrhea on the

equine gut microbiota. We found that the individuals of the

control group were clustered together but separated from the

diarrheic group, suggesting obvious alternations in the gut

microbial main components. The present research showed that

despite of shared environment and diets, the diarrheic horses

displayed obvious changes in the gut fungal community. Thus,

we suspected that diarrhea was the primary driving force for

shifts in gut fungal community of horses.

Our results revelaed that Basidiomycota and Ascomycota

were detected to be abundantly presented in healthy and

diarrheic horses. Notably, these fungal phyla were also the most

abundant fungal phyla in other species such as giraffe, yak and

sheep, showing their key roles in intestinal ecology and function

(14). We further explored the changes of gut fungal abundance

of diarrheic horses. The relationship between diarrhea and gut

microbial community could be intuitively reflected by some

specific bacteria and fungi. This study indicated obvious declines

in the relative abundances of 10 fungal phyla during diarrhea

in horses. Moreover, although the species of the dominant

phyla did not alter, the relative abundances of Basidiomycota

and Ascomycota were significantly decreased, suggesting gut

fungal dysbiosis. Importantly, we also observed high variations

in some fungal genera during diarrhea and these changed fungal

genera may play important roles in intestinal homeostasis and

functions. Among the altered fungi, more than 97% of the fungal

genera were significantly decreased in abundances and 74 fungal

genera even cannot be detected in the gut fungal community

of diarrheic horses, suggesting that these fungal genera cannot

adapt to the current intestinal environment. We suspected that

intestinal environment was disrupted during diarrhea, which in

turn limited the survival of these fungi.

Increasing evidence indicated that the disruption of gut

microbial homeostasis was a pathological mediator of various

gastrointestinal diseases (57–59). The interaction between gut

microbes, including bacteria and fungi, is an important way to

maintain intestinal homeostasis (37, 60, 61). Typically, these

interreaction include synergy, antagonism and commensalism

(61). Therefore, the shifts of some microorganisms could affect

the other microbial functions, thereby further exaggerating

the overall influence of gut microbiota on the host health

and causing gut microbial dysbiosis (33, 62). In this study,

we also observed significant correlations between some fungi

by correlation network analysis, indicating that these altered

fungi could affect other gut fungal functions. This research

indicated that diarrhea not only directly destroyed the gut fungal

composition and structure but also impaired the other fungal

functions via interactions, whichmay further result in gut fungal

dysbiosis in diarrheal horses.

In conclusion, this study compared and analyzed the

differences in the gut fungal community of healthy and diarrheal

horses. Results indicated that diarrhea dramatically altered gut

fungal composition and structure, characterized by altered gut

fungal diversity and composition. To our knowledge, this is the

first study of gut fungal changes in diarrheal horses. This study

filled a gap in the effect of diarrhea on the gut fungal community

in horses and indicated that gut fungal dysbiosis may be one of

the causes of diarrhea in horses. Meanwhile, the present results

also provided a theoretical basis for the diagnosis and treatment

of diarrhea from the gut microbial perspective. However, this

study has some limitations including relatively small sample size

and inability to control for potentially important variables such

as individual variation and individual dietary habit.
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