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A B S T R A C T

The most common presentation of early onset Alzheimer's disease (EOAD – defined as symptom onset< 65
years) is with progressive episodic memory impairment – amnestic or typical Alzheimer's disease (tAD).
However, EOAD is notable for its phenotypic heterogeneity, with posterior cortical atrophy (PCA) – char-
acterised by prominent higher-order visual processing deficits and relative sparing of episodic memory – the
second most common canonical phenotype. The hippocampus, which comprises a number of interconnected
anatomically and functionally distinct subfields, is centrally involved in Alzheimer's disease and is a crucial
mediator of episodic memory. The extent to which volumes of individual hippocampal subfields differ between
different phenotypes in EOAD is unclear. The aim of this analysis was to investigate the hypothesis that patients
with a PCA phenotype will exhibit differences in specific hippocampal subfield volumes compared to tAD. We
studied 63 participants with volumetric T1-weighted MRI performed on the same 3T scanner: 39 EOAD patients
[27 with tAD and 12 with PCA] and 24 age-matched controls. Volumetric estimates of the following hippo-
campal subfields for each participant were obtained using Freesurfer version 6.0: CA1, CA2/3, CA4, pre-
subiculum, subiculum, hippocampal tail, parasubiculum, the molecular and granule cell layers of the dentate
gryus (GCMLDG), the molecular layer, and the hippocampal amygdala transition area (HATA). Linear regression
analyses comparing mean hippocampal subfield volumes between groups, adjusting for age, sex and head size,
were performed. Using a Bonferonni-corrected p-value of p < 0.0025, compared to controls, tAD was associated
with atrophy in all hippocampal regions, except the parasubiculum. In PCA patients compared to controls, the
strongest evidence for volume loss was in the left presubiclum, right subiculum, right GCMLDG, right molecular
layer and the right HATA. Compared to PCA, patients with tAD had strong evidence for smaller volumes in left
CA1 and left hippocampal tail. In conclusion, these data provide evidence that hippocampal subfield volumes
differ in different phenotypes of EOAD.

1. Introduction

Early onset Alzheimer's disease (EOAD – defined as symptom onset
under the age of 65) represents the most common cause of young onset

dementia (Harvey et al., 2003) and often poses a significant diagnostic
challenge (Rossor et al., 2010). As is the case in the more common late-
onset form of Alzheimer's disease (LOAD), the most common pre-
sentation of EOAD is the amnestic led typical form of Alzheimer's
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disease (tAD), characterised by progressive episodic memory impair-
ment. However, compared to LOAD, a higher proportion of EOAD pa-
tients present with non-amnestic atypical phenotypes (Mendez, 2012;
Rossor et al., 2010; Slattery et al., 2017). The most commonly en-
countered atypical phenotype is that of posterior cortical atrophy
(PCA), which is characterised by prominent higher-order visual pro-
cessing deficits and relative sparing of episodic memory (Crutch et al.,
2012, 2017). Why individuals with EOAD are more likely to develop
these often markedly different phenotypes, is not clear.

In vivo brain imaging has provided significant insights into patho-
physiological differences between tAD and PCA (Alves et al., 2013).
Whereas deposition of beta-amyloid (Aβ) occurs throughout the cortex
and does not show major differences between tAD and PCA phenotypes
(Lehmann et al., 2013; Ossenkoppele et al., 2016; Whitwell et al.,
2018), marked differences in cortical grey matter volume/cortical
thickness (Lehmann et al., 2011; Poulakis et al., 2018; Ridgway et al.,
2012; Whitwell et al., 2018; Whitwell et al., 2007), glucose hypome-
tabolism (Lehmann et al., 2013; Whitwell et al., 2018), cerebral blood
flow (Lehmann et al., 2016) and tau positron emission tomography
tracer uptake (Ossenkoppele et al., 2016; Whitwell et al., 2018), most
notably in the posterior parietal and occipital cortices, have been ob-
served between tAD and PCA phenotypes.

In addition to brain imaging changes apparent in the cortex, there is
also interest in how differences in subcortical structures may relate to
phenotypic heterogeneity. The hippocampus is centrally involved in
Alzheimer's disease, and although it is not the only brain region im-
plicated (Aggleton et al., 2016), it plays a central role in mediating
episodic memory (Dickerson and Eichenbaum, 2010). Lower total
hippocampal volume measured in vivo is associated with clinically de-
tectable Alzheimer's disease (Jack et al., 1992, 2000; Kesslak et al.,
1991; Scheltens et al., 1992; Seab et al., 1988), is predictive of neuro-
pathological features of Alzheimer's at post-mortem (Bobinski et al.,
2000; Jack et al., 2002), and has been incorporated into contemporary
diagnostic criteria for Alzheimer's disease (Dubois et al., 2014;
McKhann et al., 2011). In patients with PCA, total hippocampal volume
has been shown to be reduced compared to controls, although to a
much lesser extent than the volume loss observed in tAD (Manning
et al., 2015; Peng et al., 2016). Differences in hippocampal morphology
between tAD and PCA patients, thought to reflect the relative pre-
servation of hippocampal tissue in PCA (Manning et al., 2015), have
also been reported.

However, the hippocampus is not a homogenous structure, and
comprises a number of interconnected anatomically distinct subfields
(Small et al., 2011). Neuropathological studies suggest differential pa-
thological changes occur between hippocampal subfields in Alzheimer's
disease. Neurofibrillary tangles, for example, are initially deposited in
CA1, then the subiculum, CA2, CA3, CA4 and dentate gyrus (Braak and
Braak, 1991; Lace et al., 2009). In keeping with this, Alzheimer's dis-
ease-related changes in grey matter microstructure (e.g. neuronal/
dendritic loss) have also been shown to be most prominent in CA1
(Akram et al., 2008; Kerchner et al., 2014; Price et al., 2001; Rössler
et al., 2002; Scheff et al., 2007; West et al., 1994). Although technically
challenging, there has been considerable interest in quantifying the
volumes of different hippocampal subfields in vivo using structural MRI
and there is evidence to suggest preferential atrophy of certain sub-
fields, especially CA1 and the presubiculum/subiculum complex in tAD
(Apostolova et al., 2010, Apostolova et al., 2006; Blanken et al., 2017;
Carlesimo et al., 2015; Iglesias et al., 2015; La Joie et al., 2013; Mak
et al., 2017; Mueller et al., 2010; Pini et al., 2016; Wisse et al., 2014a,
2014b).

In addition to being anatomically distinct, there is evidence to
suggest that hippocampal subfields are functionally distinct (Small
et al., 2011). CA1 in particular has been implicated as having particu-
larly prominent role in sub-components of episodic memory (Bartsch
et al., 2011; Bartsch et al., 2010; Dimsdale-Zucker et al., 2018).

To what extent the volume of individual hippocampal subfields

differ between contrasting phenotypes in EOAD is unclear. Given the
relative sparing of episodic memory in PCA compared to tAD (Crutch
et al., 2017; Crutch et al., 2012); the relative sparing of total hippo-
campal atrophy in PCA compared to tAD (Manning et al., 2015; Peng
et al., 2016); and evidence from healthy adults that individual subfields
are implicated in sub-components of episodic memory (Bartsch et al.,
2011, Bartsch et al., 2010; Dimsdale-Zucker et al., 2018), we hy-
pothesised that there would be differences in specific hippocampal
subfield volumes between patients with a PCA phenotype and those
with tAD. In particular, we hypothesised that patients with tAD would
have more atrophy in sub-fields most clearly implicated in episodic
memory (e.g. CA1), and that these would be relatively spared in PCA;
and that given that higher order visual problems are associated with
right sided cortical atrophy, that compared to each other, tAD would
show more left and PCA more right-sided subfield loss. With this in
mind the aim of this study was to investigate the extent of atrophy of
specific hippocampal subfields in EOAD using data from a population of
patients with both tAD and PCA phenotypes, as well as age-matched
healthy controls.

2. Methods

2.1. Participants

A total of 45 patients meeting consensus criteria for probable
Alzheimer's disease (McKhann et al., 2011) with symptom onset< 65
years were recruited prospectively from 2013 to 2015 from a specialist
cognitive disorders clinic (Parker et al., 2018; Slattery et al., 2017).
Documentation of the age at symptom onset and the presenting cog-
nitive symptom were recorded for all patients. Patients included in the
analysis were classified as having an amnestic (McKhann et al., 2011)
or PCA (Crutch et al., 2017; Tang-Wai et al., 2004) phenotype ac-
cording to published criteria. Cerebrospinal fluid (CSF) neurodegen-
erative markers were available for 34/39 patients (25/27 tAD and 9/12
PCA patients). All patients with CSF available had profiles consistent
with Alzheimer pathology (mean Aβ1–42= 404 ± 52 ng/l;
tau:Aβ1–42 ratio= 2.20 ± 1.41) (Weston et al., 2015), therefore ful-
filling NIA and IWG-2 criteria for AD (Dubois et al., 2014; McKhann
et al., 2011), and in the case of the PCA group fulfilling the criteria for
PCA attributable to Alzheimer's disease (PCA-AD) (Crutch et al., 2017).
No patients had prominent pyramidal/extrapyramidal motor signs or
visual hallucinations to suggest underlying cortico-basal degeneration
or Lewy body pathology. No individual scored> 4 on the Hachinski
Ischaemic Score making a vascular aetiology unlikely (Moroney et al.,
1997; Slattery et al., 2017). Twenty-four participants with no history of
cognitive concerns were recruited as healthy controls matched for age
and sex and were predominantly spouses of the EOAD patients. Detailed
multi-domain cognitive testing was performed for each participant in-
cluding: the mini-mental state examination (MMSE (Folstein et al.,
1975)); an assessment of general intellect (vocabulary and matrices
subtests of the Wechsler Abbreviated Scale of Intelligence (WASI)
(Wechsler, 1999)); digit span forwards and backwards (Wechsler,
1987); episodic memory for faces and words (Short Recognition
Memory Test (sRMT) (Warrington, 1984)); letter and category fluency;
numeracy (Graded Difficulty Arithmetic (GDA) (Jackson and
Warrington, 1986)); spelling (Graded Difficulty Spelling Test (GDST)
(Baxter and Warrington, 1994)); the National Adult Reading Test
(NART) (Nelson, 1982); visual search (letter (‘A’) cancellation)
(Willison and Warrington, 1992); and the visual object and space per-
ception (VOSP) battery (Warrington and James, 1991), which included
shape detection (early visual processing), fragmented letters (visuo-
perception), object decision (visuoperception) and dot-counting (vi-
suospatial processing). Ethical approval was obtained from the National
Hospital for Neurology and Neurosurgery Research Ethics Committee
and written informed consent was obtained from all the participants.

T.D. Parker et al. NeuroImage: Clinical 21 (2019) 101632

2



2.1.1. APOE genotyping
Patient participants gave separate specific consent to donate blood

for genetic analyses. DNA was extracted and APOE genotype was de-
termined by PCR with 3′-minor groove binding probes (Slattery et al.,
2017). APOE genotype data was not available for healthy control par-
ticipants.

2.2. Image acquisition

All participants were scanned on the same Siemens Magnetom Trio
(Siemens, Erlangen, Germany) 3T MRI scanner using a 32-channel
phased array receiver head coil. Sagittal 3D MPRAGE T1-weighted
volumetric MRI sequence (TE/TI/TR=2.9/900/2200ms, matrix size

256× 256×208, voxel size 1.1×1.1× 1.1mm3) were performed for
each participant.

2.3. Hippocampal subfield volume estimation

Volumetric estimates of hippocampal formation subfields were
performed using Freesurfer version 6.0. This algorithm is based on a
computational atlas of the hippocampal formation using ex vivo, ultra-
high resolution MRI and includes: CA1, CA2/3, CA4, fimbria, the hip-
pocampal fissure, presubiculum, subiculum, hippocampal tail, para-
subiculum, the molecular and granule cell layers of the dentate gyrus
(GCMLDG), the molecular layer and the hippocampal amygdala tran-
sition area (HATA) (Iglesias et al., 2015). We did not include the

Fig. 1. Example of segmentation of the left hippocampal formation into constituent subfields in the sagittal, axial, and coronal planes (NB. selected slices do not show
the relatively smaller hippocampal amygdala transition area and parasubiculum).
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hippocampal fissure, which is a thin CSF layer rather than a hippo-
campal substructure per se, nor did we include the fimbria, which is a
small volume white matter region. It is also important to note that the
hippocampal tail is not a histologically distinct region, but instead re-
presents a conglomeration of CA1–4 and dentate gyrus, which are in-
distinguishable at this resolution due to the posterior narrowing. The
hippocampal subfield segmentation and corresponding T1-weighted
structural images for each participant were visually inspected using
Freesurfer's Freeview (see Fig. 1). This was performed with the caveat
that the limited spatial resolution provided by 3T MRI means precise
visualisation of the boundaries that define the distinct hippocampal
subfields is not possible at this field strength. Total intracranial volume
(TIV) was calculated using statistical parametric mapping (SPM) soft-
ware (SPM12; http://www.fil.ion.ucl.ac.uk/spm) (Malone et al., 2015).

2.4. Exclusions

One patient with tAD was found to have an autosomal dominant
(Presenilin 1) mutation (Beck et al., 2014) and was excluded from the
analysis based on the fact that familial Alzheimer's disease may be
considered a distinct entity (Ryan et al., 2016). EOAD patients with
language-led or behavioural phenotypes were not included in the
analysis due to limited numbers (n=2 and n=1 respectively). One
PCA patient failed Freesurfer processing and one PCA participant was
excluded on the basis of severe motion artefact degrading tissue

contrast in the hippocampus. Therefore, we included 39 EOAD patients
in this analysis.

2.5. Statistical analysis

Demographics, clinical characteristics and performance on neu-
ropsychology testing were compared between each group. For con-
tinuous characteristics, a Wilcoxon rank sum test was used, while ca-
tegorical characteristics were compared between groups using Fisher's
exact test. To investigate group differences in hippocampal subfield
volumes, linear regression analyses comparing mean hippocampal
subfield volumes between groups after adjustment for age, sex and TIV
were performed. To correct for the multiple comparisons resulting from
investigating both the left and right volumes of 10 different hippo-
campal subfields, a threshold of p < 0.0025 for formal statistical sig-
nificance was used after Bonferroni correction for comparison across
the 20 regions of interest. To aid in comparison of effect sizes between
subfields, adjusted differences between YOAD patients and controls
were expressed as a percentage change of the unadjusted mean volume
for healthy controls. Adjusted differences between tAD patients and
PCA patients were presented as a percentage change of the unadjusted
mean volume for PCA patients. To investigate whether APOE genotype
influenced hippocampal subfields a supplementary analysis comparing
subfield volumes between APOE ε4 carriers and APOE ε4 non-carriers
with and without adjustment for phenotype was performed.

Table 1
Means, standard deviations, proportions and statistical comparison of demographic, clinical and neuropsychological data for participants included in analysis. For
continuous characteristics a Wilcoxon rank sum test was used, while categorical characteristics were compared between groups using Fisher's exact test.

Participant groups p-value

HC (n=24) tAD (n=27) PCA (n=12) tAD vs HC PCA vs HC tAD vs PCA

Demographics & clinical
Age – years 60.1 (5.7) 61.1 (5.1) 61.2 (4.8) 0.72 0.79 0.93
% female 54% 75% 56% 0.57 0.20 0.22
Handedness (Left: Right) 3:21 1:26 1:11 0.26 0.59 0.53
TIV (cm3) 1482 (135) 1461 (171) 1480 (146) 0.65 0.97 0.61
Symptom duration (years) n/a 5.0 (2.8) 4.6 (2.1) n/a n/a 0.89
Education (years) 16.7 (3.0) 15.1 (2.9) 15 (2.6) 0.10 0.10 0.8
MMSE (/30) 29.5 (0.7) 19.8 (5.2) 22.7 (5.1) < 0.0001 <0.0001 0.10
% APOE ε4 carriers n/a 67% 42% n/a n/a 0.17

General intellect
WASI vocabulary (/80) 68.0 (8.8) 53.5 (17.4) 54.8 (19.6) 0.0009 0.0053 0.78
WASI matrices (/32) 26.7 (2.7) 10.6 (7.8) 4.5 (4.6)n=11 < 0.0001 <0.0001 0.017a

Digit span
forwards (max) 7.2 (1.2) 5.6 (1.4) 5.4 (1.4) 0.0002 0.0009 0.77
backwards (max) 5.5 (1.4) 3.2 (1.4)n=26 2.7 (1.4) < 0.0001 <0.0001 0.32

Episodic memory
RMT faces (/25) 24.6 (0.9) 20.2 (4.2) 18.3 (4.1) < 0.0001 <0.0001 0.16
RMT words (/25) 24.3 (1.4) 17.1 (2.9) 20.5 (4.4) < 0.0001 0.0008 0.017

Verbal fluency
Letter (F) 23.3 (5.4) 10.2 (5.5) 11.8 (5.6)n=11 0.011 0.0019 0.89
Category (animals) 15.7 (6.1) 9.4 (4.9) 9.6 (2.3)n=11 < 0.0001 0.0001 0.11

Reading, spelling & arithmetic
NART: total errors (/50) 37.8 (8.2) 30.7 (10.8) 30.6 (11.1)n=10 0.012 0.049 0.93
GDST: oral (/30) 26.1 (4.3) 14.8 (9.2)n=26 13.5 (.4)n=11 < 0.0001 0.0002 0.83
GDA: oral (/24) 14.0 (6.5) 3.4 (5.4)n=25 2.6 (3.5) < 0.0001 <0.0001 0.74

Visual processing
VOSP – shape detection (/20) 19.4 (0.8)n=23 18.5 (1.4)n=26 16.9 (2.6)n=11 0.0082 0.0001 0.02
VOSP – object decision (/20) 18.0 (1.4) 16.1 (3.1) 10.8 (3.9) < 0.0001 <0.0001 0.0003
VOSP – fragmented letters (/20) 19.5 (0.7)n=23 13.2 (7.1)n=26 7.0 (5.4)n=11 < 0.0001 <0.0001 0.013
VOSP – dot counting (/10) 9.9 (0.3) 8.4 (2.7)n=26 5.5 (3.3)n=11 0.0076 <0.0001 0.0084
A cancellation (time – seconds) 21.1 (6.0) 43.0 (21.1) 69.5 (19.8)n=11 < 0.0001 <0.0001 0.002
A cancellation (total errors) 0.1 (0.3) 0.6 (1.4)n=26 3 (3.7) n=11 0.16 0.0008 0.019

Key: HC=Healthy controls; tAD=amnestic led typical Alzheimer's disease; PCA=posterior cortical atrophy; MMSE=Mini-Mental State Examination;
WASI=Wechsler Abbreviated Scale of Intelligence; sRMT=Short Recognition Memory Test; NART=National Adult Reading Test; Graded Difficulty Spelling Test
(GDST); GDA=Graded Difficulty Arithmetic; VOSP=Visual Object and Space Perception battery. Where data is only available for a subset of participants, the total
n is specified for that variable.
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3. Results

3.1. Participant demographic, clinical and neuropsychological data

Basic demographic, clinical and neuropsychological data and com-
parison by phenotype is summarised in Table 1. There were no sig-
nificant differences in age, sex, handedness or years of education when
comparing groups. There were no significant differences in MMSE
score, disease duration or proportion of APOE ε4 carriers when com-
paring tAD and PCA patients. As expected, performance on all cognitive
tests examined was significantly worse in tAD and PCA patients com-
pared to controls. Compared to tAD patients, PCA patients performed
worse on shape detection, object decision, fragmented letters, dot-
counting and letter cancellation. PCA patients also performed worse on
matrix reasoning relative to tAD patients, likely arising from prominent
visual task demands. In contrast, tAD patients performed worse on a
verbal recognition memory measure (sRMT words).

3.2. Association between hippocampal subfield volumes and phenotype

Unadjusted mean volumes by group for each hippocampal subfield
are displayed in Table 2. After adjustment for age, sex and TIV there
was strong evidence that tAD patients had widespread volume loss in all
hippocampal sub-regions except the parasubiculum (Fig. 2, Table 3).

In PCA patients compared to controls, after adjustment for age, sex
and TIV the strongest evidence for volume loss was in the left pre-
subiclum, right subiculum, right GCMLDG and right molecular layer
and the right HATA, (Fig. 2, Table 3).

Comparing EOAD phenotypes, after adjusting for age, sex and TIV,
the strongest evidence for decreased volume in tAD compared to PCA
was in left CA1 and the left the hippocampal tail (Fig. 2, Table 3).

There was no evidence that APOE genotype significantly influenced
hippocampal subfield volumes in the EOAD patients included in this
analysis (see supplementary material).

4. Discussion

This study provides evidence for differences in hippocampal sub-
field volumes in patients with different phenotypic presentations of
EOAD. While patients with tAD showed widespread and symmetrical
hippocampal volume loss, those with a visual-led PCA phenotype
showed relative sparing of hippocampal volume, in line with previous
studies (Manning et al., 2015; Peng et al., 2016). In particular, we re-
port evidence of relative preservation of left CA1 and the left hippo-
campal tail (a conglomeration of CA1-4 and dentate gyrus) volume
when directly comparing tAD and PCA phenotypes, providing evidence
for differential hippocampal subfield volume in different forms of
EOAD.

While this is to our knowledge the first study to assess hippocampal
subfields in syndromic variants of Alzheimer's disease, previous hip-
pocampal subfield MRI analysis have found preferential CA1 volume
loss in tAD (Apostolova et al., 2010; Blanken et al., 2017; Iglesias et al.,
2015; Kerchner et al., 2014; La Joie et al., 2013; Mueller et al., 2010;
Pini et al., 2016; Wisse et al., 2014a, 2014b). Human post-mortem
neuropathological studies of tAD (Akram et al., 2008; Price et al., 2001;
Scheff et al., 2007; West et al., 1994), as well as animal models of
Alzheimer's disease (Helboe et al., 2017; Yang et al., 2018) have also
demonstrated early involvement of CA1. CA1 volume loss has pre-
viously been shown to be influenced by APOE genotype, with the e4
allele being associated with selective CA1 atrophy (Kerchner et al.,
2014), however this was not the case in our analysis suggesting APOE
does not mediate hippocampal subfield volume differences between
EOAD phenotypes.

CA1 has been implicated in a range of functions typically impaired
in tAD including: autobiographical memory (Bartsch et al., 2011), to-
pographical memory (Bartsch et al., 2010), as well supporting context
dependent memory retrieval (Dimsdale-Zucker et al., 2018). One im-
plication of the results of this study is that – in line with our hypotheses
– differences in atrophy profiles in individual hippocampal subfields
between tAD and PCA may also reflect differences in phenotype, most
notably sparing of episodic memory. Future work investigating the re-
lationships between hippocampal subfield volumes and different as-
pects of episodic memory, for example tasks utilising cues at encoding
and retrieval, assessed over different delay conditions (Bird and Luszcz,
1991; Liang et al., 2016), would be of considerable interest, providing
in vivo insights into subfield mediation of memory subcomponents.

There is a growing body of work suggesting that, while symmetrical
hippocampal volume loss is typically considered to be a hallmark of
Alzheimer's disease, there is hippocampal asymmetry with evidence
that the left hemisphere is subtly more affected than the right in tAD
(Barnes et al., 2005; Shi et al., 2009; Wachinger et al., 2016). In this
study, we found that, as hypothesised, in PCA there were a greater
number of subfields that showed volume loss in the right hippocampus
compared to the left hippocampus. This is supported by previous work
that has suggested cerebral atrophy in PCA has a right sided pre-
dominance compared to tAD (Alves et al., 2013; Lehmann et al., 2011;
Whitwell et al., 2018, 2007), but extends it to show that this is also the
case for hippocampal subfields. Furthermore, relative preservation of
the left hippocampus in PCA compared to tAD has been reported in
studies specifically looking at hippocampal volume in loss in PCA
(Alves et al., 2013; Manning et al., 2015). However, this right sided
predominance was not seen by another study that compared hippo-
campal volumes between tAD and PCA (Peng et al., 2016), which may
reflect different proportions of tAD patients included in each analysis,
different disease durations at time of assessment or different statistical
approaches. Further work investigating to what extent atrophy in PCA
is asymmetrical compared to tAD using more specific markers of
asymmetry (Wachinger et al., 2016) will be of interest to explore this
further.

Although left CA1 and left hippocampal tail were the only regions to
show statistically significance differences between tAD and PCA

Table 2
Unadjusted mean volumes for each hippocampal subfield by participant group.

Unadjusted mean volume (SD) (mm3)

HC tAD PCA

L R L R L R

CA1 613 638 511 541 594 594
(75) (83) (81) (81) (97) (89)

CA2/3 210 234 173 186 202 207
(38) (42) (33) (30) (32) (34)

CA4 257 268 203 223 236 237
(33) (38) (33) (32) (32) (39)

Pre-subiculum 303 284 251 244 257 246
(41) (35) (59) (55) (43) (47)

Subiculum 423 432 341 352 381 364
(51) (48) (58) (56) (57) (46)

Tail 505 546 379 451 474 513
(69) (76) (75) (65) (126) (113)

Para-subiculum 61 57 52 51 54 55
(13) (10) (15) (18) (19) (19)

GCMLDG 298 309 234 253 265 266
(38) (42) (41) (39) (36) (42)

Molecular layer 557 571 447 463 509 496
(63) (68) (76) (67) (71) (68)

HATA 58 63 44 48 52 50
(12) (12) (11) (12) (11) (8)

Total volume 3370 3469 2687 2853 3077 3066
(367) (394) (422) (393) (449) (427)

Key: HC=Healthy controls; tAD= amnestic led typical Alzheimer's disease;
PCA=posterior cortical atrophy; GCMLDG=Molecular and Granule Cell
Layers of the Dentate Gyrus; HATA=Hippocampal Amygdala Transition Area;
L= left; R= right.
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Fig. 2. Mean hippocampal subfield volumes in mm3 (left and right considered separately) with associated 95% confidence intervals for each participant group.
Values are marginal means adjusted for age, sex and TIV following linear regression analysis. Key: HC=Healthy controls; tAD=amnestic led typical Alzheimer's
disease; PCA=posterior cortical atrophy; TIV= total intracranial volume; GCMLDG=Molecular and Granule Cell Layers of the Dentate Gyrus;
HATA=Hippocampal Amygdala Transition Area.
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phenotypes at a strict Bonferroni corrected threshold, many of the
subfields (especially within the left hippocampus) showed trends to
being spared in PCA relative to tAD. However, one histologically dis-
tinct grey matter region that was notable for being involved to an equal
extent in both tAD and PCA was the presubiculum. There is evidence
from animal studies to suggest that the presubiculum may be a critical
hub that integrates information from a wide range of neocortical
structures (Insausti et al., 2017). Relevant to PCA, there is evidence that
the presubiculum receives direct projections from parietal and occipital
cortical regions (Cavada and Goldman-Rakic, 1989; Ding et al., 2000;
Seltzer and Pandya, 1984; Seltzer and Van Hoesen, 1979; Vogt and
Miller, 1983) and it is possible that the presubiculum volume loss in the
PCA patients may reflect disease spread from the occipito-parietal re-
gions to the presubiculm via these afferent connections. This is sup-
ported by the current imaging literature, which demonstrates that grey
matter atrophy (Lehmann et al., 2011; Poulakis et al., 2018; Ridgway
et al., 2012; Whitwell et al., 2018, 2007), glucose hypometabolism
(Lehmann et al., 2013; Whitwell et al., 2018), cerebral blood flow
(Lehmann et al., 2016) and tau positron emission tomography tracer
uptake (Ossenkoppele et al., 2016; Whitwell et al., 2018) are more
prominent in occipito-parietal regions in PCA phenotypes. In the case of
tAD, the presubiculum has been shown to have reciprocal connections
with medial temporal areas (e.g. the entorhinal cortex) (Ding, 2013),
potentially making it a similarly vulnerable site in tAD to disease spread
from the entorhinal cortex (Carlesimo et al., 2015). Differential patterns
of disease spread is an important emerging concept in neurodegenera-
tive disease (Warren et al., 2013) and disease progression modelling
techniques (Oxtoby et al., 2017), longitudinal analysis (Iglesias et al.,
2016), high resolution connectome imaging (Shi and Toga, 2017), as
well as detailed neuropathological study at post-mortem, may provide
alternative but complementary avenues to investigate how sequences of
disease processes differ or converge across the phenotypic spectrum.

This study has a number of strengths and weaknesses. Firstly, no
patients with the more common LOAD were considered in this analysis.
While patients with EOAD may not be representative of individuals

with LOAD (Dickerson et al., 2017; Joubert et al., 2016; Mendez, 2012),
the more variable presentation of EOAD (Rossor et al., 2010) provides
an opportunity to explore phenotypic variation. Patients with EOAD are
also less likely to have undergone pathological change related to other
processes such as ageing and cerebrovascular disease, both of which
have been shown to influence hippocampal subfield loss (Mueller and
Weiner, 2009; Wisse et al., 2014a, 2014b; Wu et al., 2008), thus re-
ducing the likelihood that such factors could confound analyses. We
used the Freesurfer version 6.0 hippocampal subfield segmentation al-
gorithm (Iglesias et al., 2015). This is based on a high-resolution post-
mortem template and addresses concerns regarding previous versions of
the software (Wisse et al., 2014a, 2014b). It is fully automated, elim-
inating inter-rater variability effects. Furthermore, it is publicly avail-
able, which increases scope for replication and comparison of findings
between studies. A limitation of the study is the spatial resolution
provided by 3T T1-weighted MRI. Although each segmentation was
visually checked for obvious errors, precise visualisation of the
boundaries that define the distinct hippocampal subfields is not pos-
sible at the resolution achievable within a reasonable scan time at this
field strength. In particular, results from small volume hippocampal
subfields (< 100mm3 – i.e. the HATA and parasubiculum) or particu-
larly thin regions (e.g. the molecular layer) may be more difficult to
resolve with T1-weighted contrast and could be particularly prone to
error. Studies acquiring T1- and T2-weighted images with higher re-
solution at 7T, investigating hippocampal subfields in Alzheimer's dis-
ease, are being undertaken (Blanken et al., 2017; Wisse et al., 2014a,
2014b); similar studies investigating the differences between PCA and
tAD patients using both manual and automated techniques will be
important to validate the findings of this study. Furthermore, correla-
tion with detailed neuropathological analysis at post-mortem will be of
significant interest. A further limitation of the study is the relatively
small sample size, which may limit the ability to identify more subtle
differences in some hippocampal subfields. This was particularly the
case when considering PCA where only 12 patients with adequate
imaging data were available for analysis. As highlighted earlier in the

Table 3
Percentage differences in hippocampal subfield volumes (left and right considered separately) between healthy controls, tAD early-onset Alzheimer's disease patients,
and PCA early-onset Alzheimer's disease patients estimated using linear regression models (co-variates= age, gender & TIV).

tAD vs HC PCA vs HC tAD vs PCA

Mean % differencea p-value Mean % differencea p-value Mean % differenceb p-value

CA1 L −15% <0.001** −2% 0.49 −12% 0.001**
R −13% <0.001** −6% 0.12 −8% 0.049*

CA2/3 L −15% <0.001** −3% 0.51 −12% 0.017*
R −19% <0.001** −10% 0.019* −10% 0.052

CA4 L −19% <0.001** −8% 0.041* −12% 0.004*
R −15% <0.001** −10% 0.004* −5% 0.17

Pre-subiculum L −16% <0.001** −16% 0.002** 0% 0.99
R −12% <0.001** −15% 0.003* +3% 0.59

Subiculum L −18% <0.001** −10% 0.019* −9% 0.045*
R −17% <0.001** −16% <0.001** −1% 0.77

Tail L −24% <0.001** −6% 0.26 −18% 0.002**
R −16% <0.001** −5% 0.21 −11% 0.017*

Para-subiculum L −13% 0.036 −13% 0.1 0% 0.99
R −11% 0.15 −7% 0.41 −3% 0.76

GCMLDG L −20% <0.001** −11% 0.007* −11% 0.017*
R −16% <0.001** −12% <0.001** −5% 0.26

Molecular layer L −18% <0.001** −9% 0.013* −10% 0.008*
R −17% <0.001** −12% <0.001** −5% 0.15

HATA L −22% <0.001** −10% 0.076 −13% 0.039*
R −22% <0.001** −21% <0.001** −2% 0.78

Total volume L −19% <0.001** −9% 0.01* −11% 0.002**
R −16% <0.001** −11% <0.001** −6% 0.089

Key: TIV= total intracranial volume; GCMLDG=Molecular and Granule Cell Layers of the Dentate Gyrus; HATA=Hippocampal Amygdala Transition Area;
PCA=posterior cortical atrophy; tAD= typical Alzheimer's disease; *p≤.05 – standard statistical threshold; **p≤0.0025 – Bonferroni corrected threshold;

a Expressed as percentage of mean unadjusted volume for relevant subfield in healthy control participants;
b Expressed as percentage of mean unadjusted volume for relevant subfield in PCA patients.
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discussion, whilst our findings of more atrophy in left CA1 and worse
performance on the RMT (words) in tAD compared to PCA provide
indirect evidence implicating left CA1 in the episodic memory impair-
ment that typifies tAD, future work using large enough sample sizes and
more comprehensive tests of episodic memory will be required to di-
rectly assess the relationships between hippocampal subfield volumes
and subcomponents of episodic memory thought to be sub served by
individual subfields.

5. Conclusion

In summary, these data provide evidence for differential associa-
tions between hippocampal subfield volumes and phenotype in EOAD,
highlighting areas where atrophy is seen in both tAD and PCA (e.g. the
presubiculum) and those where there is relatively sparing of hippo-
campal subfield volume loss (most notably in left CA1 and the left
hippocampal tail) in patients with PCA.
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