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Abstract
Ecological associations where one species enhances habitat for another nearby species

(facilitations) shape fundamental community dynamics and can promote niche expansion,

thereby influencing how and where species persist and coexist. For the many breeding

birds facing high nest-predation pressure, enemy-free space can be gained by nesting near

more formidable animals for physical protection. While the benefits to protected species

seem well documented, very few studies have explored whether and how protector species

are affected by nest protection associations. Long-legged wading birds (Pelecaniformes

and Ciconiiformes) actively choose nesting sites above resident American alligators (Alliga-
tor mississippiensis), apparently to take advantage of the protection from mammalian nest

predators that alligator presence offers. Previous research has shown that wading bird nest-

ing colonies could provide substantial food for alligators in the form of dropped chicks. We

compared alligator body condition in similar habitat with and without wading bird nesting col-

onies present. Alligator morphometric body condition indices were significantly higher in col-

ony than in non-colony locations, an effect that was statistically independent of a range of

environmental variables. Since colonially nesting birds and crocodilians co-occur in many

tropical and subtropical wetlands, our results highlight a potentially widespread keystone

process between two ecologically important species-groups. These findings suggest the

interaction is highly beneficial for both groups of actors, and illustrate how selective pres-

sures may have acted to form and reinforce a strongly positive ecological interaction.

Introduction
Facilitation is a positive ecological exchange in which one species enhances habitat for another
nearby species (sensu [1]). Identifying and assessing the strength of facilitative interactions has
enriched our understanding of species coexistence/persistence (e.g., [2–6]), and of the factors
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shaping populations and communities (e.g., [7–9]). The potential for ecological facilitation to
expand niche boundaries also challenges the long-held notion of species interactions necessar-
ily causing niche shrinkage [10–12].

Creation of enemy-free space is one common currency of facilitative exchange, and theory
predicts that this form of facilitation will occur most frequently in communities where mem-
bers experience high consumer pressure (e.g., predation, herbivory) [13,14]. For many bird
species nest predation is the greatest threat to reproductive success [15–19], so breeding birds
may nest near more-formidable animals for physical protection (e.g., [20–23]). Despite the
wealth of literature on nest protection associations (reviewed in [24–26]), only six papers assess
costs/benefits to the protective species (“protectors” hereafter; Table 1). This research bias in
avian nest protection associations mirrors that in facilitations more generally, as most facilita-
tion research focuses on fitness effects to the partner ostensibly receiving benefits (but see
[27]). In both cases a largely unilateral approach limits our understanding of how these interac-
tions evolve and persist [1,26].

Nutritional benefits to protectors have not been explored [26]. This is despite (1) many pro-
tectors commonly consuming young and eggs of the protected species (“protectees” hereafter)
[26] and (2) aggregations of breeding birds often increasing local primary and secondary pro-
ductivity, which could provide nutritive benefits to protectors [33–35]. Further, many colo-
nially nesting birds lay more eggs than they can raise, and adjust brood size to fit available food
resources through several processes of brood reduction (reviewed in [36]). This often amounts
to 1–2 chicks being ejected alive or dead from each nest, providing a potentially substantial
source of food for protectors, especially in concentrated nesting associations [37]. Thus colo-
nies of breeding birds offer multiple avenues through which they could nutritionally benefit
protectors that do not necessitate exploitation by either partner.

In this study we report on benefits for American alligators (Alligator mississippiensis) that
associate with nesting colonies of long-legged wading birds (orders Ciconiiformes and Peleca-
niformes: herons, egrets, ibises, storks, and spoonbills; “wading birds” hereafter). In mixed-spe-
cies wading bird nesting colonies in the southeastern United States, medium-sized, arboreal,
semiaquatic mammals such as North American raccoons (Procyon lotor) and Virginia opos-
sums (Didelphis virginiana) present the greatest nest predation threat, and these birds have no

Table 1. Published results regarding fitness effects on protectors in avian nest protection associations.

Protector Protectee Effect on protector

Order Species Species Direction Form Source

Charadriiformes Whimbrel (Numenius phaeopus) Bar-tailed godwit (Limosa lapponica) None N/A [28]

3 species (family: Laridae) Sand-colored nighthawk (Chordeiles
rupestris)

(−) Nest defense (higher
cost)

[29]

Passeriformes Rufous-fronted thornbird (Phacellodomus
rufifrons)

> 10 species (orders: Passeriformes,
Galliformes)

(+) a Nest defense (higher
efficacy)

[30]

(−) a Aggression / nest
predation

Falconiformes Merlin (Falco columbarius) Fieldfare (Turdus pilaris) (+) Nest defense (higher
efficacy)

[31]

Lesser kestrel (Falco naumanni) Jackdaw (Corvus monedula) (+) Nest defense (lower
cost)

[32]

Hymenoptera Polistine wasp (Ropalidia cincta) Red-cheeked cordonbleu (Uraeginthus
bengalus)

None N/A [22]

a The author could not draw definitive conclusions for effects of individual species due to small sample sizes.

doi:10.1371/journal.pone.0149572.t001
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evolved defences against such nest predators [38,39]. Recent research suggests that wading
birds actively choose nesting sites above alligators, and that in wetlands, there is a mutually
exclusive distribution of alligators and mammalian predators [40]. Together with evidence that
alligators readily consume mammals [41–44], there is reasonably strong evidence that alliga-
tors deter mammalian nest predators, thereby greatly increasing reproductive success for nest-
ing wading birds.

Wading bird nesting aggregations can substantially increase nearby nutrient deposition
[45–47] and may enhance primary and secondary productivity as a result. Moreover, the quan-
tity of food potentially available to scavengers from wading bird colonies via dead chicks is sub-
stantial, enough to theoretically support large populations of alligators [37]. Given the
potential for significant energetic benefits to alligators in wading bird nesting colonies, we pre-
dicted that alligators associated with wading bird colonies will have higher body condition indi-
ces than alligators in similar habitat without colonies.

Materials and Methods

Ethics Statement
All animal use was approved by the University of Florida’s Institute of Food and Agricultural
Sciences Animal Research Committee under Approval No. 007-13WEC. All field work and
sample collection was performed under Florida Fish and Wildlife Conservation Commission
Scientific Collecting Permit No. SPGS-13-58 and United States Fish and Wildlife Service
Arthur R. Marshall Loxahatchee National Wildlife Refuge Special Use Permit No. B14-006. All
efforts were made to minimize stress to animals during measurements and tissue sampling,
and study animals were released at the point of capture immediately after processing (within
~1 hour).

Study Sites
This study took place in the Everglades of Florida, USA: Water Conservation Area 3A (WCA
3A; 25.961°, −80.701°) in Miami-Dade and Broward Counties, and Arthur R. Marshall Loxa-
hatchee National Wildlife Refuge (LOX; 26.489°, −80.337°) in Palm Beach County (Fig 1).
These freshwater marshes are a mosaic of habitats including deeper-water sloughs, wet prairies,
sawgrass (Cladium jamaicense) strands, and elevated tree islands. Hydrologic conditions fluc-
tuate seasonally (by ~40 to>100 cm, depending on the area and year) with lowest water depths
during the November to May dry season. Wading bird nesting colonies are predominantly
located in inundated, lower-elevation islands with the longest hydroperiods [39]. In WCA 3A
these islands are typically dominated by coastalplain willows (Salix caroliniana), while in LOX
most are comprised of swamp bay (Persea palustris), dahoon holly (Ilex cassine), and other
trees/shrubs.

Alligators were captured in sloughs surrounding tree islands that were designated as either
colony or non-colony sites as follows. We used data from systematic, 100% coverage aerial and
ground surveys conducted during the nesting season to locate active wading bird nesting colo-
nies (see [48] for details). Approximately half of the alligators were caught within 200 m of
islands with 20–800 nests of wading birds (colony sites); the other half were caught near islands
that (1) were> 1 km from the nearest active colony and (2) had not been occupied by nesting
birds in the previous 5 years (non-colony sites). Both colony and non-colony sites were> 1 km
from the nearest canal because these unnatural areas affect alligator size-distributions [49] and
fish abundances [50]. The distances of 1 km and 200 m were derived from radio telemetry
studies that estimated daily linear movements and home range sizes for alligators in our study
area [51]. For non-colony sites in WCA 3A, we used Google Earth [52] to identify tree islands
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bordered by the same canals, of similar size and vegetation composition, and within 5–10 km
of each colony site. In LOX, the ubiquity of tree islands and their relatively similar size allowed
us to use any location> 1 km away from the nearest nesting colony as a non-colony site.

Alligator Sampling
We captured adult and subadult (� 125 cm total length) alligators by noose or hand from an
airboat between 2000 and 0530 hours in June of 2013 and 2014. We began captures immedi-
ately after bird nesting had largely been completed, to minimize our disturbance to active
nests. Because female alligators have smaller home ranges and move less than males in the
Everglades [51], we assumed that female body condition should be more reflective of food
opportunities from an individual tree island than male body condition. Because of this and the
fact that adult females have the greatest influence upon alligator population dynamics [53], we
only used females for analyses. We determined sex by cloacal examination and recorded geo-
graphical coordinates of capture location. We measured snout-vent length dorsally (± 0.1 cm)
and body mass (± 0.5 kg) using a spring scale.

For hematological indices, we extracted 5 mL of blood from the cranial sinus of each cap-
tured alligator using a 20-G needle, which was immediately transferred to either sodium (2013)
or lithium (2014) heparin Vacutainer tubes and centrifuged (3,400 rpm for 10 minutes).

Fig 1. Map of the study area. Locations of Water Conservation Area 3A (WCA 3A) and Arthur R. Marshall Loxahatchee National Wildlife Refuge (LOX) in
the Everglades of Florida, USA, and inset maps of adult female alligator capture sites. In capture-site maps, habitat type shows the densities of tree islands
(clusters of trees / shrubs) and locations of canals near capture sites; white areas in the LOX inset are non-habitat. Open-source data for habitat type were
obtained from the Ecological Modeling Team at Everglades National Park: http://simglades.org/.

doi:10.1371/journal.pone.0149572.g001
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Because this location of blood draw is subject to dilution from lymph or cerebrospinal fluid, we
cross-referenced plasma total protein concentrations from other alligator studies [54]. Blood
samples were all taken within fifteen minutes of initial noosing or hand-capture. We pipetted
the plasma into vials and stored them in a cooler of ice until we returned from the field. The
plasma was stored in a freezer at −20°C (2013) [55] or on dry ice or in a −80°C freezer (2014)
until the tests were run. The frozen plasma was transported to the Avian &Wildlife Laboratory,
University of Miami (Miami, FL) for analyses.

Condition Indices
Four hematological markers were used as indicators of nutritional status, which are collectively
called intermediary plasma metabolites (IPMs). The IPMs glucose, triglycerides, β-hydroxy-
butyrate (BHB), and uric acid have been used in birds and crocodilians to detect nutritional
deficiencies [55–58]. In these studies, elevated plasma concentrations of glucose and triglycer-
ides indicated little to no starvation, while elevated BHB and drops in glucose and triglycerides
signified intermediate starvation; increased uric acid was associated with severe starvation. We
predicted alligators in nesting colonies would have higher plasma glucose and triglycerides,
and lower BHB and uric acid than those not found in colonies.

Morphometric body condition indices can be used to indicate an animal’s energy reserves
relative to size [59]. These indices have been shown to be positively correlated with reproduc-
tive success in birds [60], turtles [61], and snakes [62]. They have also been used as reliable, effi-
cient indictors of alligator population health [63–66]. Fulton’s condition factor (K) was used
because it has been used previously in alligators; K was calculated as such: K =M � SVL−3 � 105,
whereM is mass and SVL is snout-vent length [67–69].

Because Kmay bias condition scores due to allometry [70,71], the scaled mass index (M̂i)

was also used. M̂i was calculated using the following equation: M̂i =Mi
� [SVL0 / SVLi] ^bSMA,

whereMi and SVLi are mass and snout-vent length of individual i respectively, SVL0 is an arbi-
trary length (we used 100 cm), and bSMA is the scaling exponent as determined by a standard-
ized major axis (SMA) regression of ln(M) on ln(SVL) [71,72]. For the SMA regression we
used a reference population of female alligators caught in our study area from 1999–2014
(n = 565, mean ± SD [range],M: 16.38 kg ± 11.10 [0.82–56.00], SVL: 85.55 cm ± 21.39 [35.0–
135.9]). We could not determine whether individuals from this reference population were asso-
ciated with nesting colonies. However, since Everglades alligators are particularly thin [64,73],
a study-area-specific reference population better-informed our prediction of how mass scales
with length in this population. We also checked that growth was approximately isometric (i.e.,
mass/ length3) within our capture sample by conducting an ordinary least squares (OLS)
regression of ln(M) on ln(SVL) and testing the hypothesis that the regression coefficient for
length was significantly different from three [74].

Environmental Covariates
We included four environmental covariates in our models: (1) yearly minimum water depth,
(2) range in water depth, (3) tree island area, and (4) counts of nearby alligator-maintained
ponds (alligator holes). (1) We predicted a unimodal relationship between alligator body con-
dition and yearly minimum water depth [49,50,69]. In the Everglades, low water levels confine
prey and make themmore available for capture by alligators, yet in particularly dry years alliga-
tor populations decline [75]. (2) Greater range in water depth has been shown to increase wet-
land productivity [76–79], (3) tree islands are nutrient hotspots in the Everglades that increase
local productivity [80–83], and (4) during low water conditions in the Everglades, fish and
other aquatic prey congregate into alligator holes [84,85]; we predict each of factors 2–4 to
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have positive effects on alligator body condition through higher local prey abundance. From
this information, we created a suite of a priori hypotheses upon which we based our statistical
models (S1 Table).

From the Everglades Depth Estimation Network project website (http://sofia.usgs.gov/eden/)
we extracted predicted water depths for the 400×400 m grid cells in which each capture
occurred; this water depth model has been validated to RMSE = 3.3 cm [86]. We used water
depths from within each capture’s calendar year for minimum yearly water depth, and
from� 365 days prior to capture for range in water depth. From the Ecological Modeling Team
at Everglades National Park (http://simglades.org/) we downloaded habitat type by 50×50 m
grid cells (for tree island area calculations) and locations of alligator holes in our study area (see
[49] for how these data were derived). For tree island area, we calculated the proportion of
nearby grid cells that we categorized as tree island, while for alligator holes we took counts of
nearby holes. We only considered habitat-type cells or alligator holes within sqrt{4002 / π} m of
each capture location, so that the area concerned was the same as for the water-depth data.

Statistical Analyses
All analyses were conducted in R 3.1.2 (R Core Team 2014). Due to non-normality of response
variables, we used one-way percentile bootstrap hypothesis tests (106 simulations) [87,88] of

H0: μnc � μc, where c is colony and nc is non-colony, for K, M̂i, and glucose, and H0: μnc� μc
for uric acid. Influential points were determined using plots of jackknife influence values. Tri-
glycerides and BHB had samples with undetected levels, so we used the Gρ family [89] equiva-
lent to the Peto and Peto [90] modification of the Gehan-Wilcoxon test, to test for differences
in the empirical cumulative distribution functions for colony and non-colony values [91]. To
conduct these tests, we used the R package ‘NADA’ [92], which adjusts routines from the pack-
age ‘survival’ [93] to handle left-censored data.

If a variable was different between colony and non-colony females, we assessed potential
covariate effects using linear models. Diagnostic plots indicated heteroscedasticity and non-
normality in some models, so we used Box-Cox [94] data transformations. Plots also indicated
influential points, so we employed robust regression techniques: Huber’s [95] M-estimator and
iterated median absolute deviations. These techniques were carried out by the functions ‘box-
cox’ and ‘rlm’ in the ‘MASS’ package [96]. We evaluated support for robust linear models
(RLMs) using the second-order variant of Akaike’s Information Criterion (AICc), the differ-
ence in AICc between model i and the top model (Δi), and Akaike weights (wi); the latter repre-
sents Pr(modeli is the best model | data) [97].

Results
We captured thirty-nine female alligators (20 colony, 19 non-colony), ranging from 7.5 to 46.0
kg (mean ± SD, 21.3 kg ± 9.7) total mass and 146.6 to 239.1 cm (194.1 cm ± 27.1) total length.
Because female alligators in the Everglades can reproduce at 1.5 m total length [64], we consid-
ered all individuals potentially reproductively active and hereafter refer to them as adults.

The bird nesting colonies at which we captured alligators were primarily comprised of great
egrets (Ardea alba), with smaller numbers of little blue herons (Egretta caerulea), tricolored
herons (E. tricolor), snowy egrets (E. thula), and anhingas (Anhinga anhinga). Yearly mini-
mum water depth was much deeper for colony (25.5 cm ± 15.8) than non-colony (14.9
cm ± 12.5) sites in WCA 3A (one-way Welch’s t-test: t26.4 = 2.02, P = 0.027), while it was simi-
lar in LOX (colony: 13.2 cm ± 8.26, non-colony: 11.4 cm ± 7.40, t7.91 = 0.363, P = 0.363).

Glucose (P = 0.207) and uric acid (P = 0.585) were not significantly different between col-
ony and non-colony females, and hypothesis tests for left-censored data showed no
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differences in triglycerides (χ21 = 0.647, P = 0.421) or BHB (χ21 = 7.95×10−4, P = 0.978) (Fig
2). Total protein values (43.9 ± 12.7 g L−1) were similar to those from other alligator studies
[54,98], which suggests that our samples were not markedly diluted with lymph or cerebrospi-
nal fluid [54].

Both morphometric indices were significantly higher (K: P = 0.008, M̂i: P = 0.010) in colony

(K = 2.26 cm kg−3 ± 0.310, M̂i = 22.79 kg ± 3.09) than non-colony (K = 2.00 cm kg−3 ± 0.325,

M̂i = 20.19 kg ± 3.48) female alligators (Fig 3). Jackknife-after-bootstrap plots indicated one
colony female as a potential outlier for these bootstrap hypothesis tests, an individual with a
broken tail that likely influenced its ability to forage. As we had biological and statistical evi-
dence that this point was a likely outlier, we identified it in Figs 2 and 3.

The 5 RLMs for K that included colony presence as a predictor represented the 5 most
highly supported models (Table 2). The highest-supported model also included range in water
depth and alligator hole counts as additive terms (wi = 0.73), while the second-best model
included colony presence as the lone predictor (wi = 0.13).

M̂ i showed similar results as K with respect to model selection (S2 Table). The SMA regres-
sion of ln(M) on ln(SVL) using the reference population (n = 565, r2 = 0.981, P<< 0.001) indi-

cated a scaling exponent of 3.20 (CI95% = 3.17–3.24) for the calculation of M̂i. However, the
M–SVL relationship within the population of animals captured was not significantly different
from that predicted for isometric growth (OLS regression: t37 = −0.471, P = 0.354, coefficient
CI95% = 2.51–3.30), nor did the curves forM/ SVL3 differ markedly fromM/ SVL3.20 within
the size-range of alligators captured herein (Fig 4).

Fig 2. Intermediary plasmametabolites (IPMs) for colony and non-colony alligators. Comparison of the IPMs glucose, triglycerides, β-hydroxy-butyrate
(BHB), and uric acid for adult female alligators caught near Everglades tree islands with and without wading bird nesting colonies present. Error bars are
CI95% via bias-corrected and accelerated bootstrapping; crossed points indicate the individual caught with a broken tail. For triglycerides and BHB, censored
values were replaced with model estimates from separate regressions on order statistics for colony and non-colony subpopulations.

doi:10.1371/journal.pone.0149572.g002
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Discussion
Our results using morphometric indices are consistent with the hypothesis that wading birds
are facilitators of alligators by providing localized nutritional subsidies. Both Fulton’s factor

(K) and the scaled mass index (M̂ i) indicated that alligators near wading bird nesting colonies
were in better body condition than those in similar habitat without active colonies (Fig 3), an
effect that was statistically independent of environmental factors (Table 2 and S2 Table).

Because (i) the results were similar for K and M̂i, (ii) the mass—length relationship within our
capture population did not differ significantly from 3 (CI95% = 2.51–3.30; Fig 4), and (iii) K
afforded us opportunities to compare to past studies, we hereafter only use K as our morpho-
metric condition index and refer to it as simply “body condition.”However, we recommend
future studies to utilize the scaled mass index if analyzing a wide size-range of alligators.

Fig 3. Morphometric body condition for colony and non-colony alligators.Comparison of morphometric body condition (Fulton’s factor, K, and scaled
mass index, M̂i) for adult female alligators caught near Everglades tree islands with and without wading bird nesting colonies present. Error bars are CI95%
via bias-corrected and accelerated bootstrapping, and crossed points indicate the individual caught with a broken tail. Beanplots represent values from the
reference population of alligators caught in our study area between 1999–2014, filtered for those within the range of snout-vent lengths from our captured
females (n = 387); dashed and dotted lines are located at the mean values for colony and non-colony alligators, respectively.

doi:10.1371/journal.pone.0149572.g003
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Results from IPMs (glucose, triglycerides, BHB, and uric acid) did not support our hypothe-
sis (Fig 2), which contrasts previous work using IPMs in Yacare caiman (Caiman crocodilus
yacare) [55]. However, their lower-condition population was caiman on dry land, where they
likely have few or no feeding opportunities. All alligators in our study were captured in aquatic
habitat and were not likely to have been completely deprived of food. The effects of intermit-
tent feeding on IPMs is unclear in crocodilians, and even our most emaciated alligator via mor-
phometric indices had inconclusive IPM results (crossed points in Figs 2 and 3). Additional
studies in birds and squamates with consistent IPM results are typically either on laboratory-
starved animals (e.g., [57]) or wild populations suffering extreme resource limitations and/or
environmental contamination (e.g., [56,58]). Combined with the differences we found using
morphometric indices, we infer that these blood parameters are only sensitive enough to dis-
cern severe nutritional differences.

Indeed, morphometric body condition results suggest biologically relevant effects of nesting
colonies. Using those female alligators from our reference population that were within the
range of snout-vent lengths reported herein (n = 387), mean body condition for colony-associ-
ated females we captured ranked as the 63rd percentile, while that for non-colony females
ranked as the 17th (Fig 3). Moreover, the observed disparity between colony and non-colony
alligator body condition (13%) is greater than the differences in pre-breeding-season condition
for blue petrel (Halobaena caerulea) females that did and did not “decide” to breed (11%) [60],
and in green turtle (Chelonia mydas) condition for those caught in years least and most associ-
ated with density-dependent reductions in growth rates (~8%) [99]. Thus the body condition
difference we report is likely large enough to be associated with breeding potential for these
subpopulations of alligators.

In seasonal wetlands in the Everglades, crocodilian food availability is thought to increase
during dry months [69,73,100]. The magnitude of the increase in alligator body condition
through colony association was similar to body condition changes effected through dry versus
wet seasons (13%) [69] and two years of elevated water levels (−15%) [101]. Yet the differences
we reported occurred despite colony sites having equal or greater water depths than non-col-
ony sites, which might suggest that, on the scale of an individual tree island, colony association
can buffer the effects of hydrology on nearby alligators. Alternatively, size and dry-season fish

Table 2. Model selection on RLMs predicting alligator body condition (Fulton’s factor,K).

Model AICc Δi wi k

Colony presence + Water depth range + Alligator holes 215.80 0.00 0.73 5

Colony presence 219.23 3.43 0.13 3

Colony presence + Water depth range 220.38 4.58 0.07 4

Colony presence + Tree island area 221.83 6.02 0.04 4

Colony presence × Minimum water depth† 224.49 8.69 0.01 7

Water depth range 225.13 9.33 0.01 3

Tree island area 226.91 11.10 0.00 3

Minimum water depth† × Water depth range 227.05 11.25 0.00 7

Minimum water depth† 229.19 13.38 0.00 4

Minimum water depth† × Tree island area 231.73 15.93 0.00 7

Minimum water depth† × Alligator holes 236.19 20.39 0.00 7

AICc, second-order variant of Akaike’s Information Criterion; Δi, difference in AICc between model i and the top model; wi, relative likelihood of model i [i.e.,

Pr(modeli is the best model | data)]; k, number of model parameters
† Quadratic term included

doi:10.1371/journal.pone.0149572.t002
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abundance are positively correlated for aquatic refuge (i.e., drought-resistant) sites in the Ever-
glades [50], so the deeper modeled water depths near colonies in WCA 3A might indicate
larger, deeper-water refuge sites with greater prey abundance. However, the colony-associated
difference in body condition was greater for captures in LOX (16.7%), where water depths were
similar between colony and non-colony sites, than in WCA 3A (11.6%). This sheds doubt
upon deeper refuge sites near colonies causing the observed differences.

The apparent mutually facilitative association between nesting wading birds and alligators
is a novel nest protection association, as the protector receives potentially substantial nutri-
tional benefits from the protectee. The magnitude of benefits demonstrated here indicates that
for alligators there should be selective pressure toward behaviors that enhance the benefits they
derive from this association. We hypothesize that alligators are attracted to and, given their

Fig 4. Mass versus length for the reference population. Plot of mass against snout-vent length for a reference population of alligators caught in the study
area from 1999–2014 (n = 565). Regression lines are for standardized major axis (dashed) and ordinary least squares (solid) regressions, and rug plots along
vertical and horizontal axes represent masses and snout-vent lengths respectively for alligators in this study.

doi:10.1371/journal.pone.0149572.g004
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territorial behavior, may even compete for territories that include wading bird colonies. We
predict from this that alligators should display movements towards bird colonies upon their
formation, and alligators occupying colonies should be larger and/or occur more densely than
in non-colony sites. Testing the above predictions will be key to understanding how the close
spatial association between these two species arises, specifically whether alligator behavior has
interactive effects with wading birds’ previously demonstrated attraction to alligator-present
sites [40].

In comparison to other nest protectors described (Table 1; Appendix 1 in [26]) alligators are
much larger-bodied, more indiscriminate in food choice, and less capable of reaching nests in
trees. This has two important effects which could serve to reinforce this relationship: First, a
comparatively large portion of nutrition from breeding birds should directly or indirectly reach
alligators, as the latter could take advantage of an increase in small aquatic prey that may be
fuelled by bird-guano deposition yet are large enough to consume chicks of all sizes. Brood
reduction is common in all wading birds [36,102,103], and the resulting chick carcasses from
wading bird nesting colonies represent the most substantive food source for associate alligators
[37]. Because alligators can utilize this food source, brood reduction by wading birds is likely
another vital component of this relationship, providing a steady flow of nutrients from protec-
tee to protector.

Second, the risk of alligator predation on wading birds should drop quickly to zero with dis-
tance of nests above alligators. Although crocodilians are capable of jumping vertically, even
large adult alligators are unlikely to reach heights of over ~1.5–2 m [104,105], particularly in
the relatively shallow water and thick vegetation within tree islands. Nesting at such a height is
a relatively small price to pay if the remuneration for birds is protection from nest predation by
mammalian predators, and the ability of birds to nest directly over alligators with relatively lit-
tle threat of predation should allow for a close connection between protector and protectee.
This would increase the likelihood of both partners receiving benefits, as alligators in close
proximity to bird nests should be more likely to (1) detect and consume fallen chick carcasses
and (2) deter mammalian predators.

The oligotrophic Everglades is a particularly harsh environment for crocodilians, as it
induces high energetic demands for resident ectotherms but offers a relatively poor food base
[64,73,106]. We suggest that further research should seek to replicate these findings in other
wetlands less energetically demanding for crocodilians. We also suggest that the basic mecha-
nisms of this apparent two-way ecological facilitation could apply broadly to analogous spe-
cies-groups of colonially nesting wetland birds and crocodilians in many other tropical and
subtropical regions (e.g., floodplains and wetlands of southeastern USA, Western Australia,
India, Africa, the Amazon, the Pantanal, and the Llanos).

Supporting Information
S1 Fig. Images of alligators positioned under wading bird chicks. Alligators (red) are
observed under white ibis chicks (blue) in wading bird nesting colonies (A) “Alley North”
(26.201°, −80.529°) and (B) “163” (25.773°, −80.833°). (C) In the image from colony “Tamiami
West” (25.758°, −80.545°), the camera is facing down from an anhinga nest. Reprinted under a
CC BY license, with permission from (A) Nicholas E. Vitale and (B, C) Lucas A. Nell, original
copyrights 2014.
(PDF)

S1 Table. Our a priori hypotheses on factors influencing alligator body condition.
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model i and the top model; wi, relative likelihood of model i [i.e., Pr(modeli is the best model |
data)]; k, number of model parameters.
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islands.
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