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Chloroplasts are intracellular semiautonomous organelles central to photosynthesis and are essential for plant growth and yield.
The significance of the function of chloroplast-related genes in response to climate change has not been well studied in crops. In
the present study, the initial focus was on genes that were predicted to be located in the chloroplast genome in rice, a model crop
plant, with genes either preferentially expressed in the leaf or ubiquitously expressed in all organs.The characteristicswere analyzed
by Gene Ontology (GO) enrichment and MapMan functional classification tools. It was then identified that 110 GO terms (45 for
leaf expression and 65 for ubiquitous expression) and 1,695 genes mapped to MapMan overviews were strongly associated with
chloroplasts. In particular, the MapMan cellular response overview revealed a close association between heat stress response and
chloroplast-related genes in rice. Moreover, features of these genes in response to abiotic stress were analyzed using a large-scale
publicly available transcript dataset. Consequently, the expression of 215 genes was found to be upregulated in response to high
temperature stress. Conversely, genes that responded to other stresses were extremely limited. In other words, chloroplast-related
geneswere found to affect abiotic stress responsemainly through high temperature response, with little effect on response to drought
and salinity stress. These results suggest that genes involved in diurnal rhythm in the leaves participate in the reaction to recognize
temperature changes in the environment. Furthermore, the predicted protein–protein interaction network analysis associated with
high temperature stress is expected to provide a very important basis for the study of molecular mechanisms by which chloroplasts
will respond to future climate changes.

1. Introduction

Chloroplasts are cellular organelles in which photosynthesis
occurs, and they are found in cyanobacteria, algae, and higher
plants [1]. Chloroplasts have a double-celled compositemem-
brane and an extensively folded thylakoid membrane. The
chloroplast is divided into two compartments, the soluble
stroma and lumen, with the latter enclosed by the thylakoid
membrane, which carries chlorophylls and other pigments
[2]. Chloroplasts produce the energy needed to sustain life
through photosynthesis and oxygen-release processes. The
key function of chloroplasts is photosynthesis. However, they
also affect the physiology and development of plants by their
involvement in the synthesis of amino acids, nucleotides,
fatty acids, phytohormones, and vitamins [3]. Furthermore,
metabolites synthesized in chloroplasts protect plants from
environmental (abiotic) and biotic stresses, including heat,

cold, drought, salt, light, and pathogens [4, 5]. Chloroplasts
have genomes containing approximately 120 genes, which
encode key proteins involved in metabolic processes in green
plants [6–8].

The role of chloroplasts in plant abiotic stress responses
continues to be highlighted. The development of high-
throughput sequencing technologies has made possible
many advances in plant genetics and genomics. In this study,
we tried a new approach through transcriptome analysis of
chloroplast-related genes. Initially, we selected 3,314 plastid-
related genes via Rice Genome Annotation Project (RGAP)
Gene Ontology (GO) slim annotation. Then, we used the
anatomical meta-expression database and, as a result, iden-
tified 1,695 leaf-preferred or ubiquitously expressed plastid-
related genes. Subsequently, GO enrichment, Kyoto Encyclo-
pedia of Genes andGenomes (KEGG) enrichment, andMap-
Man analyses of these 1,695 genes were performed and
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Figure 1:Workflowdiagram summarizing analysis process about rice plastid-related genes.Theworkflow illustrates the entire analysis process in
this study. First of all, we retrieved 4,707 plastid transcripts from GO slim annotation at the RGAP database. Then we removed unannotated
and duplicated information to collect 3,314 plastid genes. By querying these genes to our meta-expression data source, we obtained 2,839
genes that only have the most highly expressed probe. We clustered these intensity values with KMC algorithm as 20 clusters. As a result,
we identified 1,695 leaf-preferred or ubiquitously expressed genes for further analysis. With these two sets of genes, we performed functional
characterization like GO enrichment, KEGG enrichment, andMapMan analysis to characterize their functions. In addition to these analyses,
we queried the 1,695 genes to an abiotic stress expression database (DB) to identify stress-responsive plastid genes. As a result, we clustered
264 cold or heat stress-responsive plastid genes and conducted a literature search. Altogether, we constructed a hypothetical protein–protein
interactionmodel of stress-related plastid genes.

significant functional groups were identified. Of the 1,695
leaf-preferred or ubiquitously expressed plastid-related
genes, meta-expression analysis under abiotic stress condi-
tions identified 264 cold or heat stress-responsive plastid-
related genes. The analysis of functionally characterized plas-
tid-related genes emphasized the significance of our candi-
date genes for crosstalk between chloroplast development
and heat stress. Ultimately, the hypothetical network model
will provide a valuable backbone for future studies (Figure 1).

2. Materials and Methods

2.1. Integration of Plastid Genes from Public Data Source. We
obtained information on plastid-related genes from the GO
slim annotation data at the Rice Genome Annotation Project
web database (RGAP) [9]. We first selected 3,314 plastid-
related genes in the cellular component subontology from
the data. Then, we removed duplicated loci because of their
transcript isoforms. Finally, we collected 3,314 plastid-related
genes for further analysis.

2.2. Collection of Microarray Data. We collected transcrip-
tomics data to analyze anatomical and abiotic expression
patterns of 1,696 plastid-related genes, for which we used
the data source described in our previous report [10].
Detailed information is as below. For analysis of anatomical
expression profiles, we integrated anatomical data from the
rice oligonucleotide array database ROAD [11]. For the
abiotic stress database, we retrieved 13 expression dataset
series, GSE16108, GSE18930, GSE21651, GSE23211, GSE24048,
GSE25176, GSE26280, GSE28209, GSE31077, GSE33204,
GSE37940, GSE38023, and GSE6901 from the National Cen-
ter for Biotechnology Information Gene Expression Omni-
bus (https://www.ncbi.nlm.nih.gov/gds), and one data series,
E-MEXP-2401, from the European Bioinformatics Institute

(EMBL-EBI) ArrayExpress database (https://www.ebi.ac.uk/
arrayexpress/).

2.3. Clustering of Transcriptome Data. MeV (Multiple
Experiment Viewer) is a widely used program to visualize
transcriptomedata and to perform statistical analysis [12].We
usedMeV software (version 4.9.0) to visualize ourmicroarray
data. For analysis of transcriptome data, we applied a k-
means clustering (KMC) algorithm with Euclidean distance
metric embedded in MeV with the same method as that used
for the identification of late-pollen-preferred genes in rice
[13]. In the case of the abiotic microarray data, we clustered
1,695 leaf-preferred or ubiquitously expressed plastid genes
with the same KMC algorithm and matrix. In addition, we
selected only genes with an average log

2
-fold-change value

(treatment/control) in a cluster greater than 1(log
2
value)

and a p-value of one-way analysis of variance (ANOVA)
of less than 0.05 to ensure clear correlation. We used the
row.oneway.anova function in the HybridMTest package in
R to perform a one-way ANOVA test and used Illustrator
software (Adobe Illustrator CS6) to present heatmap images
[14].

2.4. GO Enrichment Analysis. GO enrichment is com-
monly used to interpret functional roles of large-scale tran-
scriptomics data [15]. In the current study, we used the
ROAD database to find GO terminology for each cluster
(http://ricephylogenomics-khu.org/ROAD old/analysis/
go enrichment.shtml, temporary homepage for updating).
To perform GO enrichment analysis, we applied the follow-
ing criteria: query number of >2, hyper p-value of <0.05,
and fold-enrichment value (query number/query expected
number) of >2, by referencing previous reports about GO
enrichment analysis [13, 16].We selected significantGO terms

http://ricephylogenomics-khu.org/ROAD_old/analysis/go_enrichment.shtml
http://ricephylogenomics-khu.org/ROAD_old/analysis/go_enrichment.shtml
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and integrated cluster information from transcriptomic data
analysis with each selected GO term. Finally, we visualized
these data via R Studio (version 1.1.453) and ggplot2 R
package (version 3.0.0) [17].

2.5. KEGG Enrichment Analysis. We performed KEGG
enrichment analysis using R Studio and the clusterProfiler
package [18]. To use the enrichKEGG function in this
package, we used input data consisting of cluster information
and rice annotation project database ID. In addition, we chose
data for organism code and filtered out results by applying
adjusted p-value cut-offs of less than 0.05, as in other studies
[19, 20]. For visualization of the results, we used dotplot
function in the package and modified the figure with the
ggplot2 package (version 3.0.0).

2.6.MapManAnalysis. To obtain a systemic view of the 1,695
leaf-preferred and ubiquitously expressed plastid-related
genes within rice, we performed MapMan analysis as previ-
ously described [21]. In detail, we conducted the functional
characterization of the genes by uploading the locus list with
cluster information to MapMan software (v3.6.0 RC1) [22].
Among the various functional classifications, we analyzed the
metabolism, cellular response, regulation, and transcription
factor overviews in detail (Figure 3).

2.7. Analysis of Functionally Characterized Genes via Litera-
ture Search. To identify the previously characterized func-
tional roles of the 264 plastid-related genes associated with
heat or cold stresses, we used the funRiceGenes database
for functionally characterizing rice genes (https://funrice-
genes.github.io/) [23]. In this database, information on 3,148
functionally characterized genes is available. As in our pre-
vious study [24], we parsed functional roles for the 264
genes and gene clusters, using meta-expression data. Subse-
quently, we summarized the data in Table 1, using Excel soft-
ware.

2.8. Analysis of a Predicted Protein–Protein Interaction Net-
work. Using the Rice Interactions Viewer tool (http://bar
.utoronto.ca/interactions/cgi-bin/rice interactions viewer.cgi),
we generated a hypothetical protein–protein interaction
network, involving transcription factors (TFs), redox reac-
tions, and functionally characterized genes. The network was
edited with the Cytoscape tool (3.2.0 version) [25].

3. Results

3.1. Integration of 3,314 Plastid-Related Genes from GO
Slim Annotation at the Rice Reference Database, RGAP. We
applied GO slim annotation at a rice reference database,
RGAP. GO provides controlled information on each gene,
which classifies the genes into three categories, namely,
biological process, molecular function, and cellular com-
ponent [26]. We retrieved 4,707 plastid-related transcripts
with the cellular component information of GO. Then, we
selected only chromosome-annotated genes without duplica-
tion. As a result, we selected 3,314 genes for further analy-
sis.

3.2. Anatomical Dissection of Chloroplast-Related Genes via
Meta-Expression Analysis. To assess the functional roles of
3,314 plastid-related genes, we used meta-anatomical expres-
sion profiles consisting of 983 rice Affymetrix array anatom-
ical sample data [10]. By applying clustering analysis based
on the Euclidian distance algorithm, we grouped 2,839 genes
with probes on the Affymetrix array into 20 anatomical clus-
ters (Figure S1). Based on this analysis, we identified plastid-
related genes, with respect to organ-selective expression in
leaves or ubiquitous expression pattern. For example, cluster
A, with 844 genes, had preferential expression in leaves and
cluster E, with 851 genes, exhibited an ubiquitous expres-
sion pattern, which was related to housekeeping functions
(Figure 2(a)). In addition, we found that clusters B andCwere
closely associated with roots (52 genes) and pollen (14 genes),
respectively, and cluster D with seed (16 genes).

3.3. Functional Enrichment Analysis of Plastid-Related Genes
with Leaf-Preferred or Ubiquitous Expression Using Gene
Ontology and KEGG. We focused on plastid-related genes in
two clusters associated with the leaf or all organs (ubiqui-
tously expressed genes) through meta-expression analysis.
We then performed a functional-group enrichment analy-
sis for each of the two anatomical clusters. To determine
significant functional groups associated with the two ana
tomical clusters, we performed GO and KEGG enrichment
analyses (Figures 2(b) and 2(c)). In all, 45 GO terms in
the biological process category were highly overrepresented
in the leaf gene list (cluster A), with p-values of <0.05
and (log

2
)-fold-enrichment values of >2, as we previously

reported [27]. They included biological processes related to
photosynthesis, namely, light harvesting (36.3-fold en-
richment, GO:0009765), reductive pentose-phosphate cycle
(30.9, GO:0019253), chlorophyll biosynthetic process (23.9,
GO:0015995), photorespiration (23.2, GO:0009853), guano-
sine tetraphosphate metabolic process (19.3, GO:0015969),
terpenoid biosynthetic process (15.4, GO:0016114), iron-
sulfur cluster assembly (15.4, GO:0016226), aspartyl-tRNA
aminoacylation (14.5, GO:0006422), porphyrin biosynthetic
process (14.5, GO:0006779), D-ribose metabolic process
(11.9, GO:0006014), carbon fixation (11.9, GO:0015977),
oxylipin biosynthetic process (11.4, GO:0031408), cellular
process (10.7, GO:0009987), and thiamin biosynthetic process
(10.5, GO:0009228) (Figure 2(b)). The 31 GO terms with
fold-enrichment values less than 10 are shown in Figure
S2. Similar to the results from GO enrichment analy-
sis, KEGG enrichment also showed that photosynthesis,
photosynthesis−antenna proteins, glyoxylate and dicarboxy-
late metabolism, porphyrin and chlorophyll metabolism, and
carbon metabolism were enriched in leaves (Figure 2(c)).
These results suggest that plastid-related genes with high
expression levels in leaves are closely related to photosynthe-
sis, as would be expected.

Next, we performed GO enrichment and KEGG enrich-
ment analyses on ubiquitously expressed genes. As a result,
we found that 65 GO terms were enriched in cluster E: lysine
biosynthetic process (30.8-fold enrichment, GO:0009085),
diaminopimelate biosynthetic process (30.8, GO:0019877),
histidine biosynthetic process (27.4, GO:0000105), leucine

http://bar.utoronto.ca/interactions/cgi-bin/rice_interactions_viewer.cgi
http://bar.utoronto.ca/interactions/cgi-bin/rice_interactions_viewer.cgi
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Figure 2: Meta-expression profile and functional analysis of the 1,695 leaf-preferred or ubiquitously expressed genes. We performed meta-
expression analysis with large-scale microarray dataset for elucidating tissue-specific patterned plastid genes. In addition, we performed GO
and KEGG enrichment analysis to identify functional roles for two clusters, leaf-preferred cluster A and ubiquitous cluster E. (a) Heatmap
analysis of plastid-related genes and identification of five clusters. We performed KMC clustering into 20 clusters using Euclidean distance
matric and selected 10 clusterson the basis of tissue-specific expression patterns. Among these clusters,we selected twomajor clusters,A (leaf-
preferred genes) and E (ubiquitous genes) for further functional enrichment analysis. Digits under or beside each clusters indicate number
of the genes that were classified into each cluster. (b) GO enrichment analysis of 1,695 leaf-preferred and ubiquitous expressed genes. To
reveal characteristics of each cluster, we conducted GO enrichment analysis and visualized the result with ggplot2 package. GO terms were
classified according to biological processGO terms.Dot color indicates fold-enrichment value (blue color is 2-fold, which is theminimumcut-
off to select significant fold-enrichment value, and red color indicates higher fold-enrichment value greater than two), and dot size indicates
statistical significance (-log

10
(hyper p-values) are used, with higher values having greater significance). (c) KEGG enrichment analysis of two

clusters, A and E. Enriched KEGG pathway indicated with dot size representing the ratio of selected genes to total genes in the pathway and
dot color illustrating adjusted p-value.The numbers below clusters indicate the number of mapped genes to selected KEGG pathways.
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(a) (b)

(c) (d)

Figure 3: Functional classification of the leaf-preferred or ubiquitously expressed plastid genes viaMapMan analysis.MapMan analysis of the two
clusters for functional classificationwithin various biological processes. (a)Metabolismoverview, (b) cellular response overview, (c) regulation
overview, and (d) transcription factor overview. Red and blue squares indicatemembers of leaf-preferred and ubiquitously expressed clusters,
respectively. In addition to squares, red and blue digits show number of squares. Green box and orange box in metabolism, cellular response,
and regulation overview highlight areas that are discussed in the Results.

biosynthetic process (23.0, GO:0009098), lysine biosyn-
thetic process via diaminopimelate (20.5, GO:0009089),
branched chain family amino acid biosynthetic process (19.6,
GO:0009082), GTP biosynthetic process (18.5, GO:0006183),
UTP biosynthetic process (18.5, GO:0006228), CTP biosyn-
thetic process (18.5, GO:0006241), cysteine biosynthetic
process (18.5, GO:0019344), purine nucleotide biosynthetic
process (15.3, GO:0006164), L-serine biosynthetic process
(15.3, GO:0006564), glycerol ether metabolic process (15.3,
GO:0006662), hydrogen peroxide catabolic process (14.2,
GO:0042744), de novo pyrimidine base biosynthetic process
(13.2, GO:0006207), cellular amino acid biosynthetic pro-
cess (12.5, GO:0008652), tryptophan metabolic process (12.3,
GO:0006568), malate metabolic process (12.0, GO:0006108),
porphyrin biosynthetic process (11.5, GO:0006779), glu-
cose metabolic process (10.3, GO:0006006), gluconeo-
genesis (10.3, GO:0006094), arginine biosynthetic pro-
cess (10.3, GO:0006526), starch biosynthetic process (10.3,
GO:0019252), and cellular carbohydrate metabolic process

(10.3, GO:0044262) (Figure 2(b)). The 41 GO terms with
fold-enrichment values less than 10 are shown in Figure
S2. Consistent with the GO enrichment analysis results,
KEGG enrichment also showed that amino acid biosyn-
thesis, including that of phenylalanine, tyrosine, and tryp-
tophan, carbon metabolism, pyruvate metabolism, and 2-
oxocarboxylic acid metabolism were enriched in all plants
(Figure 2(c)). These results suggest that plastid-related genes
with ubiquitous expression are closely related to basic
metabolic processes.

3.4. Analysis of Various MapMan Overviews Associated
with Plastid-Related Genes with Leaf-Preferred or Ubiq-
uitous Expression. The MapMan program is an effective
tool for visualizing diverse overviews associated with high-
throughput transcriptome data [28]. We uploaded plastid-
related locus IDs for the 844 upregulated genes in leaves
(Figure 3, red squares) and the 851 ubiquitously expressed
genes (Figure 3, blue squares). In the metabolism overview,



8 BioMed Research International

Drought

0.0

Cold
sal

inity
Heat Su

bmerg
en

ce
3.0

Cold
(49)

Heat
(215)

−3.0

Figure 4: Heatmap analysis of cold- and heat-responsive plastid genes which show leaf-preferred or ubiquitous expression patterns. Heatmap
of cold or heat stress-responsive plastid-related genes. Similarly to the anatomy clustering, we used KMC algorithm with Euclidean distance
matric to cluster abiotic-responsive genes. To define stress responsiveness, we applied criteria that were greater than average 1 log

2
-fold change

(2-fold) in each stress and p-value less than 0.05 in one-way ANOVA test. As a result, we identified 264 cold or heat stress-responsive plastid
genes.

we observed that genes with increased expression in leaves
were mainly found to be involved in light reactions (71
elements, 68 for leaf-preferred expression/3 for ubiquitous
expression, i.e., 68/3), whereas those with ubiquitous expres-
sion were found to be largely involved in amino acid
metabolism (57 elements, 15/42) (Figure 3(a), green and
orange box). Most of the light reactions were found to be
associated with leaf-preferred genes, whereas amino acid
metabolism was mainly identified in ubiquitously expressed
genes. Interestingly, these results are consistent with the find-
ings of the GO enrichment and KEGG enrichment analyses.

In the cellular response overview, heat stress within
abiotic stress response was closely associated with both leaf-
preferred or ubiquitously expressed genes (19 elements, 6/13)
(Figure 3(b), green box). Many antioxidant proteins such as
thioredoxin, ascorbate, glutathione, and peroxiredoxin and
catalases were found in the redox cellular response (61 ele-
ments, 30/31) (Figure 3(b), orange box), with leaf-preferred
or ubiquitously expressed genes being identified in similar
numbers in heat stress and redox responses. Independent
of organ specificity, these results suggest that plastid-related
genes are closely related to heat stress and utilize proteins
catalyzing redox reactions to effectively remove superoxide
and H

2
O
2
produced under stressful conditions.

Finally, we identified leaf-preferred or ubiquitously
expressed genes associated with TFs (66 elements, 34/32) and
calcium regulation (12 elements, 4/8) in the regulation
overview (Figure 3(c), green and orange box). As a result of
detailed examination of TFs, we found six (5/1) myeloblas-
tosis (MYB) oncogenes, four (0/4) histones, four (2/2)
Cys2His2 (C2H2) zinc fingers, three (0/3) auxin-response
factors (ARFs), three (3/0) heat shock TFs (HSFs), and two

(0/2) basic leucine zipper (bZIP) TFs (Figure 3(d)). Most
of the MYB and HSFs were found in leaf-preferred genes,
and histone, ARFs, and bZIP TFs were mainly identified in
ubiquitously expressed genes. We have identified various TFs
and calcium regulation elements in Figures 3(c) and 3(d).
These results suggest that Ca2+ is involved in the activation of
genes encoding HSFs and heat shock proteins (HSPs) during
heat stress.

3.5. Abiotic Stress Dissection of Plastid-Related Genes via
Meta-Expression Analysis. In the previous section, we used
MapMan analysis to deduce that plastid-related genes were
closely associated with heat stress response. To test this
hypothesis, we conducted meta-expression analysis under
abiotic stress conditions, such as drought, salinity, cold, heat,
or submergence, for 1,695 genes (844 genes with preferential
expression in leaves and 851 genes with ubiquitous expres-
sion), using meta-expression data (Figure S3). As a result,
215 genes were associated with heat stress and 49 genes with
cold stress (Figure 4). However, we did not identify candidate
genes showing differential expression patterns clearly asso-
ciated with drought, salinity, or submergence. These results
suggest that plastid-related genes respond mainly to changes
in external temperature rather than to other stresses.

3.6. Evaluation of Candidate Genes Associated with Plastid-
Related Genes Using Rice Genes with Known Functions. To
evaluate the functional significance of the 215 genes with
increased expression under heat stress, we searched the liter-
ature to determine what functions of heat stress-responsive
plastid genes have been identified in previous studies [23].
Of six genes found in that database (Table 1), five have
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been linked to various biotic and abiotic stress responses
in rice. They include heat shock protein 90 [29] for envi-
ronmental stresses; OsTRXZ [30] for cold stress; OsCNX
[31], and OsCP12 [32] for drought tolerance; and OsDR8
[33] for disease resistance. Moreover, 12 of the genes are
associated with morphological traits: OsNUS1 [34], TCD11
[35], TCD5 [36], VYL [37],WSP1 [38], and ZN [39] with leaf
development; GRY79 [40], OsCPn60a1 [41], and OsPDIL1;1
[42] with seedling development; SPP [43] with root devel-
opment; OsNADH-GOGAT2 [44] with spikelet number; and
OIP30 [45] with pollen trait. In addition, nine genes are
associated with physiological traits: OsClpP5 [46],OsPAPST1
[47], OspTAC2 [48], OsValRS2 [49], and OsFLN2 [50] with
chloroplasts; OsPK2 [51] with grain; OsNADP-ME2 [52] with
growth; RNP29 [53] for phosphate; and Pho1 [54] for starch.

As expected, most of the heat stress-responsive genes
having functions involved in leaf or seedling development
were associated with morphological traits, whereas most of
the genes associated with physiological traits were related to
chloroplasts. Interestingly, in genes associated with abiotic
stress responses,morewere reported to have functions related
to drought, high salinity, and cold stress than with heat
stress. For example, the 90 kDa heat shock protein (rHsp90)
accumulates after exposure to abiotic stresses such as high
salinity, desiccation, and high pH as well as high temperature,
and tobacco transgenic plants overexpressing rHsp90 exhibit
increased tolerance to salinity [29]. In addition, temperature-
sensitive virescent (tsv) showed defective chloroplasts and
decreased chlorophyll content under cold stress. Interest-
ingly, TSV, interacting with OsTRXZ (a subunit of plastid-
encoded RNA polymerase (PEP) in chloroplasts), enhanced
OsTRXZ stability at low temperatures. These results suggest
that plastid-related genes are also associated with various
abiotic stresses.

3.7. Analyses of Predicted Protein–Protein Interactions Asso-
ciated with Chloroplast-Related Genes. Regulatory genes are
primary targets when investigating diverse stress responses
and developmental processes. Understanding the regulatory
relationship between them can lead to a new strategy for
the manipulation of chloroplasts to improve plant tolerance
to heat stress. To expand our knowledge of this mecha-
nism, we utilized the Rice Interactions Viewer to generate a
hypothetical protein–protein interaction network associated
with the 215 upregulated genes associated with heat stress
response [55]. We then refined the network by using genes
in the following four categories as the query: 29 plastid-
related genes with elevated expression in heat stress (orange
circles, Figure 5), 24 TFs (green circles), six functionally
characterized genes (purple circles), and six redox proteins
(blue circles).

We found two interesting genes in this network.
LOC Os02g32490, encoding the AMP-binding enzyme,
is predicted to interact with 11 TFs and one involved in
the redox reaction (red lines, Figure 5). Another gene,
LOC Os01g52490, encoding a 40S ribosomal protein, is likely
to be associated with four functionally characterized genes
and six TFs (black lines, Figure 5). The four functionally
characterized genes are all associated with response to

abiotic stress. For example, OsCTR1, encoding the RING Ub
E3 ligase, interacts with two chloroplast-localized proteins
(OsCP12 and OsRP1) and is involved in drought tolerance
[32]. The transcript level of Os6PGDH2, encoding 6-phos-
phogluconate dehydrogenase (6PGDH), increases under
drought, cold, and high salinity conditions and in response
to abscisic acid treatments, under which conditions 6PGDH
activity also increases [56]. Finally, the shorter Nucleolin1
gene (OsNUC1-S) reduces oxidative stress during high
salinity treatment [57].

4. Discussion

4.1. Chloroplasts Maintain Reactive Oxygen Species (ROS)
Homeostasis through Redox Enzymes Such as Superoxide
Dismutase (SOD) and the Ascorbate-Glutathione (ASC-GSH)
Cycle during Heat Stress. We found that chloroplast-related
genes were associated with heat stress under abiotic stress
conditions by MapMan analysis (Figure 3(b), green box). In
addition, several antioxidants such as thioredoxin, ascorbate,
glutathione, peroxiredoxin, and catalases, which are known
to play an important role in scavenging ROS, have also
been found (Figure 3(b), orange box). ROS are chemically
reactive species and products of aerobic metabolism [58].
ROS are mainly produced by chloroplasts, mitochondria,
and peroxides and are scavenged by the antioxidant mech-
anisms [59]. The balance between ROS generation and
ROS scavenging is disturbed by various abiotic stresses like
extreme temperatures, high salinity, drought, and heavy
metals [5]. The plant has developed two efficient antioxidant
mechanisms to maintain the ROS homeostasis of cells [5]:
(i) antioxidant enzymes, like superoxide dismutase (SOD),
ascorbate peroxidase (APX), catalase (CAT), guaiacol perox-
idase (GPX), glutathione reductase (GR), dehydroascorbate
reductase (DHAR), and monodehydroascorbate reductase
(MDHAR); (ii) nonenzymatic antioxidants, such as ascor-
bic acid (AA), reduced glutathione (GSH), 𝛼-tocopherol,
carotenoids, and flavonoids [58].

The chloroplast utilizes a well-organized thylakoid mem-
brane system to efficiently capture light [60]. In thylakoids,
photosystem I (PSI) and photosystem II (PSII) play a key role
in the light harvesting system and are the major sources of
ROS production. However, abiotic stresses such as drought,
high salinity, and temperature extremes induce the formation
of O∙−

2
in the photosystem through the Mehler reaction.

Subsequently, a membrane-bound Cu/Zn SOD at the PSI
converts O∙−

2
into H

2
O
2
[58], which is then converted to

H
2
O via the ascorbate-glutathione (ASC-GSH) cycle [61].

One of the integral components of the ASC-GSH cycle, APX,
reduces H

2
O
2
to H
2
O and DHA, using AA as a reducing

agent in the chloroplast [62]. Another key component, GR, is
a flavoprotein oxidoreductase, mainly found in chloroplasts.
GR uses NADPH to reduce GSSG (glutathione, oxidized
form) to GSH, with GSH reacting with and quenching
detrimental ROS species such as 1O

2
and OH∙ [63].

This ROS scavenging by antioxidant enzymes or nonen-
zymatic antioxidants protects plants from heat-induced
oxidative stress. For example, Zeamays plants showed greater
expression of enzymatic antioxidants, such as CAT, APX,
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Figure 5: Construction of regulatory network associated with genes upregulated under high temperature. Using Rice Interaction Viewer and
Cytoscape tools, we queried the predicted protein–protein interactionnetwork associatedwith 29 upregulated genes under heat stress (orange
circles), 24 transcription factors (green circles), six functionally characterized genes (purple circles), and six redox proteins (blue circles).

and GR, compared with O. sativa and maintained signifi-
cant levels of nonenzymatic antioxidants such as AA and
GSH at high temperatures (45∘C for day/40∘C for night).
These results suggest that Z. mays will be better able to
cope with oxidative damage by heat stress through the
ROS- scavenging process than its fellow grass, O. sativa
[64]. Furthermore, heat-acclimated turf grass was found to
maintain low ROS levels by increasing the synthesis of AA
and GSH at high temperatures [65]. These results suggest
that the antioxidant defense mechanism plays an important
role in heat stress tolerance [66]. We have identified vari-
ous enzymatic or nonenzymatic antioxidants in chloroplast-
related genes through MapMan analysis (Figure 3(b)), and
these candidate genes can be used as a major route to
develop crops tolerant to abiotic stress, including heat
stress.

4.2. Transcriptional Activity in the Nucleus Is Partially Reg-
ulated by Signals Derived from the Plastids. Chloroplast
retrograde signaling refers to a communication pathway in
which transcriptional activities in the nucleus are partially
regulated by signals derived from plastids [67]. In general,
chloroplasts of plants are predicted to be descendants of
ancient photosynthetic bacteria and have circular genomes
for their transcription and translation machinery [68]. The
first discovery of retrograde signaling was reported in barley.
Two barley chloroplast ribosome-deficient mutants caused
downregulation of nuclear-encoded plastid proteins due to
a defect in plastid function [69]. After that, studies on
the function of retrograde signaling were conducted by
coordinating chlorophyll biosynthesis with the expression of
nuclear genes in some plants [70, 71]. Conversely, genome-
uncoupled mutants, in which communication between the
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chloroplast and the nucleuswas disrupted, expressed nuclear-
encoded photosynthetic genes despite defective chloroplast
physiology or inhibited biogenesis [70].

In chloroplast retrograde signaling, heat shock proteins
(HSPs) play an important role in heat stress [4]. Interest-
ingly, we identified a number of TFs, including heat shock
transcription factors (HSFs), in Figure 3(d).Heat shock genes
(HSGs), encoding HSPs, are upregulated during heat stress.
HSPs play a role as chaperones to prevent denaturation
of intracellular proteins and to preserve stability through
protein folding [72]. Under heat stress conditions, plant HSP
expression is rapidly activated by specific HSFs binding to
the conserved sequences of the heat shock elements in the
promoters of heat-responsive genes [73, 74]. For example,
H
2
O
2
in rice increased tolerance to oxidative stress by

inducing the expression of chloroplast-localized small HSPs
[75]. In addition, high H

2
O
2
in Arabidopsis has been shown

to induce activation of some chaperones, HSPs, and HSFs at
the mRNA levels [76]. Until now, the retrograde signals have
been perceived only in the cytosol, and the mechanism of
communication with the nucleus remains largely unknown.
We found several HSFs and other TFs in chloroplast-related
genes through MapMan analysis. These might be potential
candidate TFs to mediate plastid-nucleus signaling.

5. Conclusions

Chloroplasts are sensitive to environmental changes and have
developed a complex network of plastid signals to protect
plants from environmental stresses. ROS is a by-product of
aerobic metabolism and acts as a marker under environ-
mental stress. Chloroplast retrograde regulation is essential
for coordinating gene expression, including that involving
photosynthesis, in both the nucleus and the chloroplast. To
cope with environmental stress, retrograde signals derived
from chloroplasts must be delivered rapidly by cytosolic mes-
sengers or by distinct signal cascade pathways to the nucleus.
H
2
O
2
, the HSP-associated complex, and some TFs have been

suggested as possible retrograde signaling molecules, but
more research remains to be conducted to determine how
they function [4]. We performed functional dissection of
chloroplast-related genes via diverse meta-expression data
analysis based on microarray data and functional classifica-
tion analyses. This work might provide new insights into the
role of chloroplasts in producing crop plants with enhanced
abiotic stress tolerance.
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