
1Scientific Reports | 7: 4273  | DOI:10.1038/s41598-017-03394-5

www.nature.com/scientificreports

Versatility of nodal affiliation to 
communities
Maxwell Shinn   1, Rafael Romero-Garcia1, Jakob Seidlitz1,2, František Váša1, Petra E. Vértes1 
& Edward Bullmore1,3,4

Graph theoretical analysis of the community structure of networks attempts to identify the 
communities (or modules) to which each node affiliates. However, this is in most cases an ill-posed 
problem, as the affiliation of a node to a single community is often ambiguous. Previous solutions 
have attempted to identify all of the communities to which each node affiliates. Instead of taking this 
approach, we introduce versatility, V, as a novel metric of nodal affiliation: V ≈ 0 means that a node is 
consistently assigned to a specific community; V >> 0 means it is inconsistently assigned to different 
communities. Versatility works in conjunction with existing community detection algorithms, and it 
satisfies many theoretically desirable properties in idealised networks designed to maximise ambiguity 
of modular decomposition. The local minima of global mean versatility identified the resolution 
parameters of a hierarchical community detection algorithm that least ambiguously decomposed the 
community structure of a social (karate club) network and the mouse brain connectome. Our results 
suggest that nodal versatility is useful in quantifying the inherent ambiguity of modular decomposition.

The community structure of a network divides the network into groups, or communities, which share topological 
similarity. These communities are most commonly defined to be non-overlapping groups which maximise the 
strength of edges within the community and minimise the strength of edges which leave the community, where 
each node is a member of one and only one community.

Sometimes, the community structure of a network is evident even to an untrained observer. It is very clear 
which nodes belong to which community, and which nodes and edges are involved in linking communities 
together. In other words, the overall community structure is unambiguous for nearly all of the nodes in the 
network.

However, in most networks, the modular decomposition of community structure is an ill-posed problem, as 
not all nodes can be assigned unambiguously to a single community. Techniques previously developed to deal 
with this situation include algorithms that allow overlapping communities1 and algorithms that work not with 
communities themselves, but rather with probability distributions of communities via multi-layer networks2. 
These approaches, while attractive in theory, can be challenging to operationalise and do not facilitate an intuition 
about the underlying structure of the network. Various forms of consensus clustering3, 4 have been developed 
to optimise non-overlapping modular decomposition “on average” over an ensemble of datasets or runs of a 
non-deterministic community detection algorithm. However, it remains debatable whether these communities 
represent the “true” communities of the network, or just the best possible consensus solution given the algorithm 
and the available data.

Our approach to the issue of community ambiguity is predicated on the observation that, although the com-
munity structure of a network may not be certainly known, there will generally be variability between nodes in 
terms of the certainty with which they can be individually affiliated with a specific community. Here, we seek to 
formalise this intuition by developing a new metric called versatility which can be used to quantify the certainty 
with which each node is assigned to the same community of a network. Versatility may be computed with respect 
to any stochastic community detection algorithm, and therefore provides a measure of how the algorithm inter-
acts with the network on a nodal level.
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In what follows, we first define an estimator of nodal versatility of community affiliation and demonstrate its 
desirable properties by analysis of idealised networks designed for maximal community ambiguity. To build intu-
itive understanding of what versatility is measuring, we explored its performance in two real-life networks: the 
karate club graph, a social network; and the mouse brain connectome, a brain network derived from anatomical 
tract-tracing experiments. In both of these cases, we show how versatility can be used to identify the resolution 
parameters of the Louvain hierarchical community detection algorithm5 that provide the least ambiguous modu-
lar decomposition of the network as a whole. Additionally, we use versatility to characterise the topological roles 
of each individual node.

Methods
We propose a measure of nodal versatility of community affiliation that can be estimated for any graph (weighted 
or unweighted, directed or undirected), and for any non-deterministic or stochastic algorithm which decomposes 
the community structure of such graphs.

Definition of versatility.  The most natural way to accurately capture the intuition of variability in commu-
nity classification with respect to an arbitrary algorithm applied to a single graph is to run a stochastic community 
detection algorithm many times. Because the partitions will be different, we use as our fundamental quantity 
the probability pi,j that any two nodes i and j will be classified in the same community. This is equivalent to the 
element in the i’th row and the j’th column of the association matrix from consensus clustering3. If two nodes are 
always in the same community, pi,j will be equal to 1, and if they are never in the same community, it will be 0. 
Likewise, if they are in the same community 50% of the time, pi,j will be equal to 0.5. Versatility should be highest 
for a node j when pi,j = 0.5 for all i ≠ j. To formalise this idea, we transform the pi,j values with the sine function, 
and then sum the transformed pi,j values for each node j. Finally, we normalise by the average number of nodes in 
the community containing node j. So, for node j, we sum sin(πpi,j) for all nodes i and normalise by dividing by the 
mean size of the communities containing j (weighted by membership probability).

More formally, the versatility of a node j is defined as
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Because  =a i j p( ( , )) i j, , we estimate the expected value of a(i, j) by running any given community detection 
algorithm many times. See Fig. 1 for a graphical summary of this process.

This formula for versatility can be computed for any stochastic community detection algorithm. If versatility 
is being used to understand a community decomposition, the same algorithm and parameters should be used 
for each iteration as for the original decomposition. For algorithms based on Newman’s quality function Q6 such 
as the Louvain algorithm5, or for any other algorithm with a resolution parameter, computing versatility across 
many different resolution parameters can offer insight into which values of this parameter minimise the ambigu-
ity of the modular decomposition.

For the Louvain algorithm, we have determined that approximately 1000 runs at a particular resolution 
parameter gives reliable results in our networks, based on numerical simulations tracking the variance in versa-
tility across multiple runs in the same network (Supplementary Fig. S1). This number may be higher or lower in 
different networks or with other community detection algorithms. Though versatility can be computed for any 
community detection algorithm, we use the Louvain algorithm in what follows due to its popularity in the liter-
ature. Code to calculate versatility for any arbitrary community detection algorithm is available in Python and 
Matlab/Octave from https://github.com/mwshinn/versatility. This includes code to generate a plot which can be 
used to find an optimal resolution parameter.

Technical evaluation of versatility estimators.  In theory, there are several ways in which versatility 
of nodal affiliation to a modular community structure could be defined. To choose between the many versatility 
estimators that are potentially available, we first list the desirable properties of a theoretically optimal estimator 
and then evaluate a number of candidate estimators against these criteria, using two test networks to assess the 
performance of each estimator empirically, as shown in Fig. 2.

Model networks.  The first model is called the “n-split network” and represents the case where a single indicator 
node has one connection to each of a number of identical tightly-interconnected clusters. It has three parameters: 
n, the number of clusters to which the indicator node is connected; c, the number of nodes in each cluster; and x, 
additional nodes in the network that change the total network size but are assumed to not affect the community 
detection. Thus, the total size of the network is n × c + x + 1. We assume that the indicator node can be assigned 
to only one community by each run of a stochastic community detection algorithm, with the probability of affili-
ation to each model on each run being equal to 1/n.

The second model is called the “n-clusters network” and represents the case where there are several identical 
clusters in the network which are each tightly interconnected within themselves, but only loosely (and symmetri-
cally) connected to each other. This model has four parameters which echo those of the n-split case: n, the number 
of clusters we are to consider in the network; c, the number of nodes in each cluster; x, the number of additional 
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Figure 1.  A schematic overview of versatility. A stochastic community detection algorithm is run many 
times, generating a collection of graph partitions. Each pair of nodes corresponds to a cell in the association 
matrix, which describes the sample probability that any two nodes will be grouped in the same community. A 
transformation function is applied to this matrix, so that pairs of nodes that are consistently grouped either in 
the same community or in a different community are given low values, and pairs which are only sometimes in 
the same community are given high values. The sum is taken for each node’s possible pairs, and normalised by 
the mean size of the communities weighted by the node’s community membership. The resulting normalised 
sum is the node’s versatility.

Figure 2.  Test networks for evaluation of candidate versatility metrics. (A) The n-split case. An indicator node 
(coloured darker) can be affiliated with exactly one of the n clusters with probability 1/n. (B) The n-clusters case. 
There are n clusters each with a probability p of connecting to any other given cluster. The indicator node is a 
member of one of these clusters which is weakly connected to other clusters. In both cases clusters are of size c, 
and these cases are assumed to be a part of a larger network, with x other nodes.
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nodes in the network that change the total network size but are assumed to not affect the community detection; 
and p, the probability that, in any given run of an ideal community detection algorithm, any two clusters will be 
grouped in the same community. The indicator node is taken to be an arbitrary node in an arbitrary cluster, which 
are assumed to have identical properties due to symmetry. The indicator node is connected to a cluster with a 
total of c nodes, and this indicator cluster is connected with probability p to n − 1 other clusters each of size c. In 
any given run of an ideal community detection algorithm, the indicator cluster can be assigned its own unique 
community or it can be affiliated to a larger community also comprising one or more of the other clusters, each 
with probability p. Thus the indicator cluster will be affiliated to the same community as at least one other clus-
ter with probability 1 − (1 − p)n, and it will be affiliated to the same community as all of the other clusters with 
probability pn.

It is important to note that these networks are strictly theoretical. It is unknown whether any given community 
detection algorithm would actually exhibit the partitions described above. For example, in practice, the Louvain 
algorithm behaves deterministically in the n-split case, preferring always to affiliate the indicator node with the 
same community based on the algorithmic bias caused by the order of the adjacency matrix. However, the behav-
iours described above are what we would expect if the model networks were decomposed into a community 
structure by a stochastic community detection algorithm which exhibits the idealised behaviours described in 
conjunction with each network.

Desirable properties of versatility metrics.  In this context, we can list the key desirable properties of a versatility 
metric as follows:

Lower bound: Versatility should be bounded below by 0.
�Upper bound as network size→∞: A universal upper bound on versatility should exist regardless of network 
size.
�Degree invariance: The degree of a node, or the number of connections it makes, should not directly affect 
its versatility.
n-split zero: If the number of clusters n = 1 in the n-split network, the versatility of the indicator node is 0.
�n-cluster zero: If the probability of being grouped with another cluster p = 0 or 1 in the n-cluster network, the 
versatility of the indicator node is 0.
�Network size invariance: Versatility is unaffected by the total number of nodes in the network, represented by 
x in both the n-split and n-cluster networks.
�n-split cluster size monotonicity: Versatility is an increasing function of the number of nodes per cluster c 
in the n-split network.
�n-cluster cluster size invariance: Versatility is unaffected by the number of nodes per cluster c in the n-cluster 
network.
�Cluster number monotonicity: Versatility is an increasing function of the number of clusters n in both 
networks.
�Splitting over breaking: All else being equal, a node probabilistically connected to two communities should 
have higher versatility than a node in a cluster that is probabilistically contained within the same community 
as other clusters. So for otherwise equal networks, the n-split case should result in higher versatility than the 
n-cluster case.

Candidate versatility metrics.  We evaluated six candidate versatility metrics that were expected to be reasonably 
well-behaved. They followed the general form
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where a(i, j) is a stochastic function that measures whether nodes i and j are in the same community; g : {1, 2, …, 
N} → (0, ∞) is a normalisation function for a network with N nodes;  is the expected value; and f : [0, 1] → [0, 1] 
is any continuous, concave function that has the values f(0) = 0, f(1) = 0, and f(0.5) = 1, and is symmetric around 
0.5, i.e. f(x) = f(1 − x).

Three functions were chosen for f and two for g, and each was denoted by a capital letter; the six possible 
combinations of f and g, each denoted by a two-letter code, represented the six versatility metrics tested. For f, we 
evaluated the sine function,
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For g, we tried normalising by the number of nodes in the network
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While we could not examine the full space of potential functions f and g, we considered those that seemed 
most natural given the constraints. We did not consider metrics that were normalised by the degree of the node, 
because this breaks the intuition that versatility should depend only on the community classification. We also did 
not explore metrics which depend only on the probability of the indicator node being in the same community as 
its nearest neighbours, rather than all nodes, as these by definition do not satisfy the degree invariance property. 
Such metrics may be more suitable as a community-agnostic version of participation coefficient, rather than 
assessing the degree to which a node affiliates with a community.

Participation coefficient.  Versatility was contrasted with participation coefficient7, because in informal terms, 
both describe the coupling of a node with its community. Participation coefficient tries to measure the intuitive 
property of whether nodes could facilitate communication across separate groups of nodes by having a high 
inter-community degree. It is defined as
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where K is the number of communities, ki is the degree of node i, and ki,s is the intra-community degree of node i.

Performance of candidate metrics.  Each of the 6 candidate versatility metrics was benchmarked by its perfor-
mance in analysis of the two model networks as shown in Table 1, where they are compared to participation 
coefficient (PC).

Normalisation by the size of the network (U) was not effective. None of the metrics SU, EU and TU satisfied the 
desirable property of network size invariance. Thus these metrics were not considered further. The three metrics 
normalised by community size (SC, EC, TC) were much more evenly matched. Because TC only trivially satisfies 
n-split cluster monotonicity, we consider only SC and EC. In practice, SC and EC give nearly identical results in 
all networks for which they have been computed. SC and EC are very similar and would both make good meas-
ures of versatility; however, we select SC for two reasons. First, and most importantly, it has an upper bound. 
Second, it avoids the potential for confusion created by using the formula for Shannon’s entropy, when in fact no 
information-theoretic quantity is involved8. Thus, SC is equivalent to Eq. 1.

While the versatility of any given node depends only on community affiliation and does not depend on the 
size of the network, one intriguing aspect of SC is that the maximum possible versatility a node is capable of 
achieving in a network does depend on the network size. This is due to the fact that increasing the size of the 
network increases the number of nodes that could potentially be in the same community as the indicator node. 
In finite networks with N nodes, we can construct a network which maximises versatility of the indicator node by 
considering an n-split network with clusters of size c = 1, with a total of n = N − 1 clusters and x = 0 extra nodes. 
Supplementary Fig. S2 shows the maximum versatility as a function of network size. Only for networks with 
infinitely many nodes can SC reach its maximum of π (see Supplementary Information for proof).

We elected not to normalise versatility by π because the maximum versatility in any network with a finite num-
ber of nodes will be less than π, with the limit depending on the number of nodes. Thus, it would be misleading to 
imply that the maximum versatility is 1 in a finite-sized network. Furthermore, versatility in the un-normalised 

Metric SU EU TU SC EC TC PC

Lower bound 0 0 0 0 0 0 0

Upper bound as network size →∞ 1 1 1 π ∞ 2 1

Degree invariance ✓ ✓ ✓ ✓ ✓ ✓

n-split zero ✓ ✓ ✓ ✓ ✓ ✓ ✓

Network size invariance ✓ ✓ ✓ ✓

n-split cluster size monitonicity ✓ ✓ ✓ ✓ ✓ ✓ *

n-cluster cluster size invariance ✓ ✓ ✓ ✓ ✓ ✓

n-split cluster number monotonicity ✓ ✓ ✓ †

n-cluster cluster number monotonicity ✓ ✓ ✓ ✓ ✓ ✓ †

Splitting over breaking ✓ ✓ ✓ ✓ ✓ ✓

Table 1.  A list of desirable properties satisfied by each of the algorithms. ✓ Indicates satisfying the property. 
Numeric values are listed where relevant. * Denotes trivially satisfying the monotonicity properties by being 
constant functions. † Denotes that participation coefficient trivially satisfies certain properties due to the lack of 
degree invariance. Upper bounds were found analytically (see Supplementary Information).
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form has other distinctive landmarks. For example, a versatility of 2.0 means that a node is perfectly split between 
two equally-sized communities (as the community size approaches infinity).

We also chose not to normalise versatility by the upper bound given the network size (the curve in 
Supplementary Fig. S2). Doing so would create a dependence on network size, and thus no longer satisfy the 
desirable properties listed above. An additional problem with normalising is that the maximum versatility given 
the network size currently must be calculated numerically, and thus the difficulty of implementing versatility 
would increase. Furthermore, a conceptual problem with normalising by the maximum given the network size is 
that it cannot possibly be as difficult to classify a node in a 2-node network as it is to classify a node in a 1000-node 
network; in the former case there are only two possible partitions for the network, whereas in the latter there are 
approximately 101927 (the 1000th Bell number).

Thus, due to the desirable properties of SC, the definition of versatility is as given in Eq. 1.

Results
Versatility can find optimal modular resolution parameters.  Initially, Girvan and Newman’s Q mod-
ularity did not include a resolution parameter6; only later was such a parameter γ added to search for community 
structure across a range of community sizes, from a few large communities (low γ) to a larger number of smaller 
communities (high γ)9. As a result, Q values are highly dependent on the resolution parameter, not just in terms 
of the network topology, but also in terms of the expected magnitude of Q for highly modular networks10. Thus, 
directly maximising Q across values of γ will not provide insight into the structure of the network, making it 
difficult to use Q as an objective function to determine an “optimal” resolution of the hierarchical community 
structure or value of γ.

By contrast, a network’s mean nodal versatility depends only on how consistently the nodes in the network 
affiliate with a specific community. Thus, we could define an “optimal” value of γ as one for which the versatil-
ity is lowest, or for which the community structure of the network is least ambiguously defined. The proposed 
versatility-based procedure provides information about the effectiveness of different resolution parameters allow-
ing the experimenter to make a principled choice.

When the global mean versatility is plotted at each value of γ within a reasonable range, it varies as a func-
tion of the resolution parameter and there are typically one or more values of γ corresponding to local minima 
in global mean versatility. At the extremes of the curve, the versatility will be zero, as these represent the cases 
of either a single community encompassing the entire network, or each node in the network being in a separate 
community. While these parameter ranges are the global minimum of versatility, they are not desirable because 
they do not take into account the purpose of the community decomposition itself, i.e. to find useful communities.

In order to balance practical considerations with a principled method of using the versatility curve to select 
optimal γ, one of several approaches may be taken. One can choose the value of γ which globally minimises the 
ambiguity in modular classification among those values of γ which generate non-trivial community structure. In 
other words, this finds a community structure which maximises the ability of the algorithm to assign nodes to 
communities. One can also choose the value of γ within a range of resolution parameters that gives a theoretically 
expected number of communities, or which satisfy another practical requirement. For instance, in brain networks 
where multiple modalities can be used to define different networks in the same subject11, it may be most useful to 
find equal numbers of communities in each subject to compare across modalities. Additionally, many networks 
exhibit a region of γ values for which versatility is consistently low across many nearby resolution parameters. 
Even if it does not globally minimise versatility, this scheme prioritises the stability of the mean versatility across 
small perturbations in resolution parameter.

Recent work12–14 has used the number of communities as a proxy, but this method assumes that nodes change 
community membership only when the number of communities changes; indeed, versatility allows for a more 
precise selection of resolution parameter (Supplementary Fig. S3). Others have used the z-score of the Rand coef-
ficient10, 15, which provides similar resolution parameter suggestions as versatility in some cases (Supplementary 
Fig. S4). However, it does not provide information on which nodes are driving this change.

The important point is that the global mean versatility curve provides an objective function to guide the other-
wise unrestricted and unprincipled choice of resolution parameters often corresponding to different community 
structures. By understanding which resolution parameters minimise ambiguity, we can make a more informed 
and precise selection.

Evaluation on the karate club network.  Zachary’s karate club graph16 is a non-trivial benchmark and 
standard test case for community detection algorithms. This network represents friendships in a university karate 
club before a political conflict caused the club to split into two: members of the club are nodes and friendships 
between members are edges. Most community detection algorithms are able to find two distinct groups of indi-
viduals in the club which correspond to the two political factions in the club after the split. However, there is 
one individual who has exactly one friendship on one side of the split and one friendship on the other side. 
Community detection algorithms are forced to assign this individual node to only one of the two communities.

As we see in Fig. 3A, most of the nodes have low versatility, except the individual with one friendship in 
each of the communities. Nodes that are connected to only one group cleanly sort into their respective faction. 
Versatility distinguishes itself from participation coefficient shown in Fig. 3B by only holding a high value for the 
nodes which could be classified into either community by the algorithm. Participation coefficient, by contrast, 
highlights the degree to which a node is an inter-community hub. We might expect the individuals with high 
participation coefficients to make effective mediators in this conflict or to be ambassadors between the factions. 
By contrast, we would expect the individual with high versatility to have a difficult decision on which of these two 
clubs to join after the split occurred. This exemplifies an important difference between participation coefficient 
and versatility.
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When we look at the curve of versatility across different resolution parameters γ in Fig. 3C, we see versatility 
is near-zero around γ = 0.5. This happens to be a parameter which divides the network into two communities, 
consistent with the prior knowledge that this social network was indeed divided into two communities17.

Mouse connectome.  With recent advances in biotechnology, it has become possible to use graph theory 
based techniques to study the brain11. Such work has shown promise in helping us understand concepts rang-
ing from locomotion in model organisms18 to diseases as complex as schizophrenia19. Since the brain has long 
been hypothesised to function as a set of semi-independent modules20, and the communities of brain networks 
obtained using graph theory have anatomical and functional significance21, it is only natural to talk about brain 
modules as communities in brain networks22.

While there are many ways to find which regions of the mammalian brain are connected, one of the most reli-
able ways is by injecting a fluorescent viral tracer into a source region of the brain. In the days following injection 
an anterograde viral tracer travels along the axons of neurons projecting from the source region to anatomically 
connected target regions. By measuring the strength of the fluorescent tracer in high resolution microscopic 
images of the injected animal’s brain, it is possible to quantify the weight of anatomical connectivity from a source 
region to each possible target region. When this experiment is performed in many different mice, with different 
source regions injected in different experiments, the complete anatomical connectivity matrix or connectome of 
the mouse brain can be estimated23.

A weighted, directed network was constructed from 112 brain regions of the mouse brain connectome derived 
from over 400 of such tract-tracing experiments conducted by the Allen Institute for Brain Sciences23, as previ-
ously described14.

The communities of this network were found after using versatility to choose an optimised resolution param-
eter (γ = 2.0) and are displayed in anatomical coordinates in Fig. 4B. At this resolution parameter, there are 11 
modules across the two hemispheres with similar specialisations to those found previously14. Rather than select 
the resolution parameter corresponding to the global minimum of versatility across non-trivial partitions, we 
selected a value which had consistently low versatility across local perturbations in resolution parameter. The 
anatomical map of versatility is shown in Fig. 4A. Figure 4D shows the topology of the network, and demonstrates 
that there are versatile nodes in all communities; versatility is not concentrated in a few communities.

This network was previously found14 to have a hierarchical community structure, such that a few large 
functionally specialised communities were subdivided into smaller sub-communities as the resolution 
parameter of the Louvain community detection algorithm was incrementally increased. This means that 
small, fine-scale modules were associated with larger, coarse-grained modules. For example, at fine scales 
(with higher resolution parameters), the auditory and visual modules were separate, but at higher scales 
(with a lower resolution parameter) they combined to form the audio-visual module. Most nodes were con-
sistently affiliated to the same community, or one of its offspring sub-communities, over the spectrum of 
resolution parameters. However, a subset of nodes which also tended to have high participation coefficient 
(which have previously been coined hi-par nodes14) were inconsistently affiliated to (sub−) communities 
in this hierarchy.

Due to the similarity between the criteria for hi-par nodes and the definition of versatility, we hypothesised 
that the hi-par nodes would have a higher versatility than the non-hi par nodes. As shown in Fig. 4F, versatility is 
significantly higher for hi-par nodes than it is for non–hi-par nodes; in other words, nodes with high versatility do 
not fit well into the community hierarchy. This includes nodes in the diencephalon, prefrontal cortex, and basal 
ganglia; see Supplementary Fig. S5 and Supplementary Table S1 for details.

Figure 3.  Versatility in the karate club network. (A) The versatility in Zachary’s karate club network is 
compared to (B) the participation coefficient in the same network, where the size of the node represents 
the versatility or the participation coefficient, respectively. Versatility is only high for the nodes in between 
communities, whereas participation coefficient is also high for the hubs since they tend to have more edges into 
the other community. The node with very high versatility has exactly one edge in each community. Nodes are 
coloured according to their community with a resolution parameter of 0.5, which is shown in (C) to minimise 
the mean versatility, i.e. providing the most stable communities. Participation coefficient in (B) was also 
calculated according to this partition structure. We know a priori that this club split from one group into two 
factions, and indeed this range of resolution parameter gives two communities. Error bars represent SEM.
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Discussion
In a world where community structure is not as black and white as it promises to be, more information than a dis-
crete partition is needed. Community detection algorithms struggle to find a set of non-overlapping communities 
that adequately represent the community affiliations of the nodes in the network. Furthermore, it is not even clear 
epistemologically that there is a reasonable underlying community structure to any given network; at the extreme 
end, there is certainly no community structure to an Erdős–Rényi random network, though many algorithms will 
still yield communities. This is problematic when some of the analyses performed on networks depend highly 
on the community affiliation of a node, such as the dynamic community structure metrics24, 25. This complicates 
analysis, especially when the change in a node’s community affiliation is the variable of interest.

Rather than seeing this stochasticity as a disadvantage, we used it to define a metric called versatility, which 
extracts previously discarded information about which nodes are not closely affiliated with any communities. We 
showed that, while there are many realistic ways to define versatility, our definition (SC) satisfies a number of 
desirable theoretical properties. In order to ensure compatibility across different situations, fields, and datasets, 
we explicitly designed versatility to not depend on a specific community detection algorithm, since an algo-
rithm may be chosen for any number of reasons, from computational efficiency to consistency with the literature. 
Versatility also has connections to fuzzy set theory (see Supplementary Information for more details).

We explored how versatility can be used to choose a resolution parameter for multiscale community detection 
algorithms based on how much each parameter reduces the ambiguity of the community structure. There is sel-
dom a “correct” resolution parameter because there is seldom a “correct” modular decomposition, and thus there 
is no possible algorithmic or data driven method which can be used to identify the most meaningful resolution 
parameter. Instead, versatility can be used to inform the selection of a resolution parameter. Newman26 recently 
developed a theoretical formulation of an optimal resolution parameter for Q-based algorithms, but the proposed 
iterative procedure only identifies a single resolution parameter estimate without providing information on its 
effectiveness or on alternative similarly-effective resolution parameters. We showed that versatility provides a 
more precise choice in resolution parameter than methods which select a resolution parameter based on the num-
ber of communities12–14. We also showed that the z-score of the Rand coefficient10, 15, while similar to versatility in 
some cases, cannot be interpreted on the nodal level.

Finally, we examined the versatility of nodes in two networks: the karate club network, and the mouse brain 
connectome. The karate club network and the mouse brain connectome were both consistent with previous work 
describing the nodes that do not fit well into any of the modular communities.

Versatility has two core applications for which it is useful. First when used in conjunction with a particu-
lar community structure, it is useful as a post-hoc method to capture the information about the reliability of 

Figure 4.  Versatility in the mouse connectome. (A) The versatility of each region in the mouse brain, plotted 
anatomically. (B) An example classification of the communities in mouse at an optimal resolution parameter, 
determined using the curve shown in (C). Error bars represent SEM. (D) A topological view of the mouse 
connectome. Nodes are coloured by community using the colour scheme from (B). The mean versatility is given 
by the size of the node. (E) Versatility is related to inter-community weight and intra-community weight. Highly 
versatile nodes have low intra-community weight and high inter-community weight. Versatility, indicated 
by colour, is the mean versatility across resolution parameters. Colours correspond to the colour bar in (A). 
(F) Versatility is plotted against participation coefficient, where participation was computed at the resolution 
parameter from (C). Previous work14 identified several nodes which they called “hi-par” nodes (meaning “high 
participation”), which are coloured black. The mean versatility of the hi-par nodes is significantly (Wilcoxon-
Mann-Whitney p < 0.001) different from the non–hi-par nodes.
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community assignment. In this sense, versatility can be seen as a description of the interaction between the 
algorithm and the network. When using versatility in this way, it is generally desirable to match the algorithm 
(and the resolution parameter, if applicable) to the network being analysed so that it is possible to determine the 
reliability with which the information on partition assignment can be interpreted. Second, it is useful in its own 
right, as a way of finding nodes that do not fit very well with any community. In many cases, these nodes are the 
most interesting because their interactions are not representative of the community to which they belong, and no 
community is a good predictor of their interactions. The interpretation of versatility in this case is highly depend-
ent on the particular network.

While the Louvain method for maximising modularity was used extensively in the present work due to its 
prevalence in the literature, versatility can be applied to any stochastic algorithm which generates a partition 
across a network. Unlike most community-based methods, versatility is not limited to communities defined 
by strong intra-modular connections and weak inter-modular connections. For example, recent work13, 27 has 
defined communities based on the similarity between motif profiles. Under these definitions, it is possible for 
a community to have no intra-community edges. In such community definitions, versatility works identically 
without modification.

Unlike most other community-based methods, versatility does not depend on the naming or identity of par-
ticular partitions. Participation coefficient and versatility share superficial similarities but are conceptually very 
different. Participation coefficient is highly dependent on the particular partition specified by the community 
detection algorithm, and can often give unintuitive results. This is because participation coefficient relies on the 
assumptions that “true” underlying communities exist, and that they can be detected by the algorithm. If either of 
these conditions does not hold, the participation coefficient is difficult to interpret. Participation coefficient was 
designed for a different purpose—detecting which nodes are important for inter-community communication and 
linkage—and is able to find inter-community hubs and distinguish them from intra-community hubs7. However, 
it is not successful in uncovering the certainty with which each node can be assigned to a community.

For similar reasons, multi-layer network methods—such as flexibility24 and promiscuity28—are not well-suited 
for analysis of single-layer networks. A multi-layer network is an ordered sequence of standard networks (layers) 
whereby each layer has the same nodes but potentially different edges. A key feature of multi-layer community 
detection is that community identity is preserved across multiple layers of the network, so that it is possible to (for 
example) say that node x is in community A in the first two layers, and then moves to community B in the third 
layer. In order to ensure communities persist across layers, multi-layer community detection algorithms must 
either optimise the modularity for the entire network at once, treating each node separately and enforcing links 
between identical nodes in different layers, or run a community detection algorithm on each layer separately and 
match the communities across layers. In the former case, this enforcement causes less variability in the commu-
nity assignment between layers. In the latter case, there is no unambiguous way to deal with communities which 
split into two.

In the words of Kuhn29, “The decision to employ a particular piece of apparatus and to use it in a particular 
way carries an assumption that only certain sorts of circumstances will arise”. Because we have access to algo-
rithms that will separate a network into communities, it is easy to assume that the communities found using these 
algorithms are “the true underlying communities” and that these communities should be taken as truth in the 
further analysis of the network. But of course, as we have seen, some assignments may have more truth to them 
than others.
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