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ABSTRACT

RNA sequencing (RNA-Seq) enables the measurement and comparison of gene expres-
sion with isoform-level quantification. Differences in the effect of each isoform may
make traditional methods, which aggregate isoforms, ineffective. Here, we introduce a
variance component-based test that can jointly test multiple isoforms of one gene to
identify differentially expressed (DE) genes, especially those with isoforms that have
differential effects. We model isoform-level expression data from RNA-Seq using a
negative binomial distribution and consider the baseline abundance of isoforms and
their effects as two random terms. Our approach tests the global null hypothesis of no
difference in any of the isoforms. The null distribution of the derived score statistic
is investigated using empirical and theoretical methods. The results of simulations
suggest that the performance of the proposed set test is superior to that of traditional
algorithms and almost reaches optimal power when the variance of covariates is large.
This method is also applied to analyze real data. Our algorithm, as a supplement to
traditional algorithms, is superior at selecting DE genes with sparse or opposite effects
for isoforms.

Subjects Bioinformatics, Statistics

Keywords RNA-seq, Differentially expressed (DE), Generalized mixed linear model (GLMM)),
Variance component test (VCT)

INTRODUCTION

The availability of massively parallel transcriptome sequencing technology has improved
our understanding of the central dogma processes of transcription and translation and the
molecular mechanisms of complex diseases (Koboldt et al., 2013; Modelska, Quattrone ¢ Re,
2015; Wang, Gerstein & Snyder, 2009). RNA sequencing (RNA-Seq) has shown that coding
genes are stochastically spliced into different transcripts (called isoforms), including partial
exons or selected exons (Kalsotra ¢ Cooper, 2011; Kanitz et al., 2015; Oshlack, Robinson ¢
Young, 2010; Pan et al., 2008). This process is referred to as alternative splicing (AS). The
different sequence characteristics of isoforms may exhibit different expression patterns, and
these differences further influence the translation of proteins and affect cellular phenotypes
(Li et al., 2014).

The elementary problem of transcriptomic data analysis is accurate identification of
differentially expressed (DE) genes (Garber et al., 2011). Emerging software packages
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and pipelines for such analyses have been designed and developed, including methods
that rely on gene-level measurement, such as DESeq, edgeR and the two-stage passion
model (TSPM), and others based on isoform-level measurements, such as Cuffdiff2,
IsoDE and EBSeq (Al Seesi et al., 2014; Anders & Huber, 2010; Lehmann et al., 2011; Li ¢
Tibshirani, 2013; Robinson, McCarthy & Smyth, 2010; Trapnell et al., 2013). The gene-level
quantification methods assume that the sum of isoform expression levels constitutes the
expression of one gene, which may ignore the variability of different transcripts (Trapnell
et al., 2013; Trapnell et al., 2010). Thus, the development of a method for considering
isoform-level measurements is of increasing importance. For example, considering
both the splicing structure and expression levels of isoforms, Cuffdiff2 uses the beta
negative binomial distribution to define DE isoforms (Trapnell et al., 2013). Unfortunately,
testing for individual isoforms separately neglects the relationships between each isoform
(Dialsingh, Austin & Altman, 2015).

Currently, the idea of a set test, which supposes that some related variables form one
set and tests the set, likely overcomes the drawbacks of gene-level measurement methods
and the disadvantage of testing isoforms individually. The theoretical basis is that the score
statistic of the variance component in a generalized linear mixed model (GLMM) follows
the mixture chi-squared distribution with the null hypothesis (Lin, 1997). The sequencing
kernel association test (SKAT), a popular algorithm in genome-wide association studies
(GWASs), assumes that the effects of each locus are in the same functional region as random
effects and uses the score statistics to test the set (Wu ef al., 2011). Since the estimation
process is under the null hypothesis, this method reduces computation time. The test
for the effect of gene set (TEGS), which regresses gene expression against phenotypes,
is widely used to select DE genes in a microarray platform. The random effect and the
residual error of the model are due to the disease effect and the correlation between genes,
respectively (Huang & Lin, 2013). The set test is effectively applied to analyze other types
of high-dimensional genomic data (lonita-Laza et al., 2013; Wu et al., 2016).

Considering the disadvantages of traditional algorithms in selecting heterogeneous genes
and the accessibility of the set test, we apply the idea of the set test to identify DE genes
in isoform-level measurements. This study involved three parts. First, the relationship
between the expression level of one gene and the phenotype is formulated as a GLMM with
the assumption of a Poisson and negative binomial (NB) distribution. Second, we study
the empirical and theoretical distributions of score statistics and measure their statistical
performance for different parameter settings. Third, we analyze level 3 mRNA-Seq data
on lung squamous cell carcinoma (LUSC) from The Cancer Genome Atlas (TCGA).
Comparisons with traditional algorithms are described in the ‘Simulations’ and ‘Real
data analysis’.

METHODS
Model

Assume that there are N'subjects in the studied sample, and suppose that for all individuals
there is one sequenced gene with p isoforms. For the ith individual, Y;1, Y;, ..., Y, denotes
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the RNA-seq data of one gene. The vector Y is assumed as a Poisson or NB distribution.
With the assumption of independent samples, x; is the covariate of individual i. For
example, its value is 0 or 1 in a case-control study. We assume aj to be a random term
that follows a normal distribution. Its variance represents the heterogeneity of the baseline
abundance of the isoforms. This distinct assumption is the difference between gene-level
measurement methods and isoform-level measurement methods. The disease effect is also
defined as a random effect. Based on the above assumptions, a GLMM of two random
terms is constructed as follows:

g(E(Yy))=n+aj+Bjxi, i=1,...,.Nandj=1,....p

where g (.) is a monotonic differentiable link function, such as g (x) =log(x) for the Poisson
regression. If x; is equal to zero in a case-control study, i +«; indicates the expression of
the jth isoform in the control group, and f; indicates the disease effect.

The matrix form is written as follows:

g(E(Y)) =pn+Ka+Xp

Y= (YIT,YzT,...,YIE)T is an N x p vector consisting of N Y; vectors (Y; =
(Ya, Yo, ...,Yip)T). w is also an N X p vector, in which all elements are u-K= (Ip, ...,IP)T

is an Np x p matrix in which I, is the p-dimensional identity matrix, o = (al,az, s oep) ,

X= (xllp,lep,...,xNIp)T, and B: (ﬂl,ﬂz,...,ﬂp)T.

Theoretical null distributions of statistics
In fact, the test of the disease effect is performed to test the variance component of the
second random effect. As the basic assumption of mixed models, the third term in the
above equation follows a normal distribution (f ~ N (O, r2Ip)) (Gad & El Kholy, 2012).
Therefore, the test of f equals the test of its variance component 7. The final null hypothesis
(Hp) of the model is written as T = 0. The idea of a score test is used to test T. Based on
the theory of score statistics in a GLMM and the special assumption of this model, the null
distribution and parameter estimation of the statistic U is as follows:

First, the matrix form of the first order derivate of the log-likelihood is as follows:

d(a,7) 1
it 2

where A~!, W and W, are block diagonal matrixes, and W = E (Wy). Each block of the three

matrices is a diagonal matrix whose diagonal elements are similar. Assuming y; =E (yi),

(Y —p—Ka)" AT'WXXT A™'W(Y — p— Ka) — tr (WoXX"))

their diagonal elements are §; = 1/¢' (i), w; = V()/l-)fléi2 and wo; =w; +¢; (yi — yi), where

e = (V/ g W +V g ()/i)> / <V2 (g’ (yi))3). With different variances and the
same link function, A~! of Poisson and NB distribution is the same, but W and W, are
different. For the Poisson assumption, the product of A vand W is an identity matrix,
and W = W, For the NB assumption, we take the product of A™! and W as ®, which has
diagonal elements of 1/ (14 ¢y;) . ¢ is the scale parameter of an NB. The diagonal elements
of the block of Wy are wo; = i/ (1 +¢vi) + (¢yi (vi— i) / A+ d1i)*.
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Second, the statistic U depends on the first derivate of the log-likelihood function. The
formula for the U statistic depends on an assumption. Under the Poisson assumption, U
is equal to Upyis = %((Y—g_l (+Ka)) XXT (Y=g~ (2 +Kd)) — tr (WXXT)), while
under the NB assumption, U is formulated as Unp = % ((Y— gt +Ko?))Tq3XXTCf>
(Y —-gta+ Ko?)) —tr (WOXXT)). We estimate (i and ¢ of the model under Hy.

Third, the chi-square statistic is shown as y2 = UT(o?)_lU. The formula of the
information matrix is as follows:

[=1I — Il e

where I;; = E(g—i g—i) Iz =E (8—a g’—) Iz = (% %), and @ = (u,«). Then, the formula

is rewritten as follows:
g(E(Y) =Ka+Xp

where K = (p,.. Ip_( ,Ip).
Finally, suppose A =K K with a diagonal element of aj;. a;; consists of a vector, denoted

as a. Let Ky, k3; and ky; be the cumulants of Y;. With the assumption of an exponential
family of distributions, the relationships between the three cumulants are as follows:

K21 =V (Vi)
K3 =V (¥)V (vi)
K3i = (V” )V (yi)+ (V/(Vi))2> V(i)

Let R € RNP*NP be a block diagonal matrix. In each block, the diagonal elements and
non-diagonal elements are calculated as rJ = w48 Kai +2w + e Ko — 2W1-251-_ 2eikc3i and
r] =2w;wy,i# 1, respectively. C € RN? XNP is composed of a p diagonal matrix, C/, whose
diagonal elements are c’ = W48 K3; —|—2w + e K2 — 2wi28i_ 2eiic3i. Then, the elements of
the information matrix are as follows:

1 1~ ~ ~
= ZIT (ARA)), Iz, = EKca“, Liz = KT'WK

where J is an Np vector, and its elements are 1. The difference in variances leads to different
expressions for R and C. For the Poisson assumption, the diagonal and off-diagonal
elements of R are rl’l =yi+2y7 and ry=2yy;i £1, respectively. The diagonal elements
of C are cl. = y;. For the NB assumption, the diagonal and off-diagonal elements of R are

_ 243y Hvio+ vty e Vi Vi
= e ¢)3 and ry =25 8 T ¢,1 £1, respectively. The diagonal elements
of C are c’ = M
(1+r7¢)”

Empirical distribution of statistics
The permutation algorithm generates the empirical distribution. The two different
assumptions cause different score statistics. For the Poisson assumption, the statistic

is Upois = %((Y—g_l (A +Ka)) XXT (Y—g~' (4 +Ka)) —tr (WXXT)>. For the NB
assumption, the statistic is equal to Unp = %((Y— g ! (ﬂ+Kd))Té>XXT<f>(Y —-g!
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(hL+Ka))— tr(WoXXT)>. The hypothesis testing of U follows two steps: (a) construction
of the empirical distribution by shuffling the label and (b) calculation of the P value of
the original statistic U. The estimation of p and « is similar to the above. To improve
robustness, the default setting of the number of permutations is 5,000.

Simulations

We perform simulations to examine the type I error and power of the proposed score
statistics, U, for identifying differential expression under a range of scenarios. The parameter
settings are based on the analysis of real data and references (Lehmann et al., 2011). We
assume that the RNA-Seq data follow NB and Poisson distributions. Five parameters are
involved: the variance of a (s), the variance of the disease effect (1), the number of isoforms
(p), the logarithm of expression levels (exp (M )) and the dispersion parameter (d). s shows
the heterogeneity of the baseline abundance of each isoform. [ refers to the heterogeneity of
the disease effect. The other three parameters describe the characteristics of the expression
levels. The variance of a varies from 0.25 to 1.75 in steps of 0.75. The variance of § varies
from 0.20 to 1.00 in steps of 0.4. The number of isoforms can be 2, 4 or 8. d is set at 0.5 or
2. We let exp (M) be 2.5 or 5. The sample size is fixed at 40. In the type I error simulations,
the effect size is set to zero (I =0).

We compare our approach with three traditional algorithms: DESeq, edgeR and TSPM
(Anders & Huber, 2010; Lehmann et al., 2011; Robinson, McCarthy ¢ Smyth, 2010). The
sum of isoforms is assumed to represent the expression level of one gene in these methods.
Therefore, the loop number is the gene number in simulations. When [ is equal to 0, the
proportion of significant genes is the false positive rate.

Real data analysis

We download the LUSC Batch 101 mRNA sequencing data from TCGA (Network, 2012).
The sample size is 12 for the case-control traits. The number of genes is 20,533. Each sample
has four files: gene expression, normalized gene expression, isoform expression and normalized
isoform expression. We only used the gene expression and isoform expression datasets. These
data are attached as File S1. To utilize the advantages of isoVCT, the candidate genes are the
genes showing a higher expression level than the total sample, with isoforms that exhibit

heterogeneous effect sizes. Finally, we select 6,134 genes.

Software and algorithms

This algorithm is completed using the Microsoft R Open (v3.3.0; Microsoft Corp., Seattle,
WA, USA). The functions glmer and glmer.nb in the Ime4 package fit the mixed models
in our algorithm. The function ginv in the MASS package is employed to calculate the
generalized inverse of the singular matrix. The packages DESeq and edgeR are both from
Bioconductor. In consideration of the potential computing time of the simulations, the
doParallel package is used for parallel computation.

This algorithm provides self-adaptation for real data analysis. If the fitness of the NB
assumption fails or the dispersion parameter is close to one, the Poisson assumption is
used. Due to the application of the idea of the variance component test, our method is
referred to isoVCT. The distribution of the score test statistic is fitted via theoretical and
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Table 1 The typeI error rate of five algorithms in NB assumptions.

M s p ¢=2 $=0.5
The Emp DESeq edgeR TSPM The Emp DESeq edgeR TSPM
2.5 0.20 2 0.034 0.056 0.033 0.053 0.051 0.029 0.049 0.044 0.068 0.062
4 0.024 0.049 0.041 0.056 0.053 0.031 0.051 0.033 0.051 0.050
8 0.020 0.049 0.034 0.047 0.045 0.020 0.063 0.037 0.060 0.052
0.60 2 0.022 0.053 0.041 0.059 0.057 0.013 0.039 0.047 0.058 0.052
4 0.014 0.048 0.035 0.055 0.051 0.024 0.051 0.041 0.064 0.049
8 0.010 0.056 0.037 0.057 0.050 0.013 0.047 0.036 0.045 0.043
1.00 2 0.024 0.049 0.033 0.050 0.047 0.032 0.050 0.034 0.050 0.059
4 0.019 0.048 0.041 0.060 0.052 0.019 0.058 0.038 0.057 0.054
8 0.007 0.042 0.036 0.061 0.055 0.000 0.045 0.029 0.051 0.045
5.0 0.20 2 0.029 0.046 0.043 0.056 0.051 0.019 0.071 0.050 0.070 0.059
4 0.010 0.052 0.042 0.062 0.057 0.000 0.044 0.036 0.062 0.054
8 0.011 0.052 0.051 0.065 0.059 0.000 0.056 0.047 0.055 0.055
0.60 2 0.024 0.056 0.044 0.057 0.054 0.002 0.033 0.028 0.045 0.041
4 0.006 0.056 0.048 0.070 0.059 0.000 0.050 0.046 0.060 0.058
8 0.014 0.050 0.038 0.061 0.054 0.000 0.059 0.032 0.047 0.039
1.00 2 0.021 0.046 0.032 0.052 0.044 0.000 0.049 0.038 0.053 0.045
4 0.010 0.053 0.038 0.061 0.047 0.000 0.045 0.046 0.062 0.053
8 0.019 0.046 0.038 0.060 0.052 0.000 0.057 0.043 0.067 0.059

empirical methods, which we term isoVCT-The and isoVCT-Emp, respectively. The R

program of isoVCT and the simulation code are attached as File 52.

RESULTS

Simulations with the NB assumption

The results for the empirical type I error for the NB assumption are shown in Table 1 and

Fig. 1. 5,1 and p may be unrelated to type I error rates, but ¢ may show an inverse correlation

to the type I error rate. isoVCT-The is exactly conservative in specific scenarios. The type

I error rate of isoVCT-Emp is close to 0.05, which might mean that the permutation can

fit the distribution of U in a small sample size setting. DESeq can control type I errors;

however, the type I error rates of edgeR and TSPM are both dispersed, especially when

¢ = 0.5. Generally, isoVCT can control type I error rates around the nominal level for the

NB assumption.

The results regarding empirical power for the NB assumption are shown in Tables 2, 3

and Fig. 2. Three findings of this analysis are as follows: (a) M exhibits a positive correlation

with power; (b) p and s exhibit a negative correlation with power; and (c) [ also exhibits

a positive correlation with power, but its increase is much sharper than those of p and

M. Our results show that isoVCT-Emp is more advantageous than traditional methods,

especially when the effect size is small and the effect heterogeneity is large.
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Figure 1 Plots of type I error of five algorithms in NB assumption. (A) The parameter setting is mu = 5
and phi = 2. (B) The parameter setting is mu = 5 and phi = 0.5.
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Table2 The power of five algorithms in NB assumptions (exp(M) = 5).

1 s 4 ¢=2 $=0.5
The Emp DESeq edgeR TSPM The Emp DESeq edgeR TSPM
0.2 0.25 2 0.057 0.182 0.124 0.127 0.141 0.018 0.089 0.065 0.080 0.083
4 0.029 0.277 0.139 0.096 0.151 0.000 0.109 0.071 0.087 0.079
8 0.020 0.391 0.130 0.103 0.144 0.000 0.129 0.058 0.074 0.065
1.00 2 0.031 0.186 0.130 0.104 0.148 0.005 0.065 0.063 0.091 0.073
4 0.029 0.243 0.123 0.090 0.142 0.000 0.095 0.059 0.092 0.077
8 0.010 0.349 0.119 0.105 0.140 0.000 0.105 0.065 0.108 0.080
1.75 2 0.039 0.167 0.116 0.116 0.141 0.002 0.069 0.069 0.095 0.085
4 0.021 0.228 0.119 0.109 0.133 0.000 0.094 0.067 0.107 0.093
8 0.010 0.323 0.120 0.100 0.141 0.000 0.106 0.070 0.119 0.083
0.6 0.25 2 0.518 0.691 0.461 0.490 0.490 0.144 0.394 0.258 0.290 0.260
4 0.390 0.890 0.465 0.482 0.475 0.011 0.530 0.219 0.256 0.242
8 0.107 0.980 0.459 0.482 0.468 0.000 0.734 0.244 0.275 0.247
1.00 2 0.420 0.640 0.447 0.488 0.481 0.059 0.285 0.233 0.278 0.247
4 0.286 0.876 0.470 0.506 0.525 0.002 0.410 0.212 0.265 0.241
8 0.045 0.981 0.483 0.520 0.503 0.000 0.631 0.209 0.273 0.225
1.75 2 0.400 0.652 0.472 0.503 0.503 0.043 0.269 0.227 0.279 0.248
4 0.241 0.847 0.443 0.487 0.475 0.001 0.417 0.224 0.289 0.252
8 0.030 0.978 0.432 0.480 0.502 0.000 0.591 0.202 0.268 0.233
1.0 0.25 2 0.792 0.882 0.616 0.508 0.617 0.383 0.645 0.367 0.396 0.371
4 0.809 0.979 0.636 0.555 0.648 0.083 0.814 0.393 0.425 0.418
8 0.730 0.999 0.656 0.558 0.648 0.000 0.958 0.397 0.422 0.372
1.00 2 0.709 0.839 0.628 0.555 0.691 0.224 0.529 0.431 0.481 0.447
4 0.729 0.975 0.641 0.546 0.666 0.027 0.727 0.378 0.439 0.439
8 0.579 1.000 0.622 0.544 0.665 0.000 0.920 0.378 0.446 0.405
1.75 2 0.683 0.849 0.656 0.558 0.673 0.203 0.539 0.427 0.482 0.459
4 0.710 0.968 0.633 0.536 0.694 0.015 0.744 0.364 0.433 0.415
8 0.505 1.000 0.627 0.557 0.673 0.000 0.928 0.374 0.437 0.386

Simulations with the Poisson assumption
The results of the type I error and empirical power under the Poisson assumption are

shown in File S3.

Real data analysis
The results of real data analysis are shown in Fig. 3. Only 4,422 genes are fit to the GLMM.
The three traditional algorithms, DESeq, edgeR and TSPM, define 364, 259 and six DE genes,
respectively. The intersection of DESeq and edgeR is 221 genes, representing a high propor-

tion of the DE genes that these algorithms define. TSPM is almost ineffective for these genes.
The results of isoVCT are as follows. First, isoVCT-Emp defines 263 DE genes; of
these genes, isoVCT-Emp specifically selected 242 DE genes, and only a small portion

of these genes is also found by the other algorithms. Second, the DE genes identified by
isoVCT-Emp included those that are identified by isoVCT-The. In general, isoVCT is
superior at selecting heterogeneous genes.
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Table 3 The power of five algorithms in NB assumptions (exp(M) = 2.5).

1 s 4 ¢=2 ¢=0.5
The Emp DESeq edgeR TSPM The Emp DESeq edgeR TSPM
0.2 0.25 2 0.057 0.181 0.110 0.086 0.130 0.014 0.081 0.052 0.071 0.078
4 0.022 0.242 0.113 0.110 0.134 0.000 0.104 0.060 0.084 0.080
8 0.019 0.365 0.111 0.096 0.124 0.000 0.129 0.063 0.084 0.077
1.00 2 0.031 0.143 0.121 0.094 0.142 0.006 0.079 0.072 0.094 0.092
4 0.027 0.208 0.115 0.103 0.141 0.000 0.099 0.069 0.100 0.089
8 0.010 0.309 0.105 0.109 0.127 0.000 0.101 0.058 0.098 0.074
1.75 2 0.029 0.144 0.111 0.090 0.127 0.007 0.073 0.068 0.100 0.092
4 0.020 0.203 0.107 0.091 0.137 0.000 0.086 0.072 0.107 0.085
8 0.010 0.285 0.121 0.103 0.146 0.000 0.087 0.066 0.103 0.073
0.6 0.25 2 0.527 0.705 0.429 0.460 0.452 0.152 0.392 0.210 0.261 0.236
4 0.325 0.864 0.445 0.470 0.452 0.011 0.522 0.210 0.239 0.220
8 0.069 0.978 0.459 0.484 0.465 0.000 0.735 0.218 0.255 0.235
1.00 2 0.357 0.592 0.448 0.473 0.492 0.060 0.300 0.231 0.281 0.272
4 0.208 0.831 0.443 0.478 0.484 0.002 0.400 0.217 0.276 0.245
8 0.020 0.970 0.455 0.494 0.473 0.000 0.614 0.194 0.247 0.217
1.75 2 0.330 0.584 0.449 0.488 0.471 0.034 0.254 0.200 0.245 0.240
4 0.158 0.786 0.445 0.487 0.479 0.001 0.383 0.201 0.259 0.219
8 0.022 0.957 0.441 0.482 0.504 0.000 0.572 0.200 0.283 0.237
1.0 0.25 2 0.760 0.857 0.592 0.512 0.620 0.319 0.625 0.352 0.404 0.386
4 0.773 0.974 0.630 0.525 0.643 0.067 0.822 0.368 0.396 0.375
8 0.589 0.999 0.617 0.532 0.610 0.000 0.957 0.385 0.410 0.360
1.00 2 0.663 0.820 0.650 0.524 0.660 0.180 0.505 0.382 0.432 0.417
4 0.623 0.958 0.610 0.536 0.623 0.024 0.717 0.407 0.463 0.423
8 0.415 0.997 0.634 0.537 0.666 0.000 0.933 0.368 0.442 0.391
1.75 2 0.593 0.791 0.636 0.539 0.658 0.145 0.499 0.389 0.447 0.443
4 0.595 0.9520 0.628 0.518 0.663 0.013 0.716 0.396 0.446 0.426
8 0.345 0.9955 0.623 0.569 0.668 0.000 0.914 0.393 0.454 0.405
DISCUSSION

Here, we propose isoVCT, a variance component score test for testing the coefficients of

covariates to select DE genes. Simulations and real data analysis both suggest that this

method is advantageous in selecting weak effects or heterogeneous genes. The results of

the simulations are discussed from the following two aspects. First, isoVCT controls type I

errors in each setting under any of the distribution assumptions. The type I error rate of the

empirical distribution is almost controlled. However, the type I error rate of isoVCT-The

is strictly controlled, which is likely caused by an inaccurate estimation of the U statistic

in the small sample size setting. The type I error rates of edgeR and TSPM increase in

some settings, especially with the NB assumption (Yang et al., 2015). Second, the power

of isoVCT is higher than that of other methods; furthermore, the strength is evident for

the small / and NB assumption. isoVCT-Emp is superior to other methods in each setting,
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Figure 2 Plots of power of five algorithms in NB assumption. (A) The parameter setting is mu = 5 and
phi = 2. (B) The parameter setting is mu = 5 and phi = 0.5.
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Figure 3 Venn diagrams of different methods in real data analysis. (A) Venn diagram of DESeq,
edgeR, TSPM and isoVCT-Emp of non-normalized data; (B) Venn diagram of DESeq, edgeR, TSPM and
isoVCT-The of non-normalized data.

especially for I = 0.6. The small sample size setting may cause the inverse proportion
between p and the power of isoVCT. Nevertheless, the powers of five algorithms are high
for the Poisson assumption.

In real data analysis, the Venn diagram of DE genes directly indicates the relationships
among the four algorithms. The fact that DESeq and edgeR use the same distribution
assumption and the same idea for testing likely results in the number of intersections
representing a majority of the DE genes identified by these algorithms. TSPM defines the
smallest number of DE genes. However, the use of different ideas leads to the different
result of isoVCT. isoVCT-Emp specifically defines 242 heterogeneous or small effect
size genes. For example, CASP7 and STAT6 are related to LUSC (Dubey ¢ Saini, 2015;
Lee et al., 2009).
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Furthermore, isoVCT exhibits three innovations. First, isoVCT derives the empirical
and theoretical distribution of the variance component score statistics in the framework
of a GLMM and evaluates the performance of score statistics. Second, the random effect
o represents the correlation of isoforms in the framework of the GLMM. Third, isoVCT
further verifies the effectiveness of the set test in RNA-Seq data and supplies a new view of
biological functions with isoform information.

However, isoVCT has some limitations. In the derivation of the score statistic, the
random term « is regarded as a fixed parameter, which may cause isoVCT-The to be
quite conservative. For the NB assumption, the power of isoVCT is very low in some
settings, because the estimation of the dispersion parameter may be biased. The methods
of weighted likelihood and quasi-likelihood likely overcome this drawback in estimating
the NB mixed model (Lund et al., 2012).

In conclusion, isoVCT, a supplement to DESeq or edgeR, is powerful and robust at
selecting small effect and heterogeneous genes.
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