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Abstract

Protein-peptide interactions form an important subset of the total protein interaction network
in the cell and play key roles in signaling and regulatory networks, and in major biological
processes like cellular localization, protein degradation, and immune response. In this work,
we have described the LMDIPred web server, an online resource for generalized prediction
of linear peptide sequences that may bind to three most prevalent and well-studied peptide
recognition modules (PRMs)—SH3, WW and PDZ. We have developed support vector
machine (SVM)-based prediction models that achieved maximum Matthews Correlation
Coefficient (MCC) of 0.85 with an accuracy of 94.55% for SH3, MCC of 0.90 with an accu-
racy of 95.82% for WW, and MCC of 0.83 with an accuracy of 92.29% for PDZ binding pep-
tides. LMDIPred output combines predictions from these SVM models with predictions
using Position-Specific Scoring Matrices (PSSMs) and string-matching methods using
known domain-binding motif instances and regular expressions. All of these methods were
evaluated using a five-fold cross-validation technique on both balanced and unbalanced
datasets, and also validated on independent datasets. LMDIPred aims to provide a prelimi-
nary bioinformatics platform for sequence-based prediction of probable binding sites for
SH3, WW or PDZ domains.

Introduction

Protein-protein interactions (PPIs) are primary regulators of protein functions [1], and a large
number of PPIs are known to be mediated by short contiguous peptide segments, which are
represented as sequence patterns known as Linear Motifs (LMs) [2]. LM peptides are generally
found in intrinsically disordered regions, and act as recognition sites for low-affinity but highly
specific domain-peptide interactions, thus mediating PPIs that are transient, yet critical for
various signaling and regulatory pathways [3]. Peptide-mediated PPIs have been implicated in
several diseases like cancer and some neurodegenerative and genetic disorders [4]. Hence,
identification of such short LM peptide sequences within proteins may be useful in targeting
specific disease-associated domain-peptide interactions for therapeutic modulation [5]. But,
the computational challenge in predicting the occurrence of such peptides is that these
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sequences are too short to generate a statistically significant hit that may distinguish them
from non-functional sites, especially in large protein sequences. Nevertheless, several general-
ized computational methods have been devised by various research groups to aid in the discov-
ery of novel peptide motifs [6-8]. The well-known data repositories that compile known LM
instances, like the Eukaryotic Linear Motif resource (ELM) [9], Minimotif Miner (MnM) [10],
and Scansite [11], also provide web-interfaces for searching the database LMs within query
protein sequences. The iSPOT web tool [12] provides a structure-based approach for predic-
tion of peptides that may bind to three specific peptide recognition modules (PRMs) namely,
SH3, PDZ and WW. The most recent online resource for prediction of specific domain-pep-
tide interactions is MoDPeplnt [13], which comprises of three different tools, i.e. SH2PepInt
[14], SH3Peplnt [15] and PDZPeplnt [16], for predicting the binding partners of SH2, SH3
and PDZ domains, respectively. However, all the existing methods were developed either
solely based on regular expression matching or entirely around machine learning algorithms,
but none utilized a combination of both these techniques to increase prediction efficiency.
Hence, we thought it would be worthwhile to develop an online computational resource for
prediction of specific domain binding peptides by integrating both the approaches of machine
learning and simple sequence/motif matching to give a better combined prediction result.

We have formulated four different prediction strategies for LM peptides binding to SH3,
WW and PDZ domains and assembled them all into a web-based bioinformatics resource
named Linear Motif Domain Interaction Prediction (LMDIPred). We had previously com-
piled experimentally validated LM instances from published data into a manually curated data-
base called LMPID (Linear Motif mediated Protein-Protein Interaction Database) [17].
Herein, we observed that the highest number of ligand peptides reported were for SH3, WW
and PDZ domains. Proteins containing these domains were known to play crucial roles in crit-
ical diseases like cancer and neurodegenerative disorders [18-23], and hence, peptides binding
to these three domains were extensively studied. Although prediction servers have been previ-
ously developed for SH3, WW and PDZ binding peptides, we selected SH3, WW and PDZ
domains for developing better prediction methods for domain-specific peptide interactions.
However, validated LM instances specific to each subclass of the above-mentioned domains
were not adequate in number for training subclass-specific machine-learning models. We
have, therefore, trained our Support Vector Machine (SVM) classifiers on the entire dataset of
ligand peptides for each particular domain, thus providing a generalized prediction of
domain-binding without considering the domain subtypes. It was observed that majority of
the peptides binding to SH3, WW or PDZ domains were 6-mers in length.

SH3 and WW domains bind to proline-rich sequences, but the exact sequence specificities
are slightly different for each domain [24-26]. On the other hand, PDZ domains specifically
recognize and bind to short C-terminal peptide motifs, but can also recognize internal
sequences that structurally mimic a terminus [27]. The respective domain-binding peptide
sequences were analyzed to identify the key features of the ligands of each domain that clearly
distinguished them from the ligands of the other two domains or random peptide sequences of
the same length. After identification of such features, these were used to develop statistical pre-
diction models to predict SH3, WW and PDZ binding peptides with high precision. Besides,
we also used simple string-matching algorithms to detect either exact sequence matches to the
known binding instances for each domain, or matches to the set of regular expressions
describing the LMs binding to each domain, or matches to PSSMs generated from sets of
sequences binding to each domain. All these four prediction strategies were incorporated into
a publicly available web server which is freely accessible at http://bicresources.jcbose.ac.in/
ssaha4/lmdipred).
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Materials and methods

Creation of datasets

i

ii.

iii

iv.

Positive dataset- LMPID Database lists 153, 156 and 274 entries against SH3, WW and
PDZ domain respectively. If more than one LMPID entries represent the same motif
sequence at the same position of a protein, then only one of these entries was included in
the positive dataset. However, if the same sequence came either from a different position of
the protein or from another protein or protein isoform, then all such entries were inserted
in the positive dataset. Thus, a non-redundant and non-overlapping dataset consisting of
115, 140 and 165 peptide instances binding to SH3, WW and PDZ domains respectively,
were extracted from the LMPID database [17], and used as positive training examples for
the respective class of peptides. We wanted to use the same dataset for comparing the four
methods and observed that 6-residue long peptides were the most abundant in all the three
classes of peptide ligands (Fig A in S1 File). Furthermore, our preliminary studies with
SVM classifier showed that 6-mer peptides produced better prediction results for SH3 and
WW and 4-mer peptides for PDZ domain ligands (Fig B and Table D in S1 File). Hence,
we decided to use 6-mer peptides as input for SH3 and WW and 4-mer for PDZ binding
peptides, during five-fold cross-validation studies.

Negative dataset- A set of 3960 fasta-formatted protein sequences [3192 from Oryza sativa
subsp. japonica (short-grained Asian rice), 400 from Solanum tuberosum (potato), and 368
from Triticum aestivum (common wheat)] were downloaded from UniProtKB/Swiss-Prot,
the manually annotated section of the UniProt KnowledgeBase [28]. Perl scripts were used
to extract a set of 120 peptides from random positions within these sequences, and were
used as negative training examples, along with positive examples of the other two classes.
Negative dataset consisted of 6-residue long peptides for SH3 and WW domains and 4-resi-
due long peptides for PDZ domain.

. Training dataset- The unbalanced training dataset, therefore, consisted of 115 positive

and 425 (140+165+120) negative examples (~1:4) for SH3 ligands, 140 positive and 400
(115+165+120) negative examples (~1:3) for WW ligands, and 165 positive and 375 (115
+140+120) negative examples (~1:2) for PDZ ligands. Furthermore, we also created bal-
anced (positive: negative = 1:1) datasets for all four methods by including 115 positive and
115 (30+30+55) negative examples for SH3 ligands, 140 positive and 140 (45+45+50) nega-
tive examples for WW ligands, and 165 positive and 165 (50+50+65) negative examples for
PDZ ligands.

Independent or validation datasets- To validate our proposed methods on independent
datasets not used for training or testing, we used 62 experimentally validated PDZ-binding
10-mer mouse peptides from Stiffler et al [29], and 25 experimentally validated SH3-bind-
ing yeast peptides of variable length from Tonikian et al [30].

Computation of the sequence composition

In the past, compositional features of peptide sequences have been used successfully for devel-
oping methods for predicting domain-peptide interactions [15, 31]. In our study also, statisti-
cal prediction models have been developed using different compositional features like amino
acid, dipeptide and tripeptide composition (AAC, DPC and TPC, respectively), which were
calculated using Perl scripts as described below:
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Amino acid composition (AAC). Amino acid composition of each input peptide was cal-
culated as the percentage of each amino acid i (where i = 1 to 20) present in the peptide, using
the following equation:

Number of amino acid i in the peptide
Composition of amino acid i = Pep

Total number of amino acids in the peptide

Dipeptide composition (DPC). Dipeptide composition was encoded using a feature
length of 20X20 = 400 representing all possible amino acid combinations, thereby encapsulat-
ing information about the composition of amino acids as well as their relative ordering in the
sequence. The percentage of each dipeptide j (where j = 1 to 400) present in a peptide was cal-
culated using the following equation:

Number of dipeptide j in the peptide

C jti dipeptide j =
omposition of dipeptide j Total number of dipeptides in the peptide

Tripeptide composition (TPC). Among 8000 possible tripeptides, we found 94 tripep-
tides occurring in more than one SH3 domain ligands, 87 in more than one WW ligands and
133 in more than one PDZ ligands. We have used the composition of only these over-repre-
sented tripeptides within each ligand class as input features during generation of prediction
models for the corresponding class, to reduce the dimensions of the input vectors, and thereby
improve prediction performance. The tripeptide composition of a particular significant tripep-
tide k (k=1 to 94 for SH3, 1 to 87 for WW and 1 to 133 for PDZ binding peptides respectively)
was therefore calculated using the following equation:

Number of tripeptide k in the peptide

C iti tripeptide k =
omposition of tripeptide Total number of tripeptides in the peptide

Location at C-terminal for PDZ ligands. Since PDZ binding peptides are predominantly
found at the C-terminus of proteins, the location of the peptide at the C-terminal end of the
whole protein sequence was also considered as an additional parameter in the input feature
vectors for prediction of PDZ ligands, in addition to the compositional features.

Support vector machine (SVM)

The SVM-based classification was carried out using the Radial Basis Function (RBF) kernel
from the SVM"8" package Version 6.02 by T. Joachims [32]. Different parameters were opti-
mized to get the best performance on the training datasets (Table A in S1 File).

Construction of Position-Specific Scoring Matrices (PSSMs)

PSSMs for the 6-mer SH3 & WW and 4-mer PDZ ligands were computed from alignments of
the 115 SH3-domain binding peptides, 140 WW-domain binding peptides and 165 PDZ-
domain binding peptides, respectively, using the following formula:
Y
PS =——
(ip) =—4
Where PS(i,p) is the position score of amino acid i at position p, n(i,p) is the number of
sequences in which amino acid i occurs in position p, and N is the total number of peptide
sequences in the respective dataset (i.e., 115 for SH3, 140 for WW, and 165 for PDZ). Perl
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scripts were written to calculate the positional scores for the 20 standard amino acids in each
of the 6 positions for the SH3 & WW datasets, and 4 positions for the PDZ dataset, and these
scores were used to generate PSSM scores for every query sequence by multiplying position
scores for individual residues of the sequence.

Regular Expression Scanning (RES) method

RES is a simple pattern matching algorithm implemented through Perl scripts, which involves
mapping of the representative sequence patterns for positive examples of each domain-binding
peptide class to the query sequences.

Motif Instance Matching (MIM) method

MIM method relies on the alignment (mapping) of the query sequences with the peptide
sequences in the non-redundant dataset collected from LMPID [17], for identifying exact
matches that would result in positive prediction for a particular ligand class. Perl scripts were
written to implement the MIM algorithm on each of the domain binding peptide classes.

Cross-validation

To train, test and evaluate the classification models, we used the five-fold cross validation tech-
nique, in which, the whole dataset was divided into five sets such that in each round, four sets
were used for training and the remaining one was set aside for testing. This process was
repeated five times to ensure that each of the five sets was used once for testing and training.

Performance measures

The performance of all the prediction methods was tested in terms of accuracy, sensitivity,
specificity and Mathew’s Correlation Coefficient (MCC), using the following formulae:

e TP
Sensitivity = TP FN x 100

e TN
Speczflczty = m x 100

B TP+ TN .
ccuracy =
Y = TP+ FP+IN + FN

100

MeC — (TP)(TN) — (FP)(FN) 100
/[TP + FP|[TP + FN|[TN + FP]|[TN + FN|

Where TP and TN are correctly predicted positive and negative examples, whereas, FP and
FN are wrongly predicted positive and negative examples, respectively.

The models were also evaluated in a threshold independent manner by plotting receiver
operating characteristic (ROC) curves and computing the respective area under the curve
(AUC) values using ROCR package [33].

Web implementation

The LMDIPred web server (http://bicresources.jcbose.ac.in/ssaha4/Imdipred) was developed
using PHP 5.3.3, HTML and Perl scripts, and implemented using Apache HTTP 2.2.15 web
server.
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Fig 1. Bar graph depicting the average Amino Acid Composition (AAC) of SH3-binding, WW-binding, PDZ-binding and
randomly generated peptide sequences.

https://doi.org/10.1371/journal.pone.0200430.9001

Results
Compositional analysis of different domain binding peptides

Amino acid composition. We computed and compared the amino acid compositions of
SH3, WW and PDZ ligand peptide sequences (Fig 1). In agreement with the existing knowl-
edge, SH3 and WW ligand sequences were observed to be highly enriched in Proline (P) resi-
dues. SH3 ligands were found to contain a higher number of prolines than WW ligand, since
there are two distinct xP dipeptide-binding pockets on the surface of SH3 domains as com-
pared to a single such site on WW domains [26]. Also, SH3 ligands were enriched in Arginine
(R) residues, whereas WW ligands contained more of Serine (S). PDZ ligand sequences were
found to be enriched with amino acids like Serine (S), Threonine (T), Valine (V) and Glutamic
acid (E). On performing ANOVA in IBM SPSS Statistics Version22.0, SH3 domain ligands
were found to be significantly enriched (at 0.05 level) in Proline (P) and Arginine (R); WW
domain ligands in Tyrosine (Y); and PDZ domain ligands in Glutamate (E), Threonine (T),
and Valine (V).

Dipeptide composition. The dipeptide compositions of different classes of ligand peptide
sequences were also computed and compared (Table A in S1 File). SH3 and WW domain-
ligand sequences contained much higher number of diprolines (PP) and other Proline-con-
taining dipeptides (xP or Px). PDZ domain ligands, on the other hand, were enriched in dipep-
tides containing Glutamate (XE or Ex) or Serine (xS or Sx).

Tripeptide composition. For each ligand class, we computed the tripeptide compositions,
and on comparing the top 10 domain-specific tripeptides (Table B in S1 File), we found that
for both SH3 and WW ligands, the tripeptides always contained Proline. Similarly, the top 10
PDZ ligands were found to be enriched in tripeptides containing either Glutamate or Serine.
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Table 1. Comparison of prediction performance of SVM prediction models developed using different input features for different domain-binding peptides (6-mer
peptides for SH3 and WW and 4-mer peptides for PDZ).

Amino Acid Composition (AAC)
Dipeptide Composition (DPC)
Tripeptide Composition (TPC)

AAC + DPC

AAC + TPC

DPC + TPC
AAC + DPC + TPC

https://doi.org/10.1371/journal.pone.0200430.t001

AUC (%) values for different peptide classes

SH3-binding WW-binding PDZ-binding
88.05 93.54 92.31
86.79 96.33 93.65
94.72 96.11 92.44
94.63 97.77 93.98
95.56 97.86 97.69
95.34 97.58 94.89
97.45 98.35 90.49

Support vector machine (SVM)-based models

In order to find the optimal peptide length for input data, we performed a pilot study using
peptides of various lengths (4-mer, 6-mer, 8-mer, and 10-mer peptides) for each of the three
domains. We observed that SVM models showed best performance measures with 6mer input
for SH3 and WW binding peptides and 4-mer input for PDZ binders (Fig B and Table D in
S1 File). Hence, we have developed prediction models using Support Vector Machine (SVM)
for predicting 6-mer peptides that may bind to SH3 and WW, and 4-mer peptides to PDZ
domains, and compared their prediction performances with different input features for the
three different classes of peptide ligands (Table 1). The performance of SVM models were also
found to be better than prediction models from other machine learning algorithms like Ran-
dom Forest (RF) and Naive Bayes (NB) classifiers (Fig C in S1 File).

Based on these results, the SVM model developed using a combination of amino acid,
dipeptide and tripeptide compositions (AAC+DPC+TPC) was selected for SH3 domain
ligands, which achieved a maximum accuracy of 94.55% with MCC value of almost 0.85 on the
unbalanced dataset (Table 2). The SVM model selected for WW domain ligands also used the
same input feature combination i.e. AAC+DPC+TPC, and achieved the highest accuracy of
95.82% with MCC of nearly 0.90 on the unbalanced dataset (Table 2). For PDZ domain
ligands, however, the SVM model using the combination of amino acid and tripeptide compo-
sitions (AAC+TPC) with C-terminal labelling was selected, giving the maximum accuracy of
92.29% with an MCC of 0.83 on the unbalanced dataset (Table 2). The prediction perfor-
mances of the same models were also tested on the corresponding balanced datasets (Table E
(i) in S1 File).

Position-Specific Scoring Matrix (PSSM) scanning

Position-Specific Scoring Matrices (PSSMs) were constructed for SH3, WW and PDZ ligands,
using alignments of the 115 SH3-domain binding peptides, 140 WW-domain binding peptides

Table 2. Performance of SVM models for different domain binding peptides (6-mer peptides for SH3 and WW and 4-mer peptides for PDZ) on respective unbal-

anced datasets.

P:N Ratio* Threshold Sensitivity Specificity Accuracy MCC
SH3 ~1:4 -0.25 0.9391 0.9471 0.9455 0.8475
ww ~1:3 -0.05 0.9571 0.9585 0.9582 0.8973
PDZ ~1:2 -0.10 0.9152 0.9263 0.9229 0.8259
*P:N Ratio denotes ratio of positive to negative data
https://doi.org/10.1371/journal.pone.0200430.t002
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Table 3. Performance of PSSMs for different domain binding peptides (6-mer peptides for SH3 and WW and 4-mer peptides for PDZ) on respective unbalanced

datasets.
P:N Ratio
SH3 ~1:4
wWw ~1:3
PDZ ~1:2

https://doi.org/10.1371/journal.pone.0200430.t003

Threshold Sensitivity Specificity Accuracy MCC
1.00 0.6957 0.9264 0.8782 0.6167
0.50 0.8786 0.8415 0.8509 0.6640
0.60 0.6857 0.9467 0.8636 0.6774

and 165 PDZ-domain binding peptides described above. The PSSM-scanning method was
evaluated using the five-fold cross-validation technique on both the balanced and unbalanced
datasets for each ligand class. We obtained a maximum accuracy of 87.82% (MCC 0.62) for
SH3 ligands, 85.09% (MCC 0.66) for WW ligands, and 86.36% (MCC 0.68) for PDZ ligands
for this method on the respective unbalanced datasets (Table 3).

Regular Expression Scanning (RES)

The linear motif expressions that have been found to represent peptide sequences binding to
SH3, WW and PDZ domains in experimental studies, were compiled into domain-specific
lists, and 6-mer query sequences were scanned for their presence using regular expression
mapping Perl programs. Five-fold cross-validation of this method yielded a maximum accu-
racy of 89.09% (MCC 0.67) for SH3 ligands, 96.55% (MCC 0.91) for WW ligands, and 83.45%
(MCC 0.63) for PDZ ligands on the respective unbalanced datasets (Table 4).

Motif Instance Matching (MIM)

The experimentally validated linear motif instances reported in scientific literature to bind to
SH3, WW and PDZ domains were collected from the LMPID database and matched to 6-mer
query sequences using exact string-matching programs written in Perl. This method was also
evaluated on the unbalanced datasets using five-fold cross-validation, producing a maximum
accuracy of 82.73% (MCC 0.36) for SH3 ligands, 77.82% (MCC 0.29) for WW ligands, and
77.82% (MCC 0.46) for PDZ ligands (Table 5). The performance measures reflected very low
sensitivity (17.39% for SH3, 12.86% for WW and 30.29% for PDZ ligands), but high specificity
values (100% for all three) for the three ligand classes. It is an expected outcome of this
method, since it can only search for already known motif sequences, but cannot identify novel
sequences differing by even a single residue from the known motif instances. However, this
method may be used by users who might want to restrict the occurrence of false positives in
their prediction results.

Performance comparison of different prediction methods

We have compared the threshold independent performance of the different prediction meth-
ods during five-fold cross-validation on the domain-specific unbalanced datasets described
above, by plotting receiver-operating-characteristic (ROC) curves (Fig 2) and computing the
respective area-under-the-curve (AUC). Based on the ROC plots, SVM models for all three

Table 4. Performance of RES method for different domain binding peptide classes on respective unbalanced datasets.

P:N Ratio
SH3 ~1:4
ww ~1:3
PDZ ~1:2

https://doi.org/10.1371/journal.pone.0200430.t004

Sensitivity Specificity Accuracy MCC
0.8087 0.9126 0.8909 0.6735
0.8929 0.9902 0.9655 0.9064
0.7657 0.8667 0.8345 0.6305
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Table 5. Performance of MIM method for different domain binding peptide classes on respective unbalanced datasets.

P:N Ratio
SH3 ~1:4
WwWw ~1:3
PDZ ~1:2

https://doi.org/10.1371/journal.pone.0200430.t005

Sensitivity Specificity Accuracy MCC
0.1739 1.0000 0.8273 0.3642
0.1286 1.0000 0.7782 0.2915
0.3029 1.0000 0.7782 0.4655

domains were found to outperform the other prediction methods, while, Motif Instance
Matching method performed poorly for all domains.

Performance of prediction methods on independent datasets

All the above methods were evaluated using two independent datasets not used for training or
testing, which was composed of 62 experimentally validated PDZ-binding 10-mer mouse pep-
tides [29] and 25 experimentally validated SH3-binding yeast peptides of variable length [30]
(Table 6). The sensitivity values of SVM and PSSM scanning methods were reported at the
threshold values which gave the best accuracy during five-fold cross-validation. Thereafter, all
the four methods were integrated to create the LMDIPred web server, so that users can be pro-
vided with a comprehensive prediction result.

We have also compared the union of predictions from all four methods in LMDIPred on
the independent datasets, with that of SH3PeplInt [15] and PDZPeplnt [16] utilities available
in the MoDPeplnt web server [13] (Table 6), as well as the motif prediction method provided
by the ELM database [9]. Out of the 25 experimentally validated SH3-binding peptide
sequences, LMDIPred could correctly predict 23, whereas, SH3PepInt could identify only 10.
However, among the 62 bonafide PDZ domain ligand peptides, LMDIPred could identify 60,
while PDZPeplnt could detect all 62 sequences. This result proves that predictions from
LMDIPred are reliable, and performance of this web server is comparable to the existing ones.

LMDIPred web server

The principal aim of this study was to develop a publicly available online platform that can be
used to predict the occurrence of possible peptide ligands to SH3, WW or PDZ domains,
within a user-provided amino-acid sequence. To fulfil this objective, we have developed the
LMDIPred web server, available at http://bicresources.jcbose.ac.in/ssaha4/Imdipred. LMDIPred
allows its users to submit up to ten fasta-formatted protein or peptide sequences containing 6
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Fig 2. ROC plots showing prediction performances of the different methods (Green-SVM, Blue-PSSM, Red-
Regular Expression Scanning (RES), Black- Motif Instance Matching (MIM)) for (A) SH3 domain ligands, (B)
WW domain ligands, and (C) PDZ domain ligands. The respective AUC values are mentioned in the corresponding
textboxes.

https://doi.org/10.1371/journal.pone.0200430.g002
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Table 6. Comparison of sensitivity shown by different prediction methods on the independent datasets.

Sensitivity (%) for SH3 ligands Sensitivity (%) for PDZ ligands
SVM 60.00 75.81
PSSM 32.00 69.35
RES 80.00 93.55
MIM 16.00 29.03
LMDIPred (Combined)* 92.00 97.00
MoDPeplnt 40.00 100.00
ELM 84.00 53.23

*Hits from any one of the four methods.

https://doi.org/10.1371/journal.pone.0200430.t006

or more residues, as input, either by pasting directly into the text-area provided for this pur-
pose (Fig 3A), or by uploading a ’.txt” or ’.fasta’ sequence file. Any one, two, three or all four of
the prediction methods, viz., (i) SVM Prediction, (ii) PSSM Scanning, (iii) Motif Instance
Matching, and, (iv) Regular Expression Scanning, may be selected for predicting ligand pep-
tides to any one of the domains. The threshold score for SVM prediction can also be set by the
user (default value 0.00, i.e., any contiguous stretch of amino acids with a positive SVM predic-
tion score will be predicted to bind to the chosen domain). Higher threshold values make the
search more stringent, resulting in higher specificity but lower sensitivity, thus missing some
of the genuine motifs. Lowering the threshold, on the other hand, may increase sensitivity but
will decrease specificity, thereby producing spurious hits. All the input options and parameters
have been discussed in detail in the ‘Help’ page of LMDIPred for the benefit of its users.

The LMDIPred server provides a combined output result in a tabular format (Fig 3B),
which represents a union of the prediction results from the four independent methods, for
each of the user-provided query sequences, one after another. The output table for each query
displays the peptide hits from one or more method(s) according to their sequence positions,
alongside the outputs from all the four methods. SVM and PSSM scores are provided for the
peptides predicted by the corresponding SVM models and PSSMs, respectively. The peptides
predicted by Motif Instance Matching are linked to corresponding entries in the LMPID data-
base, to provide information about the matching LM instance, like its critical residues, post-
translational modifications, secondary structure and experimental methods used to validate it.
For peptides predicted by Regular Expression Scanning, the matching regular expressions are

LMDIPred

Predict binding motif for.

Threshold for SVM score : 90
(00 MELS page for det

(V) (B)

Fig 3. (A) Screenshot of the home page of LMDIPred with sample input. (B) Screenshot of a sample output from
LMDIPred web server.

https://doi.org/10.1371/journal.pone.0200430.g003
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mentioned in the output. A “—’ in the output column of any method, against a particular pep-
tide in the output table, denotes that the peptide hit was not present in the predictions from
that particular method. Prediction of the same peptide region by three or more methods
strongly indicates the presence of a peptide ligand to the corresponding domain.

Discussion

Accurate computational methods for prediction of peptide-mediated PPIs, may augment
experimental studies on these PPIs, and thereby help in elucidating their role in complex regu-
latory pathways, as well as, provide opportunities for discovery of novel therapeutic modula-
tors. The highly promiscuous binding patterns displayed by the peptide-binding domains,
reflecting their intrinsic ability to recognize a diverse set of ligands, makes the prediction of
specific domain-binding peptides a highly challenging task. In this scenario, we have made an
attempt to develop user-friendly computational methods to predict novel peptide sequences
that may mediate protein interactions by binding to specific peptide-binding domains like
SH3, WW and PDZ.

We have compiled the positive training datasets comprising of experimentally validated
SH3, WW, and PDZ domain binding peptides from the LMPID database [17]. Random pep-
tides from food proteins as well as peptides from the positive set of the other two domains
served as the negative dataset for ligands of each domain. For example, the negative dataset for
SH3 ligand class consisted of the positive dataset for WW and PDZ ligand classes as well as
randomly generated food peptides. Inclusion of peptide ligands of other domains in the nega-
tive dataset ensured that the prediction models would be able to distinguish true domain bind-
ing peptides from LM-containing non-binding peptides. We observed that the best prediction
performance for SVM models was achieved on using 6-mer peptides as input for SH3 and
WW domain binders and 4-mer peptides for PDZ domain ligands.

During five-fold cross-validation studies, we found that the machine learning models per-
formed better than sequence-matching approaches in predicting ligands for different domains.
This performance is presumably because SVM models were more capable of assigning the resi-
dues preferred in the wildcard positions (denoted by x, as in xxPxxP motif binding to SH3
domains), based on statistically computed bias for each residue in each position, which is
derived from training data. Thus, the ROC plots showed that the prediction performance of
SVM was the best among all the prediction methods, while that of Motif Instance Matching
method was by far the worst, due to poor sensitivity. It is observed that the ROC plots for
MIM and RES methods appear as smooth flat lines when compared to the plots for SVM and
PSSM, because SVM and PSSM outputs comprise of continuous scores, while the MIM and
RES produce discrete outcomes, one or zero (either “match” or “mismatch”). We also observed
that, though, AUC values indicate almost similar performances for PSSM and RES methods
during five-fold cross-validation, RES showed much better performance than PSSM on inde-
pendent datasets. It should also be noted that RES method performed better than the other
methods on the independent datasets, because we have only measured sensitivity (the percent
of correctly predicted ligands), which is expected to be high for RES since it allows greater flex-
ibility in the wildcard positions than the other methods. Nevertheless, all four methods have
been included in LMDIPred web server to provide a combined prediction output, from which
predicted domain-binding peptides may be picked by the users. The combined prediction
results of LMDIPred server were also compared with that of the MoDPeplnt server and ELM,
and the performance of our web server was found to be appreciable.

Overall, the LMDIPred web server is an attempt to provide a preliminary platform for in-
silico prediction of peptide sequences that may interact with SH3, WW or PDZ domains, to
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facilitate experimental studies that may lead to discovery and characterization of novel PPIs.
Furthermore, we have provided the datasets used in the present study on our web server to
help the scientific community in developing better methods for prediction of such domain
binding peptides.
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S1 File. This is the S1 File description. Fig A: Distribution of motif lengths among SH3, WW
and PDZ binding peptides.
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4-mer (Blue), 6-mer (Green), 8-mer (Black) and 10-mer (Red) peptides as input.

Fig C: Comparison between prediction accuracy of Support Vector Machine (SVM), Random
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binding peptides.
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Table E (i): Performance of SVM models for different domain binding peptide classes on
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Table E (ii): Performance of PSSMs for different domain binding peptide classes on respective
Balanced Datasets.
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