
RESEARCH ARTICLE

Stabilizing patterns in time: Neural network

approach

Nadav Ben-Shushan1, Misha Tsodyks2*

1 Department of Physics, The Weizmann Institute of science, Rehovot, Israel, 2 Department of Neurobiology,

The Weizmann Institute of science, Rehovot, Israel

* misha@weizmann.ac.il

Abstract

Recurrent and feedback networks are capable of holding dynamic memories. Nonetheless,

training a network for that task is challenging. In order to do so, one should face non-linear

propagation of errors in the system. Small deviations from the desired dynamics due to error

or inherent noise might have a dramatic effect in the future. A method to cope with these dif-

ficulties is thus needed. In this work we focus on recurrent networks with linear activation

functions and binary output unit. We characterize its ability to reproduce a temporal

sequence of actions over its output unit. We suggest casting the temporal learning problem

to a perceptron problem. In the discrete case a finite margin appears, providing the network,

to some extent, robustness to noise, for which it performs perfectly (i.e. producing a desired

sequence for an arbitrary number of cycles flawlessly). In the continuous case the margin

approaches zero when the output unit changes its state, hence the network is only able to

reproduce the sequence with slight jitters. Numerical simulation suggest that in the discrete

time case, the longest sequence that can be learned scales, at best, as square root of the

network size. A dramatic effect occurs when learning several short sequences in parallel,

that is, their total length substantially exceeds the length of the longest single sequence the

network can learn. This model easily generalizes to an arbitrary number of output units,

which boost its performance. This effect is demonstrated by considering two practical exam-

ples for sequence learning. This work suggests a way to overcome stability problems for

training recurrent networks and further quantifies the performance of a network under the

specific learning scheme.

Author summary

The ability to learn and execute actions in fine temporal resolution is crucial, as many of

our day to day actions require such temporal ordering (e.g. limb movement and speech).

Indeed, generating stable time-varying outputs, using neural networks has attracted a lot

of attention over the last years. One of the core problems, when facing such a task, is the

solution stability, hence it was only possible to produce the sequence for a limited number

of cycles. Here we propose a robust approach for the task of learning time-varying

sequences.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005861 December 12, 2017 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Ben-Shushan N, Tsodyks M (2017)

Stabilizing patterns in time: Neural network

approach. PLoS Comput Biol 13(12): e1005861.

https://doi.org/10.1371/journal.pcbi.1005861

Editor: Bard Ermentrout, University of Pittsburgh,

UNITED STATES

Received: February 19, 2017

Accepted: October 31, 2017

Published: December 12, 2017

Copyright: © 2017 Ben-Shushan, Tsodyks. This is

an open access article distributed under the terms

of the Creative Commons Attribution License,

which permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The paper is a

theoretical work and does not contain experimental

data. All the parameters required to reproduce our

results are specified in the Methods section.

Funding: This work was supported by the

foundation Adelis. The funders had no role in

study, design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1005861
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005861&domain=pdf&date_stamp=2017-12-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005861&domain=pdf&date_stamp=2017-12-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005861&domain=pdf&date_stamp=2017-12-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005861&domain=pdf&date_stamp=2017-12-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005861&domain=pdf&date_stamp=2017-12-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005861&domain=pdf&date_stamp=2017-12-22
https://doi.org/10.1371/journal.pcbi.1005861
http://creativecommons.org/licenses/by/4.0/

Introduction

There are many human behaviors which unfold over time. Our limb movement, speech and

even our internal train of thought appear to involve sequences of events that follow one

another in time. We are capable of performing an enormous number of sequences, and we can

perform the same action in a variety of different contexts. Hence the concept of generating

temporal patterns or sequences by neural networks draw a lot of attention over the years. Early

work relied on cyclic inhibition [1–3] which formed the basis of networks that function as ring

oscillators [4]. These models could only be applied to small number of neurons and are

restricted in the complexity of the output they can generate. The complexity of a sequence is

determined by the number of actions that must be remembered in order to know to correct

successor. Later work [5, 6] produced temporal sequences in an arbitrary large network, using

associative neural network with Hebb learning rule [7], encompassing the relation between

output pattern and synaptic connections. The main idea in this model was to functionally sep-

arate the synaptic connection into two components, slow and fast, such that the slow compo-

nent encoded transition between patterns and the fast component stabilized the current

pattern. This model, in its basic form, only encodes transitions between neighboring states in a

sequence. Hence it is also limited in the complexity of outputs it can produce. Specifically, in

order to learn two partially overlapping sequences one should introduce another component

in the synaptic connection, with time scale proportional to the amount of overlap between the

sequences. Jordan first considered a clear distinction between the state of the network and the

output [8]. Moreover, applying recurrent links within the network, provides it a dynamic

memory by which “time” is implicitly encoded in the state of the network [9]. This kind of net-

work architecture (i.e. recurrent and feedback connections) is common in cortical microcir-

cuit [10, 11], hence various training schemes for such network architectures arose along the

years. A generalization of this approach considered reading out target information from ran-

domly connected network, was first suggested in [12] and later developed to the notion of

echo state networks (ESN) [13] and liquid state machines (LSM) [14]. Typically these networks

consists of non-linear activation function for units within the network “reservoir” which line-

arly combines the output signal. These models do not need an internal pacemaker for produc-

ing a temporal sequence, in addition, learning a complex sequence is deduced to effectively

learning a simple sequence, as two highly overlapping sequences end up as distinct in the high

dimensional phase space of the network. None the less, it has been found as a challenging task

to establish a successful learning procedure for these networks, one in which the network is

capable of reproducing a desired target sequence for an arbitrary number of cycles, yet exhibit-

ing robustness to errors and noise which are assumed to be common in biological networks.

The main difficulties in this context are: In order to achieve a stable solution one should use a

long training period involving noise over the output unit. During training the network will

sample various fluctuations which improves the final network stability [15]. The second diffi-

culty is assigning credit to output errors, i.e. which neurons and synapses are most responsible

for the output error. Previous work settled this issue by restricting modification to synapses

which project directly to the output unit [16]. This assumption was supported by [17], in

which they showed that even in the case that all synapses were subject to modification during

training, the synapses to the output tended to change the most.

In our model we suggest a variation of the ESN, i.e. For a recurrent network with a feedback

loop, we consider linear activation function for neurons within the network and a binary out-

put unit. In such case, given a target sequence on the output unit, one may easily solve for the

corresponding activity in the network. Following previous work [16] we restrict ourselves on

modifying synapses which project directly to the output unit. Even though it causes the

Stabilizing patterns in time

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005861 December 12, 2017 2 / 16

https://doi.org/10.1371/journal.pcbi.1005861

solution space to shrink, it makes the learning problem straight forward, as it can be reduced

for solving a simple perceptron [18, 19] problem.

This approach settles the problem of feeding back erroneous output to the network. Robust-

ness to errors and noise naturally emerges from the finite margin of the perceptron problem,

thus reproduction of a target sequence for an arbitrary number of cycles is possible, even in

the presence of noise. In addition, considering a binary output unit helps in better quantifying

the network performance, hence providing a different view on the computational power of

this class of networks.

In our model, quantifying the memory capacity (MC) of the network is mathematically

equivalent to calculating the capacity of a perceptron with correlated patterns presented to it.

Where correlation induced by the network dynamic, as such, this is a challenging task analyti-

cally. Similar problems had been tackled in [20, 21] for the simplified case in which each neu-

ron maintained an activity trace consisting of a decaying sum over all previous inputs

presented to it. In [22] they considered correlated input-output associations, where temporal

correlations between binary input patterns were modeled as Markov chain. In this case ana-

lytic result could only be obtained for the case of no temporal correlation between input pat-

terns. Both models form a simple feed-forward architecture, hence temporal correlation do

not depend on the state of other neurons in the network. In our model temporal correlation

are of higher complexity due to the recurrent connectivity, hence we use numeric simulations

in order to quantify the memory capacity for both the discrete and continuous time cases. Spe-

cifically, we solved the soft margin perceptron problem (Methods) with matlab standard qua-

dratic programming function. An analytic estimation is given to noise robustness of the

system.

Results

Discrete time case

Network model. We use a recurrent and feedback neural network architecture (Fig 1).

We start by analyzing the simpler, discrete time case with the following dynamic equations:

xðnþ 1Þ ¼ WxðnÞ þ VzðnÞ þ ηðnÞ ð1Þ

zðnÞ ¼ signðJ � xðnÞÞ ð2Þ

Where x(n) represent the activity pattern in the nth time step over the pool of N generator

neurons. These are randomly connected within themselves, the matrix W, represent these ran-

dom connections. The vector J stand for the synaptic weights from the network to the binary

output unit z(n), V stands for the synaptic weights of the feedback loop, i.e. from the output

unit back to the network. We also included an uncorrelated random noise term, η(n), with the

following statistics, hηi(n)in = 0 and hZiðnÞ Zjðnþ kÞin ¼ s2
noisedijdk0, where h� � �in denotes a

time average.

The random connections within the network are drawn from Wij � N 0; λ
2

N

� �
, note that by

choosing λ< 1, we force the largest eigenvalue of W to be smaller than one (in absolute value)

[23]. This choice ensures that the entire dynamic is restricted to stable manifolds. The synaptic

weights in the feedback loop are random as well and drawn from a normal distribution, later

we apply the normalization kVk = 1, to scale with our choice of W. Our goal is thus to find an

appropriate set for the output weights, J, which are capable of holding a desired set of dynamic

memories. Specifically we are interested in learning periodic sequences, motivated by the

Stabilizing patterns in time

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005861 December 12, 2017 3 / 16

https://doi.org/10.1371/journal.pcbi.1005861

periodic nature of many motor actions (e.g. running, swimming or bouncing a ball). As such

we would like the network to be capable of reproducing a desired sequence for an arbitrary

number of cycles.

Given a specific target sequence fztðnÞg
T
n¼0
� fztð0Þ; ::; ztðnÞ; ::; ztðTÞg, one can use Eq (1)

to solve recursively for the activation pattern over x neurons in each time step:

xðnÞ ¼Wnxð0Þ þ
Xn� 1

k¼0

WkVztðn � kÞ ð3Þ

where we omitted the noise term while deriving Eq (3), since we are interested in the trajectory

in phase space induced by a given target sequence, i.e. this is the exact trajectory we would like

the network to follow. Demanding that the network will reproduce the sequence periodically

we set x(T) = x(0), thus finding the appropriate initial condition, x(0)� x0:

x0 ¼ ðI � WTÞ
� 1
XT� 1

k¼1

WkVztðT � kÞ ð4Þ

Eqs (3) and (4) uniquely defines the generator neurons activity, or target activity for a given

target sequence at each time step. Hence we have a set of patterns and their labels

fxðnÞ; ztðnÞg
T� 1

n¼0
. We note that using the simple procedure described so far, we are able to cast

the temporal learning problem to a simple perceptron problem. That is, we need to find an

appropriate set of output weights, J, that classify correctly the training set, i.e. satisfies Eq (5) at

each time step:

ztðnÞ ¼ signðJ � xðnÞÞ ð5Þ

Fig 1. Network architecture. The N generator neurons, x(t), displayed in the large circle, are connected

within themselves randomly, connections are represented by matrix W. In the figure Wij is the strength of

connection from neuron i to j. The generator neurons are connected to the output unit z(t) via the weight vector

J. The output unit is recurrently connected to the generator neurons with weight vector V. During simulation

we will only modify the output weights, J, and leave W and V constant.

https://doi.org/10.1371/journal.pcbi.1005861.g001

Stabilizing patterns in time

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005861 December 12, 2017 4 / 16

https://doi.org/10.1371/journal.pcbi.1005861.g001
https://doi.org/10.1371/journal.pcbi.1005861

If there exists a solution for the perceptron problem, cuing the network with the appropriate

initial condition, x0, will cause the network to reproduce the desired target sequence over and

over again, as by construction it is a periodic orbit.

Network performance. In the following (Fig 2) we show a demonstration of our sug-

gested learning procedure results. We used an N = 100 network with λ = 0.99 normalization in

order to learn a desired target sequence of 40 time steps. After inferring the proper weights by

our learning procedure we let the network naturally evolve with Eqs (1) and (2) and

s2
noise ¼ 10� 2, where the network activity is Oð1Þ. For clarity we only show 2 cycles of the net-

work dynamics, in which we notice the perfect performance of the network, despite the finite

noise. We note that as expected the learned periodic orbit is stable, as small perturbations

driven by noise, exponentially decay. Let us now turn on quantifying the performance of our

system.

The longest single sequence. As a first step in quantifying the network performance we ask

what is the longest single sequence that the network is capable of learning?. The length of the lon-

gest sequence defines the memory capacity (MC) of the network. Since we are in a discrete

time case we measure it in time steps. We examine how the MC varies with respect to the

parameter λ—the largest eigenvalue of W in absolute value (See Methods). The target

sequence, {zt}, is binary such that zt(n) = ±1 with probability ½. The memory capacity for a

given network size, N, and specific normalization parameter λ, is the longest sequence the net-

work can learn, such that on average (over many different target sequences) the network can

reproduce a target sequence without a single erroneous bit. Simulations suggest (Fig 3), that

for a given network size, N, The memory capacity increases as we increase λ. This is an intui-

tive result, as increasing λ also increases the effective decay time of the network. Indeed the

ability to maintain ongoing activity in the network for longer time is intimately related to the

memory capacity as simulations suggest. In addition, for a fixed sequence length, increasing λ,

increases, on average, the solution margin κ (Fig 3D). The MC relation to the network size

seems to be λ dependent, and generally behave as a power law, MC * Nb(λ) (Fig 3C). For

λ! 1−, the MC scales roughly as
ffiffiffiffi
N
p

, and for small values of λ the MC seems to saturate.

Learning several sequences in parallel. From a biological perspective, it seems common that

a given network will be able to learn several sequences, for example several motor programs.

Thus an important feature of the system is its ability to learn several sequences in parallel i.e.

for a single set of learned weights, the system should be capable reproducing several different

sequences. Distinct sequences will be generated upon cuing the network with appropriate ini-

tial conditions. We found that in our suggested learning scheme the network is capable in

doing so. It is thus of interest to compare the network performance in this case, to the single

sequence case. As an instructive example Fig 4A shows that a network with N = 100 units is

capable of learning 4 sequences in parallel (40 time steps each). After learning the network was

cued, at each trial, with a different initial condition (each correspond to a different target

sequence) and released to naturally evolve according to Eqs (1) and (2). Indeed the network

exhibit a stable reproduction of the target sequences, over the output unit. Deviations from the

desired activity are obviously observed, but these perturbations decay exponentially, leaving a

perfect reproduction of the target sequence over the readout unit, z.

We now turn in quantifying the network performance in the case of learning, s, sequences

in parallel. i.e. given an initial condition x0
m, the network will produce the sequence

fzm
t ðnÞg

Tm

n¼0
. Where 1� μ� s represent the μth sequence. Each sequence has its own training

set fxmðnÞ; zm
t ðnÞg

Tm

n¼0
. The training set in the parallel case is: [s

m¼1
ðfxmðnÞ; zm

t ðnÞg
Tm � 1

n¼0
Þ, which is

the union of all individual training sets together. Thus in order for the network to learn, s,
sequences we should be able to solve the perceptron problem for this combined training set. In

Stabilizing patterns in time

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005861 December 12, 2017 5 / 16

https://doi.org/10.1371/journal.pcbi.1005861

addition we will define the memory capacity as the maximal total length of all sequences

together, i.e. maxs;Tmð
Ps

m¼1
TmÞ. For simplicity we will examine the case where all sequences are

of equal length, Tμ = T, 8μ. In simulations we look for the maximal sequence length, Tmax, for

every s (number of sequences to learn in parallel). Numeric results exhibit a dramatic effect

(Fig 4B) relative to the single sequence case. For s≲ 15, the maximal sub-sequence length

slowly decreases to *40 time steps. From s> 15, it seems that the network could be loaded

with many sub-sequences (we checked up to 70), hence the MC roughly grows linear with the

number of sub-sequences. It is an interesting result since a naive thinking would predict that

given a single sequence, one can divide it in an arbitrary manner to a number of individual

sequences and the network will be capable of learning them. Hence, a naive approach will pre-

dict that parallel learning will not affect the MC, which clearly is not the case.

Noise robustness

In the presence of noise the networks trajectory in phase space will have a probabilistic nature.

Each point in phase space, obtained by Eq (3) will be smeared to a N-1 ball of possible states.

Hence noise robustness in the system stems from the finite margin of the perceptron problem.

The quantity

DðJÞ ¼
1

jJj
min

n
J � xðnÞ ð6Þ

Defined in [24] quantifies the difficulty level of the classification problem at hand. It is the

worst projection from the set fxðnÞgTn¼1
on the hyperplane perpendicular to J. The best solu-

tion, i.e. with largest margin is obtained by maximizing the value of D over all possible weight

Fig 2. Learning a single sequence. We used network of size N = 100, with λ = 0.99 normalization to learn a

40 time step target sequence. After the learning procedure we cued the network with the proper initial

condition and let it naturally evolve by Eqs (1) and (2) with s2
noise ¼ 10� 2 (where the network activity is Oð1Þ). In

order to emphasize the model robustness, we show 2 cycles of the network dynamic. Dashed black line

indicates the end of the first cycle. Generally Blue colors are used for the desired activity in the network and

Red colors for the network activity after the learning procedure (A) The target sequence and the network

output after learning, the network produces the exact target sequence with no errors (B) The projected error,

R is the difference between the noiseless target activity to the noisy dynamics after learning. Note that noise

driven deviations are kept small, indicating the solution is robust.

https://doi.org/10.1371/journal.pcbi.1005861.g002

Stabilizing patterns in time

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005861 December 12, 2017 6 / 16

https://doi.org/10.1371/journal.pcbi.1005861.g002
https://doi.org/10.1371/journal.pcbi.1005861

Fig 3. The memory capacity for a single sequence. (A) The memory capacity normalized by the network

size as function of λ—the largest eigenvalue of the connectivity matrix W in absolute value. The MC

monotonically increase as we increase λ. Note that by increasing λ, we increase the number of eigenvectors

with long decay times. On the other hand, the MC does not seem to scale with network size, N, but rather sub-

linear with it. (B) probing the scaling of the MC with the network size. In the log log plot, the MC seems to

linearly scale with the network size. But with different slope, b(λ), for every λ. Filled circles are simulations

results, solid lines are least squares fit to these points (C) scaling of the exponent, b, as function of λ. For λ!
1−,MC �

ffiffiffiffi
N
p

. For small values of λ it seems that the MC saturates, b� 0 (D) the solution margin, for a fixed

sequence length, monotonically increase as we increase λ. On the other hand, the solution margin

monotonically decreases as we increase the sequence length, for λ = 0.999.

https://doi.org/10.1371/journal.pcbi.1005861.g003

Fig 4. Parallel learning. (A) Learning 4 sequence (40 time step each) in parallel. Each panel corresponds to

a different target sequence. Blue color represents the target sequence activity projected on the output weights

J. Red color stands for the post learning noisy dynamic (σnoise = 10−4) projection on the readout weights, J.

Note that despite the noisy dynamics, the network is capable of reproducing perfectly the learned sequences.

Noise causes small deviations from the desired activity in the network, which decays exponentially, leaving no

trace on the output unit, z. (B) the memory capacity per neuron Vs. the number of sequences, s, one wishes to

learn in parallel, such that each sequence is generated by cuing the network with an appropriate initial

condition. For each number of sequences to learn in parallel, we looked for the maximal length of each sub-

sequence, such that all s of them could be learned by a single output weight vector.

https://doi.org/10.1371/journal.pcbi.1005861.g004

Stabilizing patterns in time

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005861 December 12, 2017 7 / 16

https://doi.org/10.1371/journal.pcbi.1005861.g003
https://doi.org/10.1371/journal.pcbi.1005861.g004
https://doi.org/10.1371/journal.pcbi.1005861

vectors J:

Dmax ¼ max
J

DðJÞ ð7Þ

This is the margin, κ, obtained by the learning algorithm we used. The robustness to noise

will be the order of magnitude of noise ðs2
noiseÞ we can apply on each neuron, such that a

learned sequence is still stable i.e. the hyperplane J classifies correctly the the set

fxnoiseðnÞ; zðnÞg
T
n¼1

, for many cycles before an error occurs. In order to quantify this we use

Eq (1) to solve recursively for the activation pattern over the generator neurons, this time tak-

ing into account the noise term.

xnoiseðnÞ ¼ Wnxð0Þ þ
Xn� 1

k¼0

WkVzðn � kÞ þ
Xn� 1

k¼0

WkZðn � kÞ

¼ xðnÞ þ RðnÞ

ð8Þ

where we denoted the noisy activity pattern by xnoise. As expected, Eq (8) implies that the effect

of noise is to drive the original activity pattern by RðnÞ ¼
Pn� 1

k¼0
Wkηðn � kÞ, which represent

the accumulation of noise at the nth time step. Thus in order for the output weights, J, to clas-

sify correctly the noisy dynamics we need to find σnoise for which 8n, kx(n) − xnoise(n)k< κ, i.e.

by Eq (8) we need to satisfy:

k RðnÞ k< k 8n ð9Þ

Calculations show (S1 Text) that under the annealed approximation, the amount of noise that

the network can tolerate is given by:

s2
noise <

k2

N

� �
1 � Ns2

W

1 � ðNs2
WÞ

n ð10Þ

Where σW denotes the variance of an element in the connectivity matrix W,

ðWij � N ð0; s2
WÞÞ. Note that in the large N limit σW is tightly related to |λ|–the maximal eigen-

value of W, through:

s2
W ¼

λ2

N
ð11Þ

Plugging this relation in Eq (10) yields:

s2
noise <

k2

N
1 � λ2

1 � λ2n

� �

ð12Þ

lim n!1

(
k2

N ½1 � λ2� λ < 1

0 λ > 1

ð13Þ

This result is confirmed by numerical simulations in which we calculated kR(n)k for σnoise
that saturates the bound predicted by Eq (12). The average value of kR(n)k over the noise is

compared to our prediction in Fig 5. On average results coincide, supporting the prediction

for the scale of noise the network can tolerate. From Eq (13) we note that for λ> 1, the noise

in the system grows exponentially resulting in an unstable system to noise perturbations. It

further suggests that the robustness to noise depends both on the normalization of W and on

κ. We can explicitly determine λ, but κ is given per certain realization of W, V and a specific

Stabilizing patterns in time

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005861 December 12, 2017 8 / 16

https://doi.org/10.1371/journal.pcbi.1005861

target sequence {zt}. On the one hand, if we fix κ we get that increasing λ lowers the robustness

to noise. But note that, as expected, simulations shows that κ is monotonically increasing func-

tion in λ (Fig 3D). This indicates that there exist an optimal λ, such that the robustness to

noise of the system is ideal. This value will represent the counter balance between the ability to

forget the errors and memorizing the desired sequence.

Other weight matrices

So far our analysis focused on random connectivity, as we avoided from constraining the con-

nectivity. In this section we will mention other classes of connectivity suggested for short term

memory [25].

Shift-register networks. We will start by considering the simplest construction, the shift

register. The simplest shift operator is given by Wij = λδi, j+1. A major drawback of this form is

its extreme sensitivity to removal of a single neuron. A more robust, distributed architecture of

the shift register operation is a fully connected network with

W ¼ λ
XN� 1

k¼1

vðkþ1ÞvðkÞT ð14Þ

where {vk} is an arbitrary set of N orthonormal vectors. Note that this architecture operates

like the simple delay line since W vk = λ vk+1. A clear advantage of these architectures is that

they ensure the use of their N degrees of freedom for memory embedding. Indeed, simulation

shows that for both the simple and distributed shift register, the memory capacity for λ = 0.999

roughly scales as 1.5 N (S1 Fig). This is a surprising result considering that W is nilpotent

matrix of order N. Hence feedback inputs from times earlier than N can’t interfere with cur-

rent inputs. Nonetheless, given an initial condition, different feedback inputs leads to different,

x, states of the network. Noise robustness calculations (S1 Text) suggest that in order for the

Fig 5. Noise robustness. Validity check for the analytic approximation of noise robustness in the system.

Results are given as an average over the noise with fixed target sequence and connectivity. In each

realization we let a N = 300, λ = 0.9 network learn a 60 time step random sequence. We then simulated the

network trajectory for 3 cycles according to Eqs (1) and (2). Where σnoise was chosen such it saturates the

bound given by Eqs (13) and (15). We calculated and present kR(n)k, at each time step. The red dashed

curve is the analytic approximation, the blue curve is the averaged result from the simulation. We see that the

analytic approximation indeed fits well the simulations.

https://doi.org/10.1371/journal.pcbi.1005861.g005

Stabilizing patterns in time

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005861 December 12, 2017 9 / 16

https://doi.org/10.1371/journal.pcbi.1005861.g005
https://doi.org/10.1371/journal.pcbi.1005861

solution to be stable, asymptotically the noise should satisfy

s2
noise <

k2

N
½1 � λ2� ð15Þ

note that asymptotically the noise has similar effect as for the random Gaussian case. Differ-

ences in robustness between the cases depends on κ, which is reminiscent of the different

dynamics.

Random orthogonal network. A natural extension of the shift-register operation is to a

network with W = λ O, where O is an N × N orthogonal matrix. In contrast to the shift-regis-

ter, orthogonal W is full rank and inputs from times earlier than N can interfere with current

inputs. Numerical simulations suggest that for matrices drawn from the Gaussian orthogonal

ensemble the memory capacity per neuron for, λ = 0.999, pushes to Cover’s bound of 2N (S1

Fig). Robustness to noise in this case is similar to the random generic case.

Model generalization - Concrete examples

In this section we consider two tasks that our model, in its generalized form, can easily accom-

plish, without the need for any parameters fine tuning.

Tapping experiment. Here we adopt a sequence learning task (SRT) from [26]. The SRT

is a four-choice reaction time task in which visual cues are linked to spatial-specific motor

responses [27]. In one of its forms visual cues appear in any one of four possible positions

arranged horizontally on a touch tablet. the responses are made by rapidly touching the cued

location with a single finger. The cues are presented in a fixed, structured series of spatial loca-

tions; thus, unbeknown to the subjects, the cues introduce a sequence of lateral movements to

be learned [28].

In order to use our model for this task we need to consider slight generalization (Methods),

i.e. two output units are required to account for any of the four possible positions on the touch

tablet. We will account different feedback loop weights for every output unit, and normalize

them such that the total feedback is Oð1Þ. In the learning phase we will have to solve the per-

ceptron problem twice, once for every output unit.

In [26] part of the subjects had to learn two different, 12 steps sequences, namely S12 (1-2-

1-4-3-2-4-1-3-4-2-3) and R12 (3-2-4-1-3-1-2-3-4-2-1-4), where 1- stands for the left most key

on the touch tablet, and 4—to right most. In order to transform these sequences to valid target

sequences for our model we used the map in Table 1. Our model could easily learn this task,

i.e. 20 neuron with wide scaling of λ managed to learn both sequences, in parallel, successfully.

Learning to play a melody. Here we consider a task previously proposed in [13], where

they used echo state architecture with 400 neurons to learn the melody of the “House of the ris-

ing sun”. This task forces us to use three binary output units, since the melody consists of eight

different notes. We assign different states over the output units to different notes as shown in

Table 1. Map from output units state to key number on the touch-pad.

Output units state key number

{-1,-1} 1

{1,-1} 2

{-1,1} 3

{1,1} 4

https://doi.org/10.1371/journal.pcbi.1005861.t001

Stabilizing patterns in time

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005861 December 12, 2017 10 / 16

https://doi.org/10.1371/journal.pcbi.1005861.t001
https://doi.org/10.1371/journal.pcbi.1005861

Table 2. The target sequence, taken from [13], when written in terms of notes is

zt ¼ fA;A;A;B;B];B];D];C];C];A;B];B];A0;A0;A0;A0;G0;D];C];D];

D];D];D];D];A0;A0;A0;A0;G0;G0;D];C];C];A;B];B];

A;A;A;A;G];G];G];A;A;A;A;Ag

ð16Þ

Learning has been done similarly as in the previous example, this time learning three differ-

ent output weights. We found that our network easily learns this task, i.e. with completely ran-

dom connectivity, and for a wide range of normalization factors, λ. For example the minimum

number of neurons (λ = 0.75) required for that task is 21, with κ * 10−3. With 400 neurons

(λ = 0.999) the margin increased by two order of magnitude, κ * 3 � 10−1. This is another

example to the ability of our model to generalize easily, accounting for multiple output units.

Note that it also boosts its performance, relative to the single unit case, as in this example the

memory capacity per neuron >2, which is impossible with single output unit.

Discussion

We presented a simple solution to the stability problem in learning temporal sequences by

recurrent networks. By considering a linear activation function for a recurrent neural network

with feedback loop, we could cast the problem of learning a temporal sequence of actions over

the output unit to a simple perceptron problem. Using our method we could get a perfect

reproduction of a target sequence for many trials, even in the presence of noise. The robustness

to noise was calculated in terms of the perceptron solution margin.

Non-linear classification This work only considered linear classification for simplicity.

Allowing for non-linear classification, e.g. by the kernel method [29], one can potentially

improve the performance of the network. Indeed, we managed to improve the memory capac-

ity by roughly tenfold, using a radial basis kernel (Methods). In order to best exploit this

method one should systematically search for the best kernel and an optimal procedure to

determine its parameters values, which was out of scope in this work.

Parallel learning A dramatic effect has been observed when facing the task of learning sev-

eral sequences in parallel. In our model it is possible to learn many sequences, such that the

total number of actions the network can learn, substantially overcomes the length of the single

sequence maximal length. While the core reason for this property remains mysterious for us,

we would like to discuss a mathematical explanation and what it biologically infer. Mathemati-

cally the ability to learn sequence or sequences depends on the distribution in phase space of

the training set. In our model, strong correlations are induced by the feedback loop, i.e. by the

statistics of the target sequence. As mentioned in [20–22] the memory capacity, of the

Table 2. Map from output units state to numerical values which represent notes, according to [13].

Output units state Numerical value Note

{-1,-1,-1} -1 G]

{1,-1,-1} 0 A

{1,1,-1} 2 B

{1,-1,1} 3 B]

{-1,-1,1} 5 C]

{-1,1,1} 7 D]

{-1,1,-1} 12 G0

{1,1,1} 14 A0

https://doi.org/10.1371/journal.pcbi.1005861.t002

Stabilizing patterns in time

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005861 December 12, 2017 11 / 16

https://doi.org/10.1371/journal.pcbi.1005861.t002
https://doi.org/10.1371/journal.pcbi.1005861

perceptron, monotonically increase with increased correlations in both input and output.

Even though they considered different model, we believe this finding stands in one with the

effect observed in parallel learning. In our model different sequences are correlated in some

manner through the dynamics (W, V) and the similar statistics of the target sequence.

In the biological aspect, our finding suggest that it is economical to use a neural microcir-

cuit for learning several short sequences rather than a long single sequence, which is a desirable

property from a memory circuit.

Other weight matrices Our work focused on random connectivity, as we avoided from

making assumptions on the internal structure. Nonetheless, major improvement in the net-

work performance has been observed for other types of weight matrices. The special structure

of these matrices better exploit the N degrees of freedom available to the network for memory

embedding. This property also makes the memory capacity extensive. This finding should

motivate future work that might consider learning procedures allowing for internal synapses

modifications.

Multiple output units In this work we considered two examples of generalizing our model

for multiple output units (two and three). Generally, the model will generalize to an arbitrary

number of output units. But, since the output states available for the network are exponential

in the number of output units, only small number of these are sufficient to produce a fairly

rich output sequence. The performance for multiple output units haven’t been studied system-

atically in this work. Nonetheless, we note that considering multiple output units is beneficial

for the network performance. e.g 21 neuron are sufficient to study a 48 step periodic sequence

(melody of the “House of the rising sun”), while with a single output unit, a network with 20

neuron could maximally learn a 30 step periodic sequence. Note that in the case of multiple

units the network is driven, by its own feedback, in various directions. That compared to the

case of a single output unit, which only feeds back on a single vector, V. Thus multiple output

units encourage the dynamic of the network to span larger volume in phase space, making the

perceptron problem easier.

Continuous time case Extension of our model to a Continuous time representation is con-

sidered in S2 Text. Nonetheless, such an extension turned out yielding a major drawback.

While in the discrete time case our method succeed in providing a robust solution, in the con-

tinuous time case it failed, as the margin approaches zero every time there is a jump in the tar-

get sequence. As a result, in the continuous case, the network was only able to reproduce the

sequence with small jitters. It was numerically evident that the network is vulnerable to noise

in the initial condition alone—hence it is vulnerable to noise in general. Changing the learning

procedure, i.e. allowing modification in all synapses, internal and feedback connections, might

help stabilizing the solution. Note that by taking this route the problem isn’t a simple percep-

tron problem any more, so a new learning rule should be obtained. One should note that mod-

ifying connections within the network, also changes the itinerary of the neural dynamic in

phase space. This fact is what turns such an approach to a challenging one. Other works [15]

used this approach, but as mentioned before, the network activity will eventually deviate from

its target function outside the training window.

Timing is fundamental component for many of our day to day tasks. Yet, the neural mecha-

nism underlying temporal processing remain unknown and controversial. It is not clear

whether timing is dedicated to certain brain areas, or it is a general property, emerging from

the neural activity. In our approach we used the dynamics of a recurrent neural network to

implicitly represent time. That is, we encoded the timing of actions in the dynamics of the

network.

From our results it is hard to be conclusive regarding this question. On the one hand, from

the discrete time case it is evident, that indeed it is possible to encode time in a robust manner

Stabilizing patterns in time

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005861 December 12, 2017 12 / 16

https://doi.org/10.1371/journal.pcbi.1005861

within the neural activity. On the other hand, in the continuous case we did face stability prob-

lem, which might only be a property of our mathematical solution.

In our mind, if it possible to robustly encode time in the discrete case, it should also be pos-

sible in the continuous case. As a consequence we do believe that this work support the claim

in which timing is a general property of the brain, emerging from the neural activity.

Methods

The perceptron learning algorithm

In simulations we solved both the primal and dual form of the soft margin perceptron prob-

lem, as defined in [29, 30]. For learning multiple sequences in parallel we used the primal for-

mulation, for the longest single sequence we used the dual formulation. The primal problem

takes the following form

minimize :
1

2
J � Jþ λ

XT

i¼1

xi

subject to : xi � 0 8i 2 1; ::;T

zitðJ � xi þ bÞ � 1 � xi

Where J is the separating hyperplane and ξi’s are slack variables, yielding ξi = 0 for patterns on

the correct side of the margin. 0< ξi< 1 for patterns in the margin and ξi> 1 for wrongly clas-

sified patterns. In this formulation choosing small values of λ will encourage a large margin,

with possible not optimal performance on the training data, while large values of λ will encour-

age a solution that performs well on the training data. The advantage of solving the “soft” prob-

lem is that a solution that minimizes the objective function exists. We used λ = 1048 which

effectively serves as λ!1, to encourage correct classification over the training data. The dual

problem takes the following form

minimize :
1

2

XT

i;j¼1

aiajz
i
tz

j
tðxi � xjÞ �

XT

i¼1

ai

subject to : 0 � ai � λ 8i
X

i

aiz
i
t ¼ 0

from the dual formulation the separating hypeplane is given by the support vectors

J ¼
XT

i¼1

â iz
i
txi ð17Þ

the bias is calculated as a weighted average of the a0is, to deal with roundoff errors

b ¼
XT

i¼1

â iðz
i
t � J � xiÞ=

X

i

â i ð18Þ

Numerically we used the the matlab function quadprog, to solve both types of optimization

problems. We set it with interior-point-convex algorithm and maximum number of iterations

of 9000, to prevent it from terminating prematurely.

Non-linear classification Solving the dual problem generalizes easily for solving a non-lin-

ear classification problem by choosing an appropriate kernel [29], i.e substituting xi � xj with a

general kernel K(xi, xj). Individual simulations with radial basis kernel,

Stabilizing patterns in time

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005861 December 12, 2017 13 / 16

https://doi.org/10.1371/journal.pcbi.1005861

Kðxi; xjÞ ¼ exp � jjxi � xjjj
2

2s2

h i
, and σ set to typical distance between vectors, could increase the

memory capacity by an order of magnitude (Not shown). This observation is based on single

trials and not studied systematically.

Simulations technique

The connectivity matrix, W, was constructed such that its largest eigenvalue is of particular

value λ. To do so we first draw a random matrix with elements ~Wij � N 0; λ
2

N

� �
, and applied

normalization such that W ¼ λ
λmax

~W. Where λmax is the largest eigenvalue, in absolute value of

~W. Every element in the feedback weight vector, Vi, was drawn from a standard normal distri-

bution and normalized such that kVk = 1. In each trial of the simulation we where interested

in learning a specific binary sequence {zt} of length T, such that, zt(t) = ±1 with probability 1

2
.

For each setup of random connections W, V we let the network learn various random

sequences {zt} of different length T. After learning the output weight vector J, we have simu-

lated the network dynamic with Eqs (1) and (2) for 5 cycles (e.g. for target sequence T, we have

simulated the network dynamics for 5T time steps). Eventually we compared the simulated

output versus the target sequence {zt} counting for erroneous actions. For each sequence

length we averaged the error over 300 repetitions of different random sequences. In addition

we have done so for a given network setup over different normalization of W, i.e. different val-

ues of λ, note that that we have trained each specific random pattern over all different normali-

zation of W. Following this procedure we have constructed the memory curve for a given

network of size N, see S1 Fig for example. From such figure we extracted the memory capacity

(MC) for each normalization of W, we have done so by taking the point on which the deriva-

tive of the curve is largest. Doing so for different realization of network setups we have plotted

the memory capacity normalized by the network size (N) for different normalization of W, as

can be seen in Fig 3.

Several sequences in parallel In order to construct Fig 4 we used Simulations of equal

length sub-sequences. Given a number (denote by s) of sequences we wish to learn in parallel.

We look for the maximal length, Tmax
s , for which we can learn this set of s sequences. Sequences

are again binary with equal probability to be in each state. The memory capacity for a set of s
sequences is just sTmax

s .

Multiple output units A generalization of the model is to consider an arbitrary number, l,
of output units, zi, i = 1, 2, . . ., l, generally satisfying l� N. Each output unit has its own feed-

back loop Vi, keeping the total feedback Oð1Þ, requires jjVijj ¼
1ffi
l
p . In the learning phase the

perceptron problem is solved for each output unit separately, i.e. finding the best hyperplane,

Ji for each unit. Note that the margin in this case is defined by minki i, i.e. the minimal margin

from all of the l perceptron problem solved.

Supporting information

S1 Text. The discrete time case. This section includes noise robustness calculations for several

weight matrices.

(PDF)

S2 Text. The continuous time case. In this section we generalize our model to continuous

time.

(PDF)

Stabilizing patterns in time

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005861 December 12, 2017 14 / 16

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005861.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005861.s002
https://doi.org/10.1371/journal.pcbi.1005861

S1 Fig. Memory curves for the Delay-line and random orthonormal connectivity.

(TIF)

S2 Fig. Example for learning a continuous sequence.

(TIF)

S3 Fig. The continuous solution dynamics.

(TIF)

S4 Fig. Memory capacity for the continuous case.

(TIF)

S5 Fig. Example of the continuous time learning algorithm.

(TIF)

Acknowledgments

We thank Elad Schneidman and Eitan Domany for helpful comments on the manuscript.

Author Contributions

Conceptualization: Misha Tsodyks.

Formal analysis: Nadav Ben-Shushan, Misha Tsodyks.

Funding acquisition: Misha Tsodyks.

Investigation: Nadav Ben-Shushan, Misha Tsodyks.

Methodology: Nadav Ben-Shushan, Misha Tsodyks.

Writing – original draft: Nadav Ben-Shushan, Misha Tsodyks.

Writing – review & editing: Nadav Ben-Shushan, Misha Tsodyks.

References
1. Reiss R. A theory of resonance networks. Neural theory. 1964;.

2. Harmon LD. Neuromimes: action of a reciprocally inhibitory pair. Science. 1964; 146(3649):1323–1325.

https://doi.org/10.1126/science.146.3649.1323 PMID: 14207464

3. Wilson DM, Waldron I. Models for the generation of the motor output pattern in flying locusts. Proceed-

ings of the IEEE. 1968; 56(6):1058–1064. https://doi.org/10.1109/PROC.1968.6457

4. Kling U, Székely G. Simulation of rhythmic nervous activities. Kybernetik. 1968; 5(3):89–103. https://

doi.org/10.1007/BF00288899 PMID: 5728516

5. Kleinfeld D, Sompolinsky H. Associative neural network model for the generation of temporal patterns.

Theory and application to central pattern generators. Biophysical Journal. 1988; 54(6):1039. https://doi.

org/10.1016/S0006-3495(88)83041-8 PMID: 3233265

6. Kleinfeld D, Sompolinsky H. Associative network models for central pattern generators. Methods in neu-

ronal modeling. 1989;p. 195–246.

7. Hebb DO. The organization of behavior. New York: Wiley; 1949.

8. Jordan MI. Serial order: A parallel distributed processing approach. Advances in psychology. 1997;

121:471–495. https://doi.org/10.1016/S0166-4115(97)80111-2

9. Elman JL. Finding structure in time. Cognitive science. 1990; 14(2):179–211. https://doi.org/10.1207/

s15516709cog1402_1

10. Horton JC, Adams DL. The cortical column: a structure without a function. Philosophical Transactions

of the Royal Society B: Biological Sciences. 2005; 360(1456):837–862. https://doi.org/10.1098/rstb.

2005.1623

11. Maass W, Joshi P, Sontag ED. Computational aspects of feedback in neural circuits. PLoS Comput

Biol. 2007; 3(1):e165. https://doi.org/10.1371/journal.pcbi.0020165 PMID: 17238280

Stabilizing patterns in time

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005861 December 12, 2017 15 / 16

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005861.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005861.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005861.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005861.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005861.s007
https://doi.org/10.1126/science.146.3649.1323
http://www.ncbi.nlm.nih.gov/pubmed/14207464
https://doi.org/10.1109/PROC.1968.6457
https://doi.org/10.1007/BF00288899
https://doi.org/10.1007/BF00288899
http://www.ncbi.nlm.nih.gov/pubmed/5728516
https://doi.org/10.1016/S0006-3495(88)83041-8
https://doi.org/10.1016/S0006-3495(88)83041-8
http://www.ncbi.nlm.nih.gov/pubmed/3233265
https://doi.org/10.1016/S0166-4115(97)80111-2
https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.1098/rstb.2005.1623
https://doi.org/10.1098/rstb.2005.1623
https://doi.org/10.1371/journal.pcbi.0020165
http://www.ncbi.nlm.nih.gov/pubmed/17238280
https://doi.org/10.1371/journal.pcbi.1005861

12. Dominey PF. Complex sensory-motor sequence learning based on recurrent state representation and

reinforcement learning. Biological cybernetics. 1995; 73(3):265–274. https://doi.org/10.1007/

BF00201428 PMID: 7548314

13. Jaeger H. The “echo state” approach to analysing and training recurrent neural networks-with an erra-

tum note. Bonn, Germany: German National Research Center for Information Technology GMD Techni-

cal Report. 2001; 148:34.

14. Maass W, Natschläger T, Markram H. Real-time computing without stable states: A new framework for

neural computation based on perturbations. Neural computation. 2002; 14(11):2531–2560. https://doi.

org/10.1162/089976602760407955 PMID: 12433288

15. Sussillo D, Abbott LF. Generating coherent patterns of activity from chaotic neural networks. Neuron.

2009; 63(4):544–557. https://doi.org/10.1016/j.neuron.2009.07.018 PMID: 19709635

16. Jaeger H, Haas H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless

communication. Science. 2004; 304(5667):78–80. https://doi.org/10.1126/science.1091277 PMID:

15064413

17. Schiller UD, Steil JJ. Analyzing the weight dynamics of recurrent learning algorithms. Neurocomputing.

2005; 63:5–23. https://doi.org/10.1016/j.neucom.2004.04.006

18. Rosenblatt F. The perceptron: A probabilistic model for information storage and organization in the

brain. Psychological review. 1958; 65(6):386. https://doi.org/10.1037/h0042519 PMID: 13602029

19. Rosenblatt F. Principles of neurodynamics. 1962;.

20. Bressloff P, Taylor J. Temporal sequence storage capacity of time-summating neural networks. Journal

of Physics A: Mathematical and General. 1992; 25(4):833. https://doi.org/10.1088/0305-4470/25/4/020

21. Bressloff P, Taylor JG. Perceptron-like learning in time-summating neural networks. Journal of Physics

A: Mathematical and General. 1992; 25(16):4373. https://doi.org/10.1088/0305-4470/25/16/014

22. Clopath C, Nadal JP, Brunel N. Storage of correlated patterns in standard and bistable Purkinje cell

models. PLoS Comput Biol. 2012; 8(4):e1002448. https://doi.org/10.1371/journal.pcbi.1002448 PMID:

22570592

23. Girko V. Circular law. Theory of Probability & Its Applications. 1985; 29(4):694–706. https://doi.org/10.

1137/1129095

24. Hertz J, Krogh A, Palmer RG, Horner H. Introduction to the Theory of Neural Computation. Physics

Today. 2008; 44(12):70–70. https://doi.org/10.1063/1.2810360

25. White OL, Lee DD, Sompolinsky H. Short-term memory in orthogonal neural networks. Physical review

letters. 2004; 92(14):148102. https://doi.org/10.1103/PhysRevLett.92.148102 PMID: 15089576

26. Adini Y, Bonneh YS, Komm S, Deutsch L, Israeli D. The time course and characteristics of procedural

learning in schizophrenia patients and healthy individuals. Frontiers in human neuroscience. 2015;

9:475. https://doi.org/10.3389/fnhum.2015.00475 PMID: 26379536

27. Nissen MJ, Bullemer P. Attentional requirements of learning: Evidence from performance measures.

Cognitive psychology. 1987; 19(1):1–32. https://doi.org/10.1016/0010-0285(87)90002-8

28. Richard MV, Clegg BA, Seger CA. Implicit motor sequence learning is not represented purely in

response locations. The Quarterly Journal of Experimental Psychology. 2009; 62(8):1516–1522.

https://doi.org/10.1080/17470210902732130 PMID: 19283555

29. Cortes C, Vapnik V. Support-vector networks. Machine learning. 1995; 20(3):273–297. https://doi.org/

10.1007/BF00994018

30. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes in C. vol. 2. Cambridge Univ

Press; 1982.

Stabilizing patterns in time

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005861 December 12, 2017 16 / 16

https://doi.org/10.1007/BF00201428
https://doi.org/10.1007/BF00201428
http://www.ncbi.nlm.nih.gov/pubmed/7548314
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1162/089976602760407955
http://www.ncbi.nlm.nih.gov/pubmed/12433288
https://doi.org/10.1016/j.neuron.2009.07.018
http://www.ncbi.nlm.nih.gov/pubmed/19709635
https://doi.org/10.1126/science.1091277
http://www.ncbi.nlm.nih.gov/pubmed/15064413
https://doi.org/10.1016/j.neucom.2004.04.006
https://doi.org/10.1037/h0042519
http://www.ncbi.nlm.nih.gov/pubmed/13602029
https://doi.org/10.1088/0305-4470/25/4/020
https://doi.org/10.1088/0305-4470/25/16/014
https://doi.org/10.1371/journal.pcbi.1002448
http://www.ncbi.nlm.nih.gov/pubmed/22570592
https://doi.org/10.1137/1129095
https://doi.org/10.1137/1129095
https://doi.org/10.1063/1.2810360
https://doi.org/10.1103/PhysRevLett.92.148102
http://www.ncbi.nlm.nih.gov/pubmed/15089576
https://doi.org/10.3389/fnhum.2015.00475
http://www.ncbi.nlm.nih.gov/pubmed/26379536
https://doi.org/10.1016/0010-0285(87)90002-8
https://doi.org/10.1080/17470210902732130
http://www.ncbi.nlm.nih.gov/pubmed/19283555
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1371/journal.pcbi.1005861

