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Mucopolysaccharidosis type I (MPS I), is an autosomal recessive lysosomal storage disorder caused by a deficien-
cy in the α-L-iduronidase enzyme, resulting in decreased enzymatic activity and accumulation of glycosamino-
glycans. The disorder phenotypically manifests with increased urine glycosaminoglycan excretion, facial
dysmorphology, neuropathology, cardiac manifestations, and bone deformities. While the development of new
treatment strategies have shown promise in attenuating many symptoms associated with the disorder, the
bone phenotype remains unresponsive. The aimof this studywas to investigate and further characterize the skel-
etalmanifestations of the Idua-W392Xknock-inmousemodel, which carries a nonsensemutation corresponding
to the IDUA-W402X mutation found in Hurler syndrome (MPS I-H) patients. μCT analysis of the
microarchitecture demonstrated increased cortical thickness, trabecular number, and trabecular connectivity
along with decreased trabecular separation in the tibiae of female homozygous Idua-W392X knock-in
(IDUA−/−) mice, and increased cortical thickness in male IDUA−/− tibiae. Cortical density, as determined by
μCT, and bone mineral density distribution, as determined by quantitative backscattered microscopy, were
equivalent in IDUA−/− and wildtype (Wt) bone. However, tibial porosity was increased in IDUA−/− cortical
bone. Raman spectroscopy results indicated that tibiae from female IDUA−/− had decreased phosphate tomatrix
ratios and increased carbonate to phosphate ratios compared toWt female tibiae, whereas these ratios remained
equivalent inmale IDUA−/− andWt tibiae. Femora demonstrated altered geometry and upon torsional loading to
failure analysis, female IDUA−/− mouse femora exhibited increased torsional ultimate strength, with a decrease
inmaterial strength relative toWt littermates. Taken together, these findings suggest that the IDUA−/−mutation
results in increased bone torsional strength by altering the overall bone geometry and the microarchitecture
which may be a compensatory response to increased porosity, reduced bone tensile strength and altered physi-
ochemical composition.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
IDUA, α-L-iduronidase; GAGs,
; BMDD, bone mineral density
V, bone volume/total volume;
ength; Su, tensile strength; U,
ity; BMD, bone mineral density.
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1. Introduction

Mucopolysaccharidosis type I (MPS I; MIM# 252800) is an autoso-
mal recessive lysosomal storage disorder caused by a deficiency in the
lysosomal enzyme α-L-iduronidase (EC 3.2.1.76), which catalyzes the
degradation of the glycosaminoglycans (GAGs), dermatan sulfate and
heparan sulfate [1]. The clinical severity of MPS I is dependent upon
α-L-iduronidase activity, which can vary widely and has been catego-
rized into three distinct phenotypic subtypes: MPS I-Hurler (MPS I-H;
MIM# 607014), MPS I-Scheie (MPS I-S; MIM# 607016), and MPS I-
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Hurler/Scheie (MPS I-H/S; MIM# 607015), with the clinical severity
ranging from MPS I-H being the most severe subtype to MPS I-S being
the least severe. The incidence of MPS I-H is estimated to occur in
1:100,000 births [2]. The accumulation of GAGs results in progressive
cellular damage and visual impairment, hearing loss, cardiacmanifesta-
tions, organomegaly, developmental delaywith subsequent progressive
cognitive decline initiated by age 2 in severe MPS I-H patients [3]. Fur-
thermore, MPS I-H patients present with severe skeletal abnormalities
through poorly understood mechanisms [4]. The skeletal abnormalities
are collectively known as dysostosis multiplex, and consist of stiffness
and contracture of joints, enlarged skull, genu valgum, thoracolumbar
kyphosis, hip dysplasia, abnormally shaped vertebrae and ribs, hypo-
plastic epiphyses and short stature [5–8]. As a result of the skeletalman-
ifestations, MPS I-H patients typically undergo multiple high-risk
surgical interventions to delay the progression of the skeletal disease
and improve quality of life [9–11]. Novel therapeutic treatments such
as bonemarrow or umbilical cord blood transplantation andweekly en-
zyme replacement are currently being used to sustain overall enzyme
activity and have improved and extended the quality of life of Hurler
patients. However, these treatments are unable to fully prevent devel-
opment of the skeletal manifestations in Hurler patients [9,12]. There-
fore, despite these therapeutic gains, MPS-I patients continue to
endure the consequences of disabling, painful bone disease that often
require rigorous surgical intervention.

In contrast to the two previously reported Idua knock-out mouse
models, Idua−/− and MPS I [13,14], the Idua-W392X knock-in mouse
model carries a nonsense mutation corresponding to the IDUA-W402X
mutation, commonly found in Hurler syndrome patients [15]. Wang
et al. showed that the phenotype of Idua-W392Xmousemodel parallels
that of human MPS I-H disease, which includes GAG accumulation due
to loss of α-L-iduronidase activity, cardiac manifestations and bone ab-
normalities such as broadening of the face, thickening of the zygomatic
arch and atypical femur length andwidth [15]. Even though the existing
animal models have been useful in evaluating various therapeutic ap-
proaches such as enzyme replacement therapy [16], bone marrow
transplantation [17,18], and gene therapy [19,20], much of the molecu-
lar mechanisms leading to the pathology remain to be elucidated. Al-
though it has been shown that the Idua-W392X presents with typical
skeletal findings of MPS I-H [15,21], the whole bone biomechanical
and material properties have not been evaluated. The paucity in under-
standing the pathogenicmechanisms responsible for themusculoskele-
tal manifestations likely contributes to the absence of improvement in
the bone phenotype with the current therapies.

The goal of this study was to evaluate the microarchitecture, physi-
ochemical composition and biomechanical integrity of the Idua-
W392X knock-in mouse model, in order to better define the underlying
biomechanical properties of the skeletal abnormalities and to begin to
elucidate the physiochemical mechanisms. Femora and tibiae from
wildtype (Wt), heterozygous Idua-W392X (IDUA+/−) and homozygous
Idua-W392X (IDUA−/−) 16 week old mice were evaluated on the basis
of whole bone biomechanical integrity and material properties. This
study highlights the microarchitectural, physiochemical, and biome-
chanical basis of the MPS I-H skeletal phenotype and can be used to
drive forward the design and improvement of current and future thera-
pies to improve the bone quality of MPS I-H patients.

2. Methods

2.1. Animals and tissue harvest

The Idua-W392X mice were a generous gift from Dr. Kim Keeling,
University of Alabama at Birmingham, Alabama [15]. Idua-W392X
micewere previously backcrossed into a C57BL/6J congenic background
[17]. IDUA+/− breeding pairs and their offspring were housed in an
AAALAC accredited facility at the University of Missouri-Columbia and
had ad libitum access to water and food (Purina 5008 Formulab Diet;
PurinaMills Inc., St. Louis, MO). This study was performed under an ap-
proved University of Missouri Animal Care and Use Protocol. The
breeders and offspring were genotyped as previously described [17]
and weighed weekly starting at 5 weeks of age. The mice were raised
to 16 weeks of age (peak bone mineral density [22]), sacrificed, and
femora and tibiae were excised, the soft tissue removed, and the
bones wrapped in sterile 1× PBS soaked gauze and stored at −20 °C
until analyzed.

2.2. Tibial microarchitecture analysis

The macro- and microarchitecture of the left tibiae was determined
bymicrocomputed tomography (μCT)with the vivaCT 40 (ScancoMed-
ical AG, Bassersdorf, Switzerland) as previously described [23] using
55 kVp X-ray tube potential, 145 μA current, 10 μm voxel resolution,
and 200 ms integration time to assess cortical bone and trabecular
bone properties. By hydroxyapatite calibration, the voxel values were
converted to a mineral-equivalent value, milligrams per cubic centime-
ter (mg/cm3). Three dimensional images of the tibiae were reconstruct-
ed along the long axis with series of 10 μm-thick slices, using a global
threshold of 253 (μCT gray value). The tibial cortical density and thick-
ness were evaluated in the transverse plane at the mid-shaft starting
1 mm proximal to the fibula–tibia junction. The proximal metaphysic
trabecular bone was analyzed 1 mm below the growth plate, and the
following determined: the bone volume fraction (BV/TV), trabecular
bone density, thickness, number, separation, connectivity density,
which describes abundance of trabecular connections, and the structure
model index (SMI), which describes shape of individual trabecular bone
ranging from 0 (perfect plate) to 3 (cylindrical rods) [24,25].

2.3. Tibial bone mineral density distribution and porosity

Quantitative backscattered scanning electron microscopy of left
tibias was used to characterize the bone mineral density distribution
(BMDD) and porosity. Tibiae were scanned in a digital electron
microscope containing a four-quadrant semiconductor backscattered
detector (Evo, Ziess, Germany). Imaging was performed at a 20 kV ac-
celerating voltage, saturated filament current, 0.5 nA probe current
measured with a Faraday cup and aworking distance of 12mm.Magni-
fication settings, store resolution and scan speed were kept consistent
between different imaging sessions to result in a pixel size of 760 nm.
Several high magnification images were taken from the cross section
of each sample and the images were combined using an image process-
ing software (Image composite editor, Microsoft Research) to form the
whole bone cross section. To calibrate the backscattered signal, pure
carbon and aluminum standards (Micro-Analysis Consultants, UK)
were imaged in each scan and at the same condition of imaging the
bone. Calibration standards were imaged in several intervals while
scanning the bone. After imaging, the graylevel numbers of standards
were averaged between each two subsequent images of the phantom
to account for the signal variations. In a post-processing analysis and
to keep the scale of the graylevel histograms consistent between im-
ages, graylevel numbers of the bone and phantomwere expanded line-
arly such that carbon and aluminum were 25 and 225, respectively. A
histogram containing the incidence of graylevel numbers was calculat-
ed for each sample and the mode and the full width at half maximum
(FWHM) of the histograms were determined. The bone porosity was
determined by excluding regions with cracks and microcracks from
the bone cross-section and then determining the fraction of the bone
area with lacunae and blood vessels relative to the total bone area
(Fig. 3A–C).

2.4. Bone mineral and matrix composition

Following μCT analyses the left tibia was sliced across the diaphyseal
midshaft and the cortical bone cross-sectionswere evaluated by Raman
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spectroscopy using a LabRam HR 800 Raman spectrometer (Horiba
JobinYvon, Edison, NJ). Raman spectroscopy uses molecular vibrational
techniques to evaluate the chemical properties (structure and composi-
tion) of the mineral and organic matrix components of bone. Averaged
bone biochemical composition was determined from Raman spectra
(700 to 1800 cm−1 range) that were excited by a helium-neon laser
(633 nm) with a 50× water immersion objective as previously de-
scribed [23], allowing acquisition of peaks attributed to the bone min-
erals and proteins. For each tibia the midshaft cortical cross-section
was examined at 4 points (anterior, posterior, medial and lateral) and
the data averaged for each sample. Spectra analyses were performed
to measure the area of hydroxyapatite ν1 PO4

3− peak (960 cm−1), type
B ν1 CO3

2− peak (1070 cm−1), and matrix CH2 band (1450 cm−1) and
amide I [23]. The ratios of carbonate/phosphate (CO3

2−/PO4
3−), mineral

to matrix (PO4
3−/CH2), and mineral to collagen (PO4

3−/amide I) were
assessed.

2.5. Femoral μCT and torsional loading to failure

Prior to bone biomechanical testing, the right femoral geometric
parameters were evaluated by μCT analyses (MicroCAT II, Siemens
Medical). The image slices were reconstructed using the Amira 5.3.3
software package (Mercury Computer Systems/TGS) as previously
described [23] to give a cubic voxel dimension of 0.083 mm3. The
mid-shaft slice was modeled as a hollow elliptical cross-section with
periosteal (p) and endosteal (e) anterior–posterior (dp and de; minor
diameters) and medio-lateral (Dp and De; major diameters, and q =
De / Dp). Each femora was potted into a customized single use holder
with an exposed femur test length of 7 mm, and then subjected to tor-
sional loading to failure analyses as previously described using the TA-
HDi testing machine (Stable Micro Systems, Surrey, UK) [23]. Applied
torque T (Nmm)was determined and evaluated as a function of relative
angular displacement θ (degrees) (Fig. 6A). Thewhole boneparameters,
torsional ultimate strength (Tmax, Nmm), strain energy to failure
(U, Nmm) and torsional stiffness (Ks, Nmm/rad), take into account
both the material the bone is comprised of and the size and shape of
the bone. The bone material properties, tensile strength (Su, N/mm2;
Su = [16Tmax / (πDpdp2(1 − q4))] and shear modulus of elasticity, (G,
N/mm2; shear modulus of elasticity = torsional stiffness × 7 mm /
polar moment of area), were assessed as previously described [23].

2.6. Statistical analysis

All statistical analyses were performed using SAS (SAS Institute Inc.,
Cary, NC). Growth curves quantifying body weight were analyzed as
a repeated measures design (split plot and time) as outlined by
Littell et al. [26]. The fixed effects were arranged as a 3 × 2 × 12 factorial
(3 genotypes × 2 sexes × 12 time points). The genotype, sex, and
genotype × sex interactions represent the main plot, and time and all
possible interactions with the main plot represent the subplot. The de-
nominator of F for the main plot effect was the random effect, mouse
ID per given genotype and sex. The residual mean square was used to
test all subplot effects. Since this was a three-way interaction the differ-
ences between genotypes were tested for the two sexes keeping time
constant.

Bone microarchitecture, geometric parameters, and biomechanical
properties were evaluated by analysis of covariance with body weight
as the covariate, and the physiochemical parameters were evaluated
by analysis of variance by a 3 × 2 factorial (3 genotypes and 2 sexes).
Specifically, mean differences were determined using Fisher's Protected
Least Significant Difference [27]. Fisher's Protected Least Significant
Difference permits most comparisons to be orthogonal (independent)
using a contrast statement. Six preplanned pairwise comparisons were
analyzed. When heterogeneous variations made it necessary (p ≤ 0.05
as determined by Bartlett's test for homogeneity), a log transformation
was used to stabilize the variation. If the log transformation failed to
stabilize the variation, a non-parametric ranked analysis was performed
according to Conover et al. [28]. Data are presented asmean± standard
error (SE). Differences were considered to be statistically significant at
p ≤ 0.05.

3. Results

3.1. Growth curves

Both male and female IDUA−/− mice were inherently heavier than
their Wt and IDUA+/− littermates at 16 weeks of age (Fig. 1). Growth
curves indicated that male IDUA−/− mice began to diverge from their
Wt and IDUA+/− littermates at 10 weeks of age (Fig. 1A). Female
IDUA−/− mice also began to diverge from their Wt littermates at 10
weeks, but did not become significantly heavier than their IDUA+/− lit-
termates until 16 weeks of age (Fig. 1B). Sex-matchedWt and IDUA+/−

littermates had similar weights at 16 weeks of age (Fig. 1). These find-
ings were consistent with the previous study by Russell et al. [29]. In
order to determine if the effect of the Idua-W392X mutation on the
bone is independent of the increase in body weight, the following
microarchitecture, geometric, and biomechanical data were evaluated
by analysis of covariance with body weight as the covariate.

3.2. Microarchitecture

Evaluation of the skeletal microarchitecture determined that tibiae
from female IDUA−/− mice had increased cortical thickness (Table 1),
as well as increased trabecular number (Fig. 2D) and connectivity den-
sity (Fig. 2F), and a subsequent decrease in trabecular separation
(Fig. 2E) compared to their Wt and IDUA+/− littermates. Sixteen week
old male IDUA−/− tibiae exhibited similar trends, but only cortical
thickness reached significance (Table 1). The tibiae of IDUA+/− mice
were equivalent toWt littermates for the majority of the bone parame-
ters, except IDUA+/− females showed an increase in cortical density,
and IDUA+/− males showed an increase in trabecular density when
compared to Wt counterparts (Table 1). Genotype related changes in
trabecular density, thickness, or SMI were not observed at 16 weeks of
age (Table 1). These data suggest that the IDUA−/− mutation alters
both the cortical and trabecular bone microarchitecture and appears
to be more pronounced in female mice.

3.3. Cortical density and porosity

Quantitative back-scattered electron microscopy was used to evalu-
ate the bone mineral density distribution (BMDD) at mid-diaphysis of
the mouse tibia. In bone, atomic number of the matrix is related to the
calcium content and therefore, areas which contain a higher concentra-
tion of calcium had a higher graylevel number, which for the Wt,
IDUA+/−, and IDUA−/− images (Fig. 3A, B & C) is indicated in orange
to red and the regions with the least mineralization (Lacunae and oste-
oid) are represented by the lower graylevel number and the color blue.
By quantitative backscattered scanning electron microscopy the BMDD
of femaleWt and IDUA−/− tibiaswas equivalent (Fig. 3E–F), confirming
the μCT cortical density findings (Table 1). Tibial porosity was defined
and calculated as the area of pores (blue) divided by the area of the
bone. The quantification indicated IDUA−/− tibial cortical bone porosity
was 50% greater than Wt, while the cortical porosity of the IDUA+/−

tibias were 12.2% greater than age and sex matched Wt littermates
(Fig. 3G).

3.4. Material composition

To investigate the material and physiochemical properties of the
cortical bone, Raman spectroscopy was performed to quantify specific
components: phosphate (PO4

3−), carbonate (CO3
2−), matrix (CH2) and

collagen (amide I). Tibiae from male Wt, IDUA+/−, and IDUA−/− mice



Fig. 1.Weekly weighing demonstrated that A) male and B) female IDUA−/− (triangle) mice exhibited increased body weight compared to their Wt (circle) and IDUA+/− (square) litter-
mates at 16weeks of age.Micewereweighedweekly from5–16weeks of age. Values are themeansof sex and genotype specific groups. * denotes IDUA−/−weight difference compared to
sex-matchedWt littermates and#denotes IDUA−/−weight difference compared to sexmatched IDUA+/− littermates. Differenceswere considered significant at p ≤ 0.05.MaleWt [week 5
(n= 6), weeks 6–16 (n= 10)], IDUA+/− [weeks 5–7 (n= 8), weeks 8–12 (n= 10), weeks 13–15 (n= 11), week 16 (n= 9)], and IDUA−/− [week 5 (n= 5), weeks 6–7 (n= 6), weeks
8–15 (n=8), week 16 (n=6)]; femaleWt [week 5 (n=8), weeks 6–7 (n=9), weeks 8–12 (n=11),weeks 13–15 (n=12), week 16 (n=10], IDUA+/− [week 5 (n=14), weeks 6–16
(n = 15)], and IDUA−/− [week 5 (n = 4), weeks 6–16 (n = 6)].
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did not show differences in material composition (Fig. 4). However, fe-
male IDUA−/− tibias exhibited increases in the carbonate/phosphate
(CO3

2−/PO4
3−) ratio (Fig. 4A) and decreases in phosphate/matrix

(PO4
3−/CH2) (Fig. 4B), and had a lower phosphate:collagen (PO4

3−/
amide I) ratio compared to Wt littermates, although it did not
reach significance (p = 0.0647) (Fig. 4C). The phosphate:matrix and
phosphate:collagen ratios of female IDUA−/− tibias were decreased
compared to IDUA+/− littermates, as well, which were similar in com-
position to Wt.

3.5. Femoral geometry and biomechanical strength

Bone strength is cumulatively dictated by the interplay of the bone
geometry and the composition of the bone material. To determine if
the changes observed in bone microarchitecture and material proper-
ties altered the whole bone strength in IDUA−/− mice, we subjected
femora from male and female Wt, IDUA+/− and IDUA−/− mice to μCT
and torsional loading to failure. Both male and female IDUA−/− mice
had shorter femurs with 16% and 14% larger midshaft marrow diame-
ters and 9% and 14% greater cortical bone widths compared to sex-
matched Wt littermates, respectively (Fig. 5), which was consistent
with our observations of increased cortical thickness in the tibia
(Table 1). Male and female IDUA−/− femora both showed an increase
of 75% in their polarmoment of area (a geometric predictor of increased
bone strength) as compared to sex-matched Wt littermates (Fig. 5).
Male and female Wt femora exhibit equivalent values for all the geo-
metric parameters as sex-matched IDUA+/− femora. Femoral geometry
differences between sexes were observed in cortical bone width of Wt
mice, and the polar moment of area of Wt and IDUA+/− mice (Fig. 5).

To evaluate if the changes in bone microarchitecture, physiochemi-
cal composition, and geometry altered the overall strength of the
IDUA−/− bone, femorawere subjected to torsional loading to failure. Fe-
male IDUA−/− femora exhibited 30.8% increase in energy to failure, the
Table 1
Tibial microarchitecture of 16 week old male and female Wt, IDUA+/− and IDUA−/− mice.

Male

Wt
n = 5

IDUA+/−

n = 5
IDU
n =

Cortical density (mg HA/CCM) 1139.81 ± 11.91 1123.46 ± 13.45 111
Cortical thickness (mm) 0.210 ± 0.005 0.207 ± 0.003 0
Trabecular density (mg HA/CCM) 890.93 ± 21.90 930.08 ± 4.62a 92
Trabecular BV/TV (%) 0.227 ± 0.030 0.228 ± 0.020 0
Trabecular Thickness (mm) 0.053 ± 0.004 0.054 ± 0.003 0
Trabecular SMI 1.607 ± 0.310 1.76688 ± 0.199 1

a p ≤ 0.05 compared to Wt.
b p ≤ 0.05 compared to IDUA+/−.
amount of energy the bone absorbed prior to fracture, relative to Wt
femora (Fig. 6B). Male IDUA−/− femora showed a 16.2% increase in en-
ergy to failure relative to Wt, although did not reach significance
(Fig. 6B). Torsional ultimate strength (Tmax) is a whole bone property
that measures the maximum amount of torque required to break the
bone. Femora from both male and female IDUA−/− mice exhibited in-
creased Tmax compared to their Wt and IDUA+/− littermates. Tensile
strength, a measure of the strength of the bonematerial, was decreased
by 23.8% in female IDUA−/− femora as compared to Wt (Fig. 6D). In
male IDUA−/− mice, the femoral tensile strength was reduced 19.7%
as compared to Wt, however, the trend did not reach significance
(p = 0.10). The torsional stiffness was not impacted by genotype
(Fig. 6E). However, shear modulus of elasticity, a measure of the stiff-
ness of the bone material, was decreased in femora from IDUA−/− fe-
males compared to their Wt and IDUA+/− littermates (Fig. 6F). These
data suggest that the increasedwhole bone strength observed in femora
of IDUA−/− mice results from changes in the microarchitecture, geom-
etry and the bonematerial properties.While the changes in bone geom-
etry are predicted to increase strength, the changes in material
properties appear detrimental. Taken together, the impact of the ab-
sence of α-L-iduronidase activity on the biomechanical integrity of the
whole bone is the result of opposing forces of the impact of geometry
and bonematerial properties to produce an overall increase in torsional
strength. The IDUA bone is in a delicate balance of trying to maintain
skeletal integrity in the presence of compromised bone material.

4. Discussion

Although enzyme replacement and stem cell therapies for treating
MPS I have been effective in attenuating organomegaly, cardiac, respira-
tory and neurological symptoms of the lysosomal storage disorder MPS
I, the musculoskeletal manifestations are recalcitrant to current treat-
ment strategies [9,11,17,30,31]. The goal of this study was to fully
Female

A−/−

4–5
Wt
n = 3

IDUA+/−

n = 4
IDUA−/−

n = 5

9.25 ± 3.52 1112.90 ± 8.42 1142.28 ± 8.42a 1118.86 ± 9.86b

.250 ± 0.09a,b 0.195 ± 0.004 0.195 ± 0.001 0.237 ± 0.006a,b

7.86 ± 8.88 889.53 ± 8.30 896.47 ± 2.10 908.12 ± 6.78
.217 ± 0.031 0.077 ± 0.008 0.075 ± 0.007 0.170 ± 0.021
.049 ± 0.003 0.041 ± 0.001 0.041 ± 0.001 0.047 ± 0.003
.961 ± 0.227 3.026 ± 0.085 2.789 ± 0.135 2.139 ± 0.123



Fig. 2. Trabecular microarchitecture of male and female tibiae as determined by μCT. Representative images of A)Wt, B) IDUA+/−, and C) IDUA−/− μCT scans. D) Trabecular number was
increased in IDUA−/− tibiae (white bar) compared to sex-matchedWt (black bar) and IDUA+/− (gray bar) littermates. E) Trabecular separation was decreased in IDUA−/− females com-
pared to sex-matched Wt and IDUA+/− littermates. F) Trabecular Connectivity was increased in IDUA−/− females compared to sex-matched Wt and IDUA+/−. Values are means ± SE.
ap ≤ 0.05 compared to sex-matched Wt, bp ≤ 0.05 compared to sex-matched IDUA+/−, cp ≤ 0.05 compared to genotype-matched male. Male Wt (n = 5), IDUA+/− (n = 5), and
IDUA−/− (n = 4); Female Wt (n = 5), IDUA+/− (n = 4), and IDUA−/− (n = 5).

Fig. 3. Bone mineral density distribution (BMDD) and porosity analysis as determined by scanning electron microscopy. Representative segments of female A) Wt, B) IDUA+/−, and
C) IDUA−/− cross-sectional BMDD images of the medial section of the mid-diaphysis of the tibia (range of 256 graylevel numbers, with red representing the greatest density of calcium
and blue the least). For each sample thewhole cross-sectional image was used to determine the BMDDhistogram. D) Summation of all the histograms for each group shown based on the
frequency of graylevel numbers divided by the maximum frequency in each case. E) Averaged mode of graylevel histograms and F) the averaged full width at half maximum (FWHM)
values extracted from graylevel histograms were not different between genotypes. G) Porosity quantification of Wt (black bar), IDUA+/− (gray bar) and IDUA−/− (white bar) showing
an increase in porosity in the IDUA−/− tibiae. Values are means ± SE. ap ≤ 0.05 compared to sex-matched Wt, bp ≤ 0.05 compared to sex-matched IDUA+/−. Wt (n = 5), IDUA+/−

(n = 5), and IDUA−/− (n = 4).
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Fig. 4. Physiochemical composition of the tibial cortical bone was determined using
Raman spectroscopy. A) Carbonate/phosphate ratios [(CO3

2−/PO4
3−); indication of carbon-

ate substitution of phosphate in the crystal lattice] were increased in tibiae from IDUA−/−

females (white bar) compared to Wt (black bar). B) Phosphate to bone matrix ratios
[(PO4

3−/CH2); indication of the relative amount of mineral phosphate to organic matrix]
was decreased in tibiae from IDUA−/− females compared to Wt and IDUA+/− (gray bar)
littermates of the same sex. C) Phosphate to collagen ratios [(PO4

3−/amide I); indication
of the relative amount of phosphate mineral to collagen] was decreased in tibiae from fe-
male IDUA−/− compared to IDUA+/− littermates and had a decreased trend compared to
sex-matched Wt littermates (p = 0.06). Values are means ± SE. ap ≤ 0.05 compared to
sex-matchedWt, bp ≤ 0.05 compared to sex-matched IDUA+/−, cp ≤ 0.05 compared to ge-
notype-matchedmale. MaleWt (n=5), IDUA+/− (n= 5), and IDUA−/− (n= 4); Female
Wt (n = 5), IDUA+/− (n = 4), and IDUA−/− (n = 5).
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characterize the skeletal geometry,microarchitecture, biomechanical and
physiochemical properties of the Idua-W392X knock-in (IDUA−/−)
mouse model of MPS I in order to better understand the consequences
of α-L-iduronidase enzyme deficiency and subsequent accumulation of
GAGs to skeletal integrity. Our findings suggest that complete absence
of α-L-iduronidase results in changes not only to the macro- and
microarchitecture of cortical and trabecular bone, but also to the physio-
chemical composition and porosity. These changes while opposing, ulti-
mately culminate in an overall increase in whole bone strength. As
anticipated with autosomal recessive metabolic disorders, the IDUA+/−

mice were primarily unaffected and the skeletal integrity of their long
bones was equivalent to their Wt littermates.

It has been repeatedly demonstrated that patients with Hurler syn-
drome have decreased growth velocity and short stature which persists
following hematopoietic stem cell replacement therapy [32]. Both pa-
rameters contribute to and are indirect measures of the pathologic
and biochemical alterations seen in Hurler syndrome. Our study dem-
onstrates that the IDUA−/− mice have decreased femur length and are
heavier than Wt and IDUA+/− littermates at 16 weeks of age, as has
been seen in untreated human patients, and previously in IDUA−/−

mice [15,21] aswell as othermousemodels ofMPS [29,33,34]. It is likely
that the decreased height observed in Hurler syndrome patientsmay be
attributed to abnormalities in the growth plate caused by GAG accumu-
lation [29,35,36]. The growth plates of IDUA−/− femora were shown to
have a 4-fold increase in osteoclast activity by tartrate-resistant acid
phosphatase histochemistry relative to wildtype femora [21]. Wilson
et al. demonstrated that Idua−/− knock-out mouse tibiae had twice
as much cartilage in the subepiphyseal zone of the growth plate, re-
duced type II collagen degradation, and ossification as wildtype mouse
tibiae [37].

Our analysis of the tibial microarchitecture and geometry in
IDUA−/− mice at 16 weeks of age demonstrated increased cortical
thickness without changes in cortical density and were consistent
with studies in IDUA−/− mice [21], as well as the Idua−/− knockout
mice, which exhibited decreased femur length with a general thicken-
ing as measured by radiography [13,34], and shortening of the tibia
length, and increased femoral midshaft diameter without changes in
bone mineral density [34]. Additionally, we report an increase in the
femoral bone marrow diameter along with microarchitecture changes
in the trabecular bone of female IDUA−/− tibias. Consistentwith studies
in other mouse models of MPS [38], the tibial trabecular bone of female
IDUA−/−mice showed an increase in trabecular number and connectiv-
ity density with a subsequent decrease in separation which suggests
overall increases in bone material and that the bone microarchitecture
has been altered by the deficiency in α-L-iduronidase. Studies by
Pievani et al. have demonstrated an increase in BV/TV in femora of an
Idua−/− knockout mouse model for MPS at 37 weeks of age [38],
whereas Gunn et al. found that 31 week old male IDUA−/− femora
had increased cortical thickness, trabecular BV/TV, number, and connec-
tivity density, and decreased structural model index (SMI) and trabecu-
lar separation [21]. When female IDUA−/− tibiae were analyzed using
an ANOVA the BV/TV was increased as compared to their sex-matched
Wt and IDUA+/− littermates. However, when using body weight as a
co-variate the difference was no longer significant (Table 1). This sug-
gests that at 16 weeks, the increase in BV/TV in the tibiae of female
IDUA−/− mice can be attributed to a response to an increase in body
weight. The compromised bone material and the increased cortical po-
rosity in the IDUA−/− mouse further suggests that these geometric
changes and the response of themicroarchitecturemay function to pro-
tect the integrity of the bone and/or simply reflect alterations in bone
remodeling.

Previous studies have implicated reductions in osteoclast number
and activity in MPS, specifically that the accumulation of MPS-
associated GAGs (dermatan sulfate and heparin sulfate) may inhibit
the collagenolytic activity and osteoclast function [37] as well as in-
crease the number of osteoblasts in the intertrabecular spaces [29].
However, Gunn et al. reported a 4-fold elevation in osteoclast activity
in the growth plates of femurs of 31 week old IDUA−/− mice relative
to wildtype femoral growth plates [21]. In a recent study of serum and
urine bone formation and resorption biomarkers, Stevenson et al.
found that children with MPS had elevated serum osteocalcin levels
and trends of increased serum bone specific alkaline phosphatase



Fig. 5. Geometric parameters and polar moment of area of male and female Wt, IDUA+/−, and IDUA−/− femora as determined by μCT. A) Femoral length was decreased, and B) marrow
diameter, C) cortical bone width, and D) polar moment of area were increased in IDUA−/− femurs (white bar) compared to sex-matchedWt (black bar) and IDUA+/− (gray bar) femora.
Values aremeans± SE. ap ≤ 0.05 compared to sex-matchedWt, bp ≤ 0.05 compared to sex-matched IDUA+/−, cp ≤ 0.05 compared to genotype-matchedmale. MaleWt (n=10), IDUA+/−

(n = 9), and IDUA−/− (n = 11); Female Wt (n = 7), IDUA+/− (n = 7), and IDUA−/− (n = 10).
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compared to age and tanner-stage matched unaffected children [39],
suggesting that childrenwithMPSmay have increased osteoblast activ-
ity. In the IDUA−/− mice the increased porosity per bone volume is in-
dicative of increased osteocyte lacunae, which potentially reflects
increased osteoblastswhich likely have compromised function resulting
in the formation of poorer quality bone. In addition, the increase in car-
bonate to phosphate ratios in the female IDUA−/− tibia suggests a more
mature matrix and perhaps decreased degradation. Taken together
these findings and ours further suggest that the pathogenesis of the
musculoskeletal manifestations in MPS is associated with abnormal
bone remodeling. Future studies to investigate osteoblast, osteoclast
and osteocyte function, bone remodeling efficiency, and dynamic and
static histomorphometry are necessary to further elucidate this
mechanism.

Bone is a composite of organicmatrix andmineral; themineral com-
ponent, hydroxyapatite, provides stiffness, while the organic compo-
nent is 80% collagen, of which 95% is type I collagen [40], and imparts
material toughness (the capacity to absorb energy) [41]. Together, the
abundance, quality and proportion of these components impact the
overall structural integrity of the bone. Bone strength is dependent
upon the cumulative contributions of the integrity of the bonematerial,
microarchitecture and geometry. The results of the torsional loading to
failure in the IDUA−/− mice revealed an overall increase in strength as
measured by the whole bone parameters, torsional ultimate strength
and energy to failure, but also compromised bone material strength of
the IDUA−/− bone as measured by tensile strength and shear modulus
of elasticity. This would suggest that the increase in strength is a net
result of positive alterations in the microarchitecture and geometry of
the bone that are able to compensate for the adverse changes in thema-
terial and physiochemical composition.

Changes in extracellularmatrix components have been implicated in
the skeletal pathology of multiple MPSs [39]. A recent study using a
different MPS-1 mouse model revealed that changes in extracellular
matrix components of the skeleton are a major pathology of the disease
which may be independent of GAG accumulation as decreased expres-
sion of type I collagen and other cartilaginous proteins occur before
the histologic changes are visualized at the growth plate [36]. We fur-
ther used Raman spectroscopy to evaluate the bone physiochemistry
and demonstrated that female IDUA−/− mouse tibias have decreased
mineral to matrix ratios and a decreasing trend in mineral to collagen
ratios. It is unclear if the decreases in mineral to matrix and mineral to
collagen ratios in the cortical bone are reflective of decreases in mineral
content, or an increase in collagen content due to increases in collagen
expression or decreases in the efficiency of collagen degradation by
osteoclasts. The absence of differences in the bone mineral density dis-
tribution, as determined by quantitative back scattered scanning elec-
tron microscopy and cortical density, as determined by μCT analyses
suggest that the ratio shifts are not due to alterations inmineral content.
This finding is consistent with Wang et al. who reported that IDUA−/−

and WT bone mineral density (BMD) were equivalent at 5 and
15 weeks of age, but by 35 weeks of age the IDUA−/− had greater
BMD [15].

Defining the underlyingmechanical properties of the skeletal abnor-
malities is the first step in elucidating the cellular and biochemical



Fig. 6. Bone biomechanical integrity. A) Representative torsional loading to failure graphs from femaleWt (black bar), IDUA+/− (gray bar), and IDUA−/− (white bar) femora. B) Energy to
failure (U; the amount of energy the bone can absorb prior to fracture as measured by the area under the torque: angular displacement graph) of female IDUA−/− femora is increased
compared to sex-matched Wt and IDUA+/− littermates. C) Torsional ultimate failure (Tmax; the force at failure as measured by the peak of the torque: angular displacement curve)
was increase in bothmale and female femora from IDUA−/− compared to sex-matchedWt and IDUA+/− littermates. D) Tensile strength (Su; the strength of the bonematerial asmeasured
by subtracting the estimated strength contribution of the geometry component from the Tmax) is decreased in femora from female IDUA−/− compared to sex-matched Wt littermates.
E) Torsional stiffness (Ks; the stiffness of the boneasmeasured by the slope of the torque: angular displacement curve between 5 and 10Nmm) is equivalent among all genotypes assessed.
F) Shear modulus of elasticity (G; an estimate of the elasticity of the bonematerial as measured by the Ks—the estimated contribution of the geometry component) is reduced in femora
from female IDUA−/− compared to sex-matchedWT and IDUA+/− littermates. ap ≤ 0.05 compared to sex-matchedWt, bp ≤ 0.05 compared to sex-matched IDUA+/−, cp ≤ 0.05 compared to
genotype-matched male. Male Wt (n = 8), IDUA+/− (n = 6), and IDUA−/− (n = 7); Female Wt (n = 8), IDUA+/− (n = 8), and IDUA−/− (n = 5).
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processes responsible forMPS I-H skeletal phenotypewhichwill inform
the improvement of current therapies and uncover potential therapeu-
tic targets for the development of new therapies to further improve the
bone quality of MPS I-H patients.
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