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Homoserine dehydrogenase (HSD; 305 amino acid residues) catalyzes an NAD(P)-dependent reversible
reaction between L-homoserine and aspartate 4-semialdehyde and is involved in the aspartate pathway.
HSD from the hyperthermophilic archaeon Sulfolobus tokodaii was markedly activated (2.5-fold) by the
addition of 0.8 mM dithiothreitol. The crystal structure of the homodimer indicated that the activation
was caused by cleavage of the disulfide bond formed between two cysteine residues (C303) in the
C-terminal regions of the two subunits.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

HSD (EC 1.1.1.3) catalyzes the reversible NAD(P)-dependent
oxidation of L-homoserine to L-aspartate 4-semialdehyde and NAD
(P)H. The reverse reaction is responsible for the production of L-
homoserine in the aspartate pathway, which produces four L-
amino acids (lysine, threonine, cysteine, and methionine) as final
products from L-aspartate [1]. Because its product L-homoserine is
a precursor of L-threonine, L-cysteine, and L-methionine and its
substrate L-aspartate 4-semialdehyde is a precursor of L-lysine,
HSD plays a key regulatory role in the pathway. HSD is found in
plants, fungi, and bacteria, but not in animals, indicating that HSD
is a good target for new pesticides and antibiotics [2]. L-lysine is
synthesized via the L-α-aminoadipate pathway in
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hyperthermophilic archaea and fungi, though the diaminopime-
late pathway is utilized for lysine production in bacteria and plants
[3]. HSD is often susceptible to feedback inhibition by end pro-
ducts in the aspartate pathway. HSD from Corynebacterium gluta-
micum is inhibited by both threonine and methionine [4], and the
enzyme from Thermus flavus AT-62 is inhibited by cysteine [5]. The
Escherichia coli enzyme is known to exhibit bifunctional activity as
both an HSD and an aspartate kinase (EC 2.7.2.4) [6]. The bifunc-
tional HSD catalyzes the first and third steps in the aspartate
pathway and is found in bacteria and plants [7]. Usually, the bi-
functional enzyme has more than 800 amino acid residues and is
much larger than monofunctional HSD, which consists of ap-
proximately 300 amino acid residues. Based on their amino acid
sequences, HSDs are divided into three groups: a short-chain
group and two long-chain groups with extensions at the C-ter-
minus [8]. The latter groups, which possess approximately 70-re-
sidue extensions at the C-terminus, are feedback inhibited by
threonine or methionine. The biochemical and structural char-
acteristics and regulation mechanisms of HSDs from bacteria,
yeasts, plants, and animals have been extensively studied so far,
but information on these enzymes from the third domain of life,
i.e., the archaea, is extremely scanty. Thus, we screened the HSD
gene homologs of archaeal strains in a genome data bank and
found a hypothetical HSD gene from the acidophilic and hy-
perthermophilic archaeon Sulfolobus tokodaii (StHSD; 304 amino
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
Data collection and refinement statistics.a

Oxidized form Reduced form

Data collection statistics
Beamline NE3A (PF-AR) NE3A (PF-AR)
Wavelength (Å) 1.0000 1.0000
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acids). In this study, we succeeded in overexpression of the gene
product in E. coli and found that the purified enzyme is uniquely
activated by a reducing agent DTT. In addition, based on structural
analyses, we found a novel type of activation mechanism in which
the cleavage of an intermolecular disulfide bond between the
C-terminal regions of the two subunits is responsible for the en-
zyme activity.
Resolution (Å) 50.0–1.60 (1.63–
1.60)

50.0–1.80 (1.83–
1.80)

No. of reflections (measured/
unique)

345,770/74,576 119,944/47,593

Rmerge
b (%) 7.8 (29.5) 6.2 (26.1)

Completeness (%) 99.2 (100) 90.6 (94.8)
Multiplicity (%) 4.6 (4.9) 2.5 (2.4)
No. of crystals 1 1
Space group P21 P21
Unit –cell constants

a (Å) 57.401 57.818
b (Å) 79.472 78.909
c (Å) 65.899 65.814
α (deg) 90 90
β (deg) 107.16 105.79
γ (deg) 90 90

Refinement statistics
Resolution range (Å) 28.5–1.60 50.0–1.80
No. of reflections 70,670 45,154
Rfactor for 95% datac 0.197 0.211
Free Rfactor for 5% data 0.228 0.247
No. of atoms

Protein 4,576 4,500
Water 402 195
Sodium ion 1 0

RMSD from ideality
Bond lengths (Å) 0.0078 0.0075
Bond angles (°) 1.2933 1.2445

Ramachandran analysis
Favored (%) 96.5 97.3
Allowed (%) 3.5 2.7
Disallowed (%) 0 0

a Values in parentheses are statistics for the highest-resolution shell, whose
range is 1.63–1.60 Å.

b Rmerge¼ΣhklΣi|Ihkl,i� 〈Ihkl〉|/ΣhklΣiIhkl,i, where I¼observed intensity and 〈I〉¼
average intensity for multiple measurements.

c Rfree was monitored with 5% of the reflection data excluded from the re-
finement.
2. Materials and methods

All reagents were purchased from Wako Pure Chemical In-
dustries, unless otherwise noted. The expression plasmid for
StHSD was constructed as follows. The hypothetical HSD gene
from S. tokodaii NBRC100140T was amplified using genomic DNA
purchased from the National Institute of Technology and Evalua-
tion. The primer set of 5′- CACCATGAAATTATTACTCTTTGGTTATG-
GAAATG-3′ and 5′- TCATAAGCAATCTCTCTTTAGAAGAATTAAATC-3′
was used for amplification of the ORF. The PCR product obtained
was ligated into pET101 according to the manufacturer’s instruc-
tions for Champion™ pET Directional TOPOs expression kits (In-
vitrogen Life Technologies). The ORF in the resultant plasmid,
pSTHSD, was confirmed to have the correct sequence. The E. coli
BL21(DE3) strain was transformed with the pSTHSD plasmid,
cultured at 310 K for 12 h in LB medium supplemented with am-
picillin (50 μg/L), and then sonicated in 10 mM KPB (pH 7.0).
StHSD was purified by single-column chromatography with DEAE-
TOYOPEARL after heat treatment (343 K for 3 h) of the cell extract.
The columnwas washed with 10 mM Tris–HCl (pH 8.0), and StHSD
was eluted with 10 mM Tris–HCl (pH 8.0) containing 50 mM NaCl.
The purified enzyme was dialyzed against 10 mM KPB (pH 7.0) and
concentrated with an Amicon Ultra 10 K filter unit (Millipore). The
homogeneity of the final StHSD preparation was confirmed by
SDS-PAGE. The activation of StHSD by various concentrations of
DTT was assayed using WST-1 (Dojindo Laboratories), which is
reduced by NADH to form WST-1 formazan in the presence of the
electron acceptor mPMS, in a reaction mixture consisting of
100 mM Tris–HCl (pH 8.0) and 1 mM DTT. The increase of the
WST-1 formazan level was monitored at 438 nm. The StHSD ac-
tivity was calculated using a molar coefficient of 37,000 at 438 nm
for WST-1 formazan. The kinetic parameter was determined by
measuring the increase in absorbance of the produced NADH at
340 nm (molar coefficient of 6,200) at 303 K in 100 mM Tris–HCl
(pH 8.0). The oxidized form was prepared by the pre-treatment of
StHSD with 0.1 mM potassium ferricyanide for 2 h. The reduced
form was prepared by the pre-treatment with 1 mM DTT for 2 h.
The protein concentration of the crude cell extract was measured
by use of a Pierce

s

BCA protein assay kit (Thermo Scientific Pierce).
Crystals of StHSD were grown at 285 K by the hanging-drop

vapor diffusion method with 100 μL of reservoir solution [9.5% (w/
v) PEG 3350, 19% (w/v) PEG 400, 0.19 M magnesium chloride, and
2.5% DMSO]. The droplets (pH 4.1) was prepared by mixing 1.5 μL
of purified enzyme (5.9 mg/mL) and an equal amount of reservoir
solution. The crystals of the reduced form were prepared by
soaking crystals in the solution consisting of 3 μl of the reservoir
solution and 1 μl of 200 mM DTT for 60 min prior to the first
diffraction data collection. The crystals were flash-frozen using
liquid nitrogen. Diffraction data were collected at beamlines at the
Photon Factory, Tsukuba, Japan. The data sets were collected for
the oxidized and reduced forms, respectively, at 95 K. All images
were indexed and integrated using the program HKL2000 [9], and
the data sets were phased with molecular replacement by using
the program Phaser [10]. An initial phasing model was prepared by
homology modeling using SWISS-MODEL [11]. The models were
built using the program COOT [12] and refined using Refmac5 [13].
The two subunits in the asymmetric units were refined without no
crystallographic symmetry restraints. Both the main and the side
chains were clearly identified in the 2Fo–Fc electron density map,
and the final difference Fourier maps did not contain any sig-
nificant peaks. The programs RAMPAGE [14] and SFCHECK [15] in
the CCP4 package were used for stereochemistry analysis of all
models and for calculation of the RMSD as well as the average
error by the Luzzati plot. The statistics for data collection and re-
finement are presented in Table 1. All figures illustrating these
structures were prepared using the program CCP4mg [16]. The
coordinates of the oxidized and reduced forms have been de-
posited in the PDB under entry number 4YDR and 5AVO,
respectively.
3. Results and discussion

A comparative analysis of amino acid sequences of archaeal
HSDs showed that StHSD is 304 amino acids long and that the
gene is likely to start with a UUG initiation codon. This initiation
codon usage is rarely found in S. tokodaii [17]. The hypothetical
initiation codon (UUG) was mutated to AUG, and the resultant ORF
was overproduced in E. coli. The crude enzyme showed a specific
activity of 0.020 U/mg. The activity of purified StHSD increased up
to 2.5-fold with the increase of DTT concentration (Fig. 1). There



Fig. 1. Activation of StHSD. The activity of StHSD was assayed in the presence of
various concentrations of DTT. The error bars represent the standard deviations of
the measurements. One unit of the enzyme was defined as the amount of the
enzyme that produced 1 μmol of WST-1 formazan at 303 K in 1 min.

Table 2
Kinetic parameters of the oxidized and the reduced forms.

Substrate L-Homoserine NAD

Km (mM) Vmax (U/mg) Km (mM) Vmax (U/mg)

Oxidized form 0.21
0.81

0.31 1.0

Reduced form 0.54
1.8

0.33 1.3

The oxidized and the reduced forms were prepared by the pre-treatment of StHSD
with 0.1 mM potassium ferricyanide or 1 mM DTT, respectively, for 2 h. The values
are calculated based on Lineweaver–Burk plot. One unit of the enzyme was defined
as the amount of the enzyme that produced 1 μmol of NADH at 323 K in 1 min.

Fig. 3. Cleavage of the disulfide bond. The disulfide bond between residues C303
was found without the oxidation by the addition of 0.1 mM potassium ferricyanide.
The bond was cleavaged by the soaking in the presence of 50 mM DTT for 60 min
prior to the first diffraction data collection.
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was no significant dose-dependent effect on the activity in the
presence of more than 0.8 mM DTT. The addition of more than
0.1 mM DTT gave a small, nonenzymatic increase of the back-
ground absorbance. Such background absorbance can probably be
attributed to the reduction of WST-1 by DTT to form WST-1 for-
mazan. The comparison of kinetic parameters between the oxi-
dized and reduced enzymes showed that the reduction increased
the Km and Vmax values for L-homoserine, but gave relatively small
effect on Km and the Vmax values for NAD (Table 2). Since StHSD
(304 total amino acid residues) has only one cysteine residue
(C303), near the C-terminus, we postulated that the activation of
enzyme is induced by reductive cleavage of an interchain disulfide
Fig. 2. The structure of StHSD in the dimeric form. The nucleotide-binding region (resid
and the catalytic region (residues 146–255) are shown in yellow, magenta, and cyan, resp
cysteine 303 residues is shown as red spheres. The sodium ion is shown as a gray sphe
bond between the two subunits. Alteration of activity by reductive
cleavage of an intrachain disulfide bond by DTT has been found in
the bifunctional HSD from E. coli K-12 [18]. In this case, the addi-
tion of DTT activates the enzyme and increases the sensitivity of
HSD to inhibition by the feedback modifier L-threonine.

The crystal analysis of StHSD showed the overall structure of a
homodimer with one disulfide bond in the asymmetric unit
(Fig. 2). Each monomer of StHSD is composed of the nucleotide-
binding region (amino acid residues 1–130 and 285–304), the di-
merization region (residues 131–145 and 256–284), and the cat-
alytic region (residues 146–255), as in the HSD from Sacchar-
omyces cerevisiae (PDB entry 1EBU) [19]. The nucleotide-binding
and catalytic regions are structurally well conserved among the
equivalent regions of structurally characterized HSDs, although no
significant structural homolog of the dimerization region was
detected using the DALI database. A trigonal-bipyramidally co-
ordinated sodium ion was located between the subunits of the
ues 1–130 and 285–304), the dimerization region (residues 131–145 and 256–284),
ectively. The other monomer is shown in gray. The disulfide bond between the two
re.
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oxidized form, though this location is apart from the equivalent
position of the metal-binding site in HSD from S. cerevisiae[19].

In the crystal, an intermolecular disulfide bond was found to be
formed between the cysteine 303 residues in the C-terminal re-
gions of the monomers. In contrast, the cleavage of the disulfide
bond in the reduced form of StHSD was observed (Fig. 3). The
sulfur atoms of C303 in the reduced form refined at 1.80 Å re-
solution are separated by the distance of 2.9 Å which is sig-
nificantly larger than the distance between the sulfur atoms of the
disulfide bond (2.2 Å) in the oxidized form refined at 1.60 Å.
Considering that the reducing reagent DTT activates StHSD by
decreasing the Km value for L-homoserine, the activation may be
due to increased flexibility in the structure of the subunit, espe-
cially in the L-homoserine-binding site.

The C-terminal region of the long-chain group of HSDs from C.
glutamicum is necessary for its allosteric inhibition by L-threonine
[4]. Although StHSD has no extension at the C-terminus and be-
longs to the short-chain group, the activity of StHSD may be af-
fected by the conformation of the C-terminal region. This hy-
pothesis is consistent with the fact that the nucleotide-binding
region including the C-terminal region of the HSD from S. cerevi-
siae slightly alters the active site geometry upon cofactor binding
for the appearance of activity [19].

Among the known primary sequences of HSDs, the cysteine
residue near the C-terminus is present in only the Sulfolobus sol-
fataricus and Sulfolobus islandicus enzymes, indicating that these
two archaeal HSDs may form intermolecular disulfide bonds and
be activated by the addition of reducing agents, such as DTT,
though the physiological implication of this observation remains
unknown.
Appendix A. Supplementary material

Supplementary data associated with this article can be found in
the online version at doi:10.1016/j.bbrep.2015.07.006.
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