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As the price of genome sequencing has been rapidly
decreasing and can be expected to keep on doing so in
the next 10 years, the speed at which new microbial
genome sequences become available will increase
accordingly. In most genome projects, the first step after
acquiring a genome sequence is predicting protein-
encoding open reading frames (pORFs). Small proteins or
peptides, loosely defined as less than 50 amino acids,
encoded in microbial genomes have been largely under-
estimated. Recent focused functional genomics efforts
have led to the identification of a number of new small
proteins encoded in genomes of both Gram-negative and
Gram-positive bacteria, and fungi (Kastenmayer et al.,
2006; Li et al., 2008; Hemm et al., 2010; Hobbs et al.,
2010; Bitton et al., 2011). Increasing evidence demon-
strates that small proteins participate in a wide array of
cellular processes and exhibit great diversity in their
mechanisms of action. A recent review (Hobbs et al.,
2011) highlights examples of small proteins that, in addi-
tion to the well-conserved small ribosomal proteins, par-
ticipate in cell signalling or regulation, act as antibiotics
and toxins/anti-toxins, alter membrane features, act as
chaperones, stabilize protein complexes or serve as
structural proteins (Table 1) (Fig. 1).

Failure to recognize a pORF encoding a small protein
means that these important cell constituents will be
missed. Here, we give a brief summary of which problems

arise in searching for such encoded small proteins, and
what we could do to improve the search process.

How are pORFs predicted?

Most commonly used genome annotation pipelines use
Glimmer (Delcher et al., 2007) or similar tools for the
ab-initio prediction of pORFs. An overview of commonly
used pipelines can be found in Siezen and van Hijum
(2010). These tools use sequence characteristics like
GC% and codon usage to differentiate between pORFs
and non-coding DNA. Sometimes other sequence charac-
teristics are included, e.g. recent versions of Glimmer can
include the prediction of putative ribosome binding sites
preceding pORFs. These ab-initio approaches have
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Fig. 1. Structure of small proteins. Small secreted proteins exhibit
diversity in their three-dimensional structures and can contain
unique intramolecular linkages or modified amino acids. For
example, the mature form of (A) subtilosin (PDB: 1PXQ) is cyclized
in a head-to-tail fashion (link omitted here for clarity) and contains
three unique linkages between Cys sulfur atoms and a-carbons of
Phe and Thr. In contrast, (B) the bacteriocin leucocin A (PDB:
1CW6) has a single disulfide bond. Reproduced from Hobbs and
colleagues (2011), with permission from Current Opinion in
Microbiology.
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difficulty accurately predicting small pORFs, as the lack of
data makes it difficult to distinguish between signal and
background noise. To prevent a large number of predicted
false-positives (i.e. predicted pORFs that do not actually
code for proteins), many pipelines include a minimal gene
size threshold, typically picking a (quite arbitrary) size of
around 150 bases, i.e. 50 amino acids. For genomes with
a low GC content, this works relatively well, as non-coding
DNA of these genomes contains a lot of stop codons. For
genomes with a high GC content, the power of this
approach is limited, as these genomes contain less stop
codons, and genes are less obvious to find (Fig. 2) (Tech
and Merkl, 2003).

The accuracy of pORF prediction can be increased by
combining an ab-initio approach with similarity-based
approaches. These approaches are based on the
assumption that pORFs are under selective constraint
relative to non-coding DNA: relatively high similarity of a
putative pORF to an ORF in another species supports the
hypothesis that the pORF encodes a protein. Some pipe-
lines, e.g. RAST (Aziz et al., 2008), utilize this principle by
over-predicting pORFs, followed by a step in which small
pORFs without significant similarity to ORFs from other
species are deleted.

The ab-initio prediction of pORFs is sensitive to
sequencing errors. Singe-nucleotide read errors can intro-
duce in-frame stop codons or introduce frameshifts. Some
pipelines include a step that detects such errors by anal-

ysing 5′ and 3′ prime ends of putative pORFs, attempting
to generate a longer pORF by introducing a frameshift or
removing a stop codon. Unfortunately, small ORFs (say
< 300 bases) chopped in half by a frameshift or in-line
stop codon resulting from a read error will result in two
very small ORFs, which probably will be completely
absent from the initial gene calls. These read errors will
therefore not be picked up by these steps. A purely
similarity-based approach, where either known protein-
coding genes are compared against the genome using
BLASTN, or amino acid sequence of known proteins are
compared against the genome using TBLASTN, would
detect these pORFs (and small pORFs in general), but
unfortunately most pipelines do not include such a step.
The detection of small pORFs based on sequence simi-
larity is discussed in more detail in Poptsova and Gogar-
ten (2010). When such an approach is taken, be careful
not to propagate false-positive pORFs from other studies
in your own genome!

Experimental support

A more elaborate approach uses whole-genome tiling
arrays or RNA sequencing to confirm and refine pORF
prediction. A recent study in Candida albicans identified
as many as 2000 novel transcriptional segments, includ-
ing both pORFs and non-coding RNAs (Sellam et al.,
2010). In these approaches, detection of messenger RNA

Table 1. Types and functions of small proteins.

Types and functions Length minimuma References Characteristics

Ribosomal proteins 37 Wilson and Nierhaus (2005) High sequence similarity, easy to detect,
but often missed

Bacteriocins 30 Bauer and Dicks (2005);
de Jong et al. (2006)

Low sequence similarity; often modified
post-translationally

Regulators 30b Hemm et al. (2010)
Signalling proteins 44b Lopez et al. (2009) Often modified post-translationally
Small membrane proteins 26b Hemm et al. (2008);

Prymula and Roterman (2009)
Hydrophobic

Chaperones and stress
resistance proteins

20 Hemm et al. (2010)

a. Number of amino acids (note that many families have members with a wide variety of lengths, the number given is the approximate lower
boundary).
b. As reported by Hobbs and colleagues (2011).

Fig. 2. The impact of GC percentage on ORF
prediction. Horizontal grey bars are reading
frames, vertical black lines are stop codons;
(A) the reading frames in the 5′–3′ direction of
the first 10 kb of the chromosome of
Streptomyces coelicolor (high GC%),
(B) the reading frames in the 5′–3′ direction of
the first 10 kb of the chromosome of
Lactobacillus johnsonii (low GC%). Figure
generated using Artemis (Rutherford et al.,
2000).
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is taken as evidence that the ORF is transcribed (Fig. 3).
As this requires relatively elaborate experiments, they are
not routinely part of pORF prediction.

New tools and methods

In addition to the methods mentioned above, new tools
have been generated for targeted detection of small
pORFs. Some tools are targeted at a specific group of
proteins, for example Bagel, a bioinformatics tool for
mining bacterial genomes for bacteriocins (de Jong et al.,
2006). Other tools aim at small pORFs in general, by
combining ab-initio methods as described earlier with esti-
mates of selection pressure, e.g. sORF Finder (Hanada
et al., 2010). In addition to these bioinformatics
approaches, there are also experimental techniques par-
ticularly suited or specifically designed for the identifica-
tion and functional characterization of small pORFs. Many
small proteins can be inserted into membranes with rela-
tive ease (Kuhn et al., 2010), and protein characteristics
like hydrophobicity can be used to infer protein function
(Prymula and Roterman, 2009; Prymula et al., 2010).
Techniques are emerging that allow us to differentiate

between non-functional ORFs and (conditionally) essen-
tial or beneficial genes (Dinger et al., 2008). These
methods involve the generation of large sets of gene
inactivation mutants, followed by essays measuring
growth characteristics (Bijlsma et al., 2007; Hobbs et al.,
2010) (Fig. 4).

Unfortunately, these new methods are not routinely
applied in microbial genome annotation. If the functions
most often encoded by small pORFs are of particular
interest to you, you should consider including one or more
of these dedicated analysis methods in you annotation
pipeline.

Why should we care about small
protein-encoding ORFs?

Small pORFs are often the first to be removed in genome
(re)-annotation, even though closer inspection reveals
that many of them have a high coding potential (Li et al.,
2008), and studies targeted specifically at identifying
small pORFs often identify significant numbers of novel
pORFs. A study in Schizosaccharomyces pombe identi-
fied 39 likely functional proteins (Bitton et al., 2011), and a

Fig. 3. Detection of a small pORF in
Lactobacillus plantarum WCFS1 using tiling
array data. The green line represents
expression in the + direction, the red line
expression in the – direction (T. Todt,
M. Wels, R.S. Bongers, R.J. Siezen, S.A.F.T.
van Hijum and M. Kleerebezem, unpubl.
data). The white boxes are putative pORFs
present in the GenBank annotation of L.
plantarum, the yellow box indicates a new
putative small pORF not present in the
GenBank annotation, but supported by the
tiling array data.

Fig. 4. Generation of bar-coded deletion mutants. Kanamycin-resistance cassettes flanked by two unique 20-mer DNA bar code sequences
(UP and DN) were generated by a two-step PCR process for each deleted gene. For the analysis of the large-scale competition experiments,
bar codes upstream and downstream of every kanamycin-resistance cassette are amplified by means of common primer sequences (indicated
by small black arrows) encoded within the regions bordering the UP and DN bar codes. The amplified bar codes were then hybridized to a
DNA microarray to score each bar-coded deletion mutant within the population. Reproduced from Hobbs and colleagues (2010) with
permission from the American Society of Microbiology.
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study in Bacillus subtilis revealed 11 transcriptional units
linked to sporulation, many containing functional pORFs
(Schmalisch et al., 2010). Still, if most small pORFs had
rather boring and uninteresting functions, missing most of
them in genome annotation would not be too much of a
problem. However, the function of many, if not most, small
ORFs remain uncertain. Systematic studies into small
pORFs reveal novel gene families with no similarity to
known proteins, providing a pool of genes that could be
responsible for as yet unexplained regulatory or pheno-
typic complexity (Warren et al., 2010). An intriguing
example of small pORFs with unknown function can be
found in Lactobacillus plantarum WCFS1 (Fig. 5). Nine
consecutive putative pORFs are highly similar to each
other, and have excellent ribosome binding sites, yet lack
any significant similarity to genes with known or predicted
functions.

Setting thresholds

If we cannot get it exactly right, should we aim for over-
prediction or under-prediction?

As in many bioinformatics analysis, pORF prediction
involves setting a lot of thresholds: what is the minimal
length of a pORF? How much is codon usage allowed to
deviate from the norm? Choosing liberal thresholds will
result in over-prediction, while being strict will mean you
are likely to miss real pORFs. Which of these two evils to
choose from depends on you research question. If you
are designing custom microarray slides to measure gene
expression, liberal thresholds are probably the way to go
(assuming you can squeeze in the additional probes on
the slide). Over-predicted pORFs will simply result in no
signal for these ‘ORFs’, while not recognizing real pORFs
means you will not detect (changes in) expression for
these pORFs, in turn potentially meaning you might not be
able to answer your research question.

Wherever you place your thresholds, it is crucial to
accurately describe the procedure followed. Although
standardization initiatives like the Standards In Genome
Sciences (http://sigen.org/index.php/sigen) are gaining

ground, it can be non-trivial to figure out how exactly a
specific study or annotation pipeline predicts pORFs. This
can be especially problematic in comparative genomics
studies. Statements like ‘30% of the pORFs in genome A
do not have a homologue in any other species, while for
species B this is only 5%’ become quite meaningless if
they reflect differences in pORF calling rather than bio-
logical differences. It has been argued that a common
standard for pORF prediction would greatly benefit com-
parative analysis (Nielsen and Krogh, 2005).

Sometimes the choice of experimental techniques and
design can circumvent ORF calling all together. In high-
throughput mass-spectrometry-based proteomics, the
database against which peptides are searched (Perkins
et al., 1999) can be filled in such a say that it includes
virtually all potential protein-coding ORFs, as in the data-
base tsORFdb for theoretical small ORFs (Heo et al.,
2010). In gene expression analysis, the use of tiling
arrays, on which every nucleotide of a genome is repre-
sented in at least one probe (Mockler et al., 2005) as well
as RNA sequencing (Wang et al., 2009) circumvent ORF
calling altogether, and the data produced in these types
of experiments can in fact be used to identify pORFs
(Fig. 3). Both proteomics and RNA sequencing are rapidly
advancing techniques, potentially making the impact of
ORF calling issues less of a problem in studies where
these experimental techniques could be applied. In con-
trast, new developments in methods for function elucida-
tion heavily rely on ORF predictions, making the issue far
from obsolete.

Future

The cost of sequencing bacterial genomes will continue
its journey downward, resulting in an ever-increasing
speed at which new sequences become available. This
will in turn increase the power of comparative methods for
the identification of small pORFs. Wet-lab studies, both
high-throughput and low-throughput, will provide experi-
mental confirmation of putative pORFs, allowing the
creation, training and validation of more accurate bioinfor-
matics tools for the prediction of pORFs. The downside of

Fig. 5. Conserved small putative pORFs in Lactobacillus plantarum WCFS1. The nine ORFs (blue arrows) are located in different reading
frames (horizontal grey bars). Although the ORFs are very small (approximately 40 AA), all nine ORFs are preceded by a good ribosome
binding site (vertical green lines), supporting the hypothesis that these ORFs encode proteins. The vertical black lines are stop codons. Only
the leftmost ORF is annotated in the L. plantarum WCFS1 genome currently in GenBank (locus tag lp_2488) (Kleerebezem et al., 2003). An
update release will contain all nine ORFs (R.J. Siezen, B. Renckens, C. Francke, J. Boekhorst, M. Wels, M. Kleerebezem and S.A.F.T. van
Hijum, unpubl. data). Figure generated using Artemis (Rutherford et al., 2000).
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the dramatic reduction in the cost of sequencing a micro-
bial genome is that the speed at which new genome
sequences become available keeps increasing, while
there is no corresponding increase in man-hours for
manual curation. Pioneering genome projects had many
man-years available for painstaking checking and correc-
tion of automated pORF predictions, while recent
genomes are generally annotated completely automati-
cally. In principle, this lack of curation could be offset by
the increase in quality of the automated methods (or at
least in part), but this requires that scientists pay attention
to the use of tools and template genomes and are aware
of the pitfalls.

What do these small proteins or large peptides do?
Where are they located? Do they reside inside the cell, in
the membrane, on the cell surface or are they secreted?
How do they get to where they should be? Are short
hydrophobic proteins inserted directly into the membrane
after ribosomal synthesis (Kuhn et al., 2010)? How are
their structures stabilized? Which are subject to post-
translational modification and where? Clearly, experimen-
talists still have lots of high-throughput analyses to
complete, and bioinformaticians will need to continuously
fine-tune their search algorithms. Exciting times and more
still to come.
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