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Abstract: Particulate matter with a diameter less than 2.5 µm (PM2.5), one of the main sources of air
pollution, has increasingly become a concern of the people and governments in China. Examining
the socioeconomic factors influencing on PM2.5 concentration is important for regional prevention
and control. Previous studies mainly concentrated on the economically developed eastern coastal
cities, but few studies focused on inland cities. This study selected Chengdu Plain Economic Zone
(CPEZ), an inland region with heavy smog, and used spatial econometrics methods to identify the
spatiotemporal distribution characteristics of PM2.5 concentration and the socioeconomic factors
underlying it from 2006 to 2016. Moran’s index indicates that PM2.5 concentration in CPEZ does
have spatial aggregation characteristics. In general, the spatial clustering from the fluctuation state
to the stable low state decreased by 1% annually on average, from 0.190 (p < 0.05) in 2006 to 0.083
(p < 0.1) in 2016. According to the results of the spatial Durbin model (SDM), socioeconomic factors
including population density, energy consumption per unit of output, gross domestic product (GDP),
and per capita GDP have a positive effect on PM2.5 concentration, while greening rate and per capita
park space have a negative effect. Additionally, those factors have identified spatial spillover effects
on PM2.5 concentration. This study could be a reference and support for the formulation of more
efficient air pollution control policies in inland cities.

Keywords: spatiotemporal distribution; socioeconomic factors; spatial econometrics; PM2.5

concentration; spillover effects

1. Introduction

In recent years, China’s particulate matter with a diameter less than 2.5 µm (PM2.5) pollution has
attracted public attention. PM2.5 pollution can not only make the urban atmosphere hazy, but also
cause overall health damage to humans [1,2]. Although public discussions about PM2.5 pushed it into
the new national standard and governments around China have made varying degrees of progress in
disclosing PM2.5 information, there is no clear agreement on what are the main sources and how to
take care of PM2.5 pollution.

In China, some existing studies have indicated that natural conditions, such as temperature [3],
precipitation [4], wind speed [5,6], wind direction [7], terrain [8] are important factors affecting
the accumulation and diffusion of PM2.5. Besides natural conditions, a growing number of
scholars have explored the correlations between PM2.5 concentration and socioeconomic factors,
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including population [9,10], industrial structure [11], per capita GDP [12], energy consumption [13,14],
vehicle population [15], and so on, demonstrating that human activities are the fundamental causes of
high PM2.5 concentration.

For instance, Yan [9] used a spatial interpolation method and spatial clustering analysis to explore
the evolution of spatiotemporal patterns of PM2.5 concentration in the Beijing–Tianjin–Hebei (BTH)
region and found that the region has significant spatial autocorrelation due to high population density.
Moran’s index (Moran’s I) analysis and regression analysis were used by Zhao [15] to detect the spatial
autocorrelation of PM2.5 pollution in 289 cities in China and the relationship between PM2.5 pollution
and the variables. That study concluded that vehicle population has the most significant effect on PM2.5

concentration. Yun [10] adopted the spatial statistical analysis and the establishment of a geographic
detector model to explore the concentrations of PM2.5 in Yangtze River Delta (YRD) from 2005 to
2015, which revealed that population density is the key factor affecting the concentrations of PM2.5.
Xiao [11] used the CAMx (v5.4) modeling system to explore the nexus between the variables and PM2.5

emissions in the Pearl River Delta (PRD), and the research showed that car ownership, average travel
distance, and industrial production are the major contributors to PM2.5 in PRD. Yang’s [12] study
indicated that PM2.5 concentration is significantly positively spatially correlated with GDP per capita,
industrial added value, private car ownership, and urban population density. More details about those
studies are summarized in Table 1.

However, those studies were mainly concentrated in BTH [9], YRD [10], and PRD [11], which are
eastern coastal areas of China with high population density and developed economy, while few
studies have been conducted in inland cities of China. There are great differences between coastal
cities and inland cities in terms of geographic conditions [16], climatic conditions [17], socioeconomic
background [18,19]. As a result, it may be less useful and even unreasonable to take lessons from the
research results of coastal cities on the spatiotemporal variation of PM2.5 to make air pollution control
policies for inland cities. Consequently, as a typical inland urban agglomeration of China and an area
regarded as one of the four major smog regions [20], CPEZ was selected as the research area. In this
paper, the following main questions need to be answered:

(1) What are the spatiotemporal distribution characteristics, regional differences, and variation trends
of PM2.5 in CPEZ?

(2) What is the influence of socioeconomic factors on PM2.5 concentration in CPEZ and how does
it work?

(3) What are the policy implications for the formulation of PM2.5 pollution control in CPEZ as well
as other inland cities?
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Table 1. A summary of relevant studies.

References Time Location Socioeconomic Variables Methodologies Key Findings

Dan Yan [9] 2018 BTH Population density, Energy
structure, urbanization

Spatial interpolation method,
spatial clustering analysis.

PM2.5 in BTH region has significant spatial
autocorrelation due to high population

density.

Shen Zhao [15] 2019 289 Chinese cities
Human activity intensity, the

secondary industry’s proportion,
emissions of motor vehicles.

Spatial clustering analysis,
regression analysis.

vehicle population is the most critical
driver of increasing PM2.5 concentration

Guoliang Yun [10] 2019 YRD Population density, GDP Geographical detector model.
Population density is the dominant
socioeconomic factors affecting the

formation of PM2.5.

Xiaohong Yin [11] 2016 PRD
Vehicle ownership; industrial
production; residential; travel

distance.
CAMx (v5.4) modeling system

Vehicle ownership, average travel distance,
and industrial production are the major

contributors to PM2.5 in PRD.

Yi Yang [12] 2019 China
GDP per capita, industrial added
values, urban population density,

private car ownership.
Spatial econometric analysis.

GDP per capita, industrial added value
and private car ownership are significantly
positive to PM2.5 concentration, and urban

population density
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2. Materials and Methods

2.1. Study Area and Data Sources

As one of strongest and largest economic and population intensive areas in western China [21],
CPZE covers eight cities—Chengdu, Deyang, Mianyang, Meishan, Leshan, Ziyang, Suining, and
Ya’an—with a total area of 81,300 square kilometers and a population of more than 40 million. It is
located in the eastern margin of the Western Sichuan Plateau and the Sichuan Basin (Figure 1). Stable
weather is easily formed by this geographic environment, which means it is not conducive to the
diffusion and dilution of pollutants and aggravates air pollution. Specifically, because CPEZ is located
in the basin topography, the atmospheric environment capacity is very limited and where prolonged
breezes or calm winds in the area can inhibit advection transport of pollutants and hinder their diffusion,
which would multiply the amount of pollutants near the ground [22] Besides, the phenomenon of
temperature inversion in urban is serious, that is the upper air temperature is higher than the lower air
temperature. Once the formation of this inversion, the air cannot convection up and down, which is
difficult to diffuse pollutants [22,23]. Those are why it is one of the 4 regions with the worst smog in
China [21]. In addition, the economic development and population growth caused by the influx of a
large number of people led to huge problems in the air environment in CPEZ.
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Figure 1. The location of CPEZ

In this study, data on the average yearly PM2.5 concentration in the 8 cities from 2006 to 2016
were collected from the Socioeconomic Data and Applications Center (SEDAC) of Columbia University
(https://beta.sedac.ciesin.columbia.edu/data/set/sdei-global-annual-avg-pm2-5d). As shown in Figure 2,
there is obvious diversity among the cities. For example, Chengdu’s PM2.5 concentration is clearly higher
than the other cities of CPEZ. In addition, socioeconomic data were derived from China city statistical
annual reports and Sichuan provincial statistical annual reports from 2006–2016. All factors selected for
this paper are explained in detail in the following section on the STIRPAT model [24].

https://beta.sedac.ciesin.columbia.edu/data/set/sdei-global-annual-avg-pm2-5d


Int. J. Environ. Res. Public Health 2020, 17, 74 5 of 19

Int. J. Environ. Res. Public Health 2019, 16, x  4 of 19 

 

 

 
Figure 1. The location of CPEZ 

In this study, data on the average yearly PM2.5 concentration in the 8 cities from 2006 to 2016 
were collected from the Socioeconomic Data and Applications Center (SEDAC) of Columbia 
University (https://beta.sedac.ciesin.columbia.edu/data/set/sdei-global-annual-avg-pm2-5d). As 
shown in Figure 2, there is obvious diversity among the cities. For example, Chengdu's PM2.5 
concentration is clearly higher than the other cities of CPEZ. In addition, socioeconomic data were 
derived from China city statistical annual reports and Sichuan provincial statistical annual reports 
from 2006–2016. All factors selected for this paper are explained in detail in the following section on 
the STIRPAT model [24]. 

 

 
Figure 2. The variation of PM2.5 concentration over 2006 to 2016 

2.2. Spatial Autocorrelation Analysis 

In this paper, global Moran's I was used to test the global spatial autocorrelation of PM2.5 
concentration. The calculation of global Moran’s I is shown in Formula (1). At the same time, local 
Moran’s I was used to identify the local spatial autocorrelation of atmospheric PM2.5 pollution and the 
location of spatial agglomeration and spatial heterogeneity, as shown in Formula (2). If Moran’s I is 
greater than 0, this indicates that the study object has positive spatial autocorrelation of PM2.5, and the 
larger the value, the stronger the spatial clustering. If Moran’s I is less than 0, this indicates that PM2.5 
concentration has a negative spatial autocorrelation relationship, and the smaller the value, the stronger 
the spatial dispersion of the observed value. 

0

10

20

30

40

50

60

70

2 0 0 6 2 0 0 7 2 0 0 8 2 0 0 9 2 0 1 0 2 0 1 1 2 0 1 2 2 0 1 3 2 0 1 4 2 0 1 5 2 0 1 6

PM
2.

5 
(u

g/
m

3 )
Chengdu

Deyang

Mianyang

Suining

Leshan

Meishan

Ya'an

Ziyang

Figure 2. The variation of PM2.5 concentration over 2006 to 2016.

2.2. Spatial Autocorrelation Analysis

In this paper, global Moran’s I was used to test the global spatial autocorrelation of PM2.5

concentration. The calculation of global Moran’s I is shown in Formula (1). At the same time,
local Moran’s I was used to identify the local spatial autocorrelation of atmospheric PM2.5 pollution and
the location of spatial agglomeration and spatial heterogeneity, as shown in Formula (2). If Moran’s
I is greater than 0, this indicates that the study object has positive spatial autocorrelation of PM2.5,
and the larger the value, the stronger the spatial clustering. If Moran’s I is less than 0, this indicates
that PM2.5 concentration has a negative spatial autocorrelation relationship, and the smaller the value,
the stronger the spatial dispersion of the observed value.

IG =

∑n
i=1

∑n
j=1 Wi j(xi − x)

(
x j − x

)
S2 ∑n

i=1
∑n

j=1 Wy
(1)

IL =

∑n
i=1

∑n
j=1 Wi j(xi − x)

(
x j − x

)
S2 (2)

where IG is global Moran’s I, IL is local Moran’s I, n is the number of spatial units, xi and xj are the
PM2.5 annual average concentration values of units i and j, respectively, and x is the average value of
all units. S is the standard deviation. Wij is the spatial weight matrix of elements i and j. If there is a
common edge between spatial elements i and j, Wij = 1, otherwise Wij = 0.

The significance level of local Moran’s I can be measured by Z (I), and its calculation formula is
shown as Formula (3). By comparing the sign of Z (I) and the significance level of Moran’s I, the spatial
units can be divided into 4 types of spatial autocorrelation relations. First, if Moran’s I is significantly
positive and Z (I) > 0, it is a “high–high” type, that is, the PM2.5 concentration values of this unit and
adjacent units are relatively high. Second, if Moran’s I is significantly positive and Z (I) < 0, it is a
“low–low” type, that is, the concentration values of PM2.5 in this unit and its neighboring units are
relatively low. Third, if Moran’s I is significantly negative and Z (I) > 0, it is “high–low” type, and units
with high PM2.5 concentration value are surrounded by adjacent low-value units. Finally, if Moran’s I
is significantly negative and Z (I) < 0, it is “low–high” type, and units with low PM2.5 concentration
value are surrounded by adjacent high-value units:

Z(I) =
[I − E(I)]√

Var(I)
(3)

where Z (I) measures the significance level of Moran’s I, E (I) is the mathematical expectation of global
Moran’s I, and Var (I) is the variance of global Moran’s I.
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2.3. Socioeconomic Factor Selection

The STIRPAT model is a classic theoretical framework for the study of factors that influence
environmental pollution [25]. The advantage of the STIRPAT model is that it can estimate each
variable’s coefficient and the impact factors can be modified [26]. To be consistent with most research,
this paper adopted the STIRPAT model proposed by Dietz and Rosa (1998) as the basic theoretical
framework. The standard form of the STIRPAT model is shown as Formula (4). It can be seen that
environmental quality is related to population size, affluence level, and technological level. Based on
this and related literature about socioeconomic factors that can affect PM2.5 concentration, we added
urban environment factors (E), including urbanization rate, green rate, and per capita park green space,
as shown in Formula (5). Table 2 shows information on all selected variables: full name, abbreviation
definition, unit, types, and reference; statistical descriptions of those variables in the 8 cities of CPEZ
can be seen in the Appendix A Table A1:

Ln(Iit) = a + blnPit + clnAit + dlnTit + εit (4)

where Iit represents environmental quality at location i at time t, P represents the size of the population
at location i at time t, A represents affluence level at location i at time t, T represents the technical level
at location i at time t, and ε is an error term:

lnPM2.5 =∝ +β1lnPD + β2lnGDP + β3lnGDPP + β4lnSIR + β5lnEC + β6lnBR
+β7lnGR + β8lnPP + εit

(5)

Table 2. The information of all selected variables in this study.

Variable Full Name Abbreviation Definition Unit Types Reference

lnPD Logarithm of the
population density

PD: the number of people
city divided by area Pop./km2 P (Population) [9,10,27–31]

lnGDP Logarithm of gross
regional product

GDP: gross regional
product of cities

100 million
yuan

A (Affluence
level) [29,31,32]

lnGDPP
Logarithm of gross

regional product
per capita

GDPP: per capita gross
regional product yuan/capita A (Affluence

level) [12,29–34]

lnSIR
Logarithm of the
ratio of secondary

industry

SIR: the secondary
industry divided by total

industry output
% T (Technical

level) [11,29,30,32,33]

lnEC

Logarithm of
energy

consumption per
unit of output

EC: Energy consumption
divided by the

corresponding output

Tons of
standard
carbon/10

thousand yuan

T (Technical
level) [13,14],

lnBR
Logarithm of the

ratio of urban
built-up area

BR: the built-up area
divided by city area % E (Urban

environment) [35,36]

lnGR Logarithm of the
ratio of green space

GR: the green area divided
by city area % E (Urban

environment) [28,37]

lnPP Logarithm of per
capita park area

PP: park area divided by
population km2/capital

E (Urban
environment) [37]

2.4. Spatial Econometric Model

When the data involve geospatial features, the observed values cannot remain independent
because closer distance may cause relevance [38]. If the spatial effects are neglected in the econometric
model, the estimation results will be biased [33]. Consequently, spatial weight is introduced to
adjust the relationships between independent variables, dependent variables, and residual terms and
dependent variables to reflect spatial interaction relations. For example, common spatial interaction



Int. J. Environ. Res. Public Health 2020, 17, 74 7 of 19

relations include endogenous interactions between dependent variables (Spatial lag model (SLM)),
interactions between error terms (spatial error model (SEM)), and based on SLM adding exogenous
interactions between independent variables (spatial Durbin model (SDM)), as shown in Figure 3.
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Compared with other spatial econometric models, the spatial Durbin model can explain not only
the influence of variables on the unit itself, but also the influence of other variables of adjacent units
on that unit. It considers a more comprehensive impact and has stronger explanatory power [39].
Therefore, this paper adopts the spatial Durbin model to answer the research questions. The formula is
shown as Equation (6):

yit = a + ρ
n∑

j=1

wi jyit + xitβ+
n∑

j=1

wi jxitθ+ ui + vt + εit (6)

where i is location, t is time, ρ is the spatial autocorrelation coefficient of the dependent variable, β and
θ are the correlation coefficients of the independent variable, wij is a spatial weight matrix, ui is the
spatial residual error, vi is the time residual error, and εit is the residual error of time and space.

Furthermore, to make the model easy to understand, Lesage and Pace [40] divided the effects in
SDM into direct effects (DEs), indirect effects (IEs), and total effects (TEs) (Equations (7)–(12)). DE refers
to the influence of independent variables on the dependent variable in the region. IE, also known as
the spatial spillover effect, is used to measure the impact of an independent variable in an adjacent
region on the dependent variable in the region.

yt = (I − ρw)−1(α+ xtβ+ Wxtθ+ λtιn + εt) (7)

E(yt
∣∣∣xt) = (I − ρW)−1(α+ xtβ+ Wxtθ+ λtιn) (8)
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∂E(y1)
∂x1

· · ·
∂E(y1)
∂xn

...
. . .

...
∂E(yn)
∂x1

· · ·
∂E(yn)
∂xn

 = (I − ρW)−1


βk ω12θk · · · ω1nθk

ω21θk βk · · · ω2nθk
... · · ·

. . .
...

ωn1θk ωn2θk · · · βk

 (9)

TE =
{
(I − ρW)−1

× (βkI + θkW)
}

(10)

Direct effect (DE) is the average value of the diagonal elements of the above matrix. If Ad represents
the row average of the diagonal elements of matrix A, DE can be expressed as:

DE = {(I − ρW)−1
× (βkI + θkW)d

} (11)

The indirect effect is the row average of nondiagonal matrix elements. If Arsum represents the row
average of matrix A’s nondiagonal elements, IE can be expressed as:

IE = {(I − ρW)−1
× (βKI + θKW)}

rsum
(12)

3. Results

3.1. Spatiotemporal Variation of PM2.5

The changing pattern of PM2.5 concentration distribution in CPEZ from 2006 to 2016 can be clearly
seen in Figure 4. Although the value of PM2.5 in each city changed during the period, these cities
can be generally divided into three groups according to the PM2.5 values, as high, medium, and low.
Specifically, the first group was represented by Chengdu, with a PM2.5 concentration of more than
50 µg/m3, which was higher than in other cities. The second group was located near eastern Chengdu
(Deyang, Suining, Ziyang, and Meishan), where the PM2.5 was about 30–50 ug/m3. The third group,
with a PM2.5 concentration lower than 30 µg/m3, was Mianyang, Leshan, and Ya’an. In general,
the closer to Chengdu, the higher the PM2.5 concentration, which means that PM2.5 concentration had
the characteristic of spatial agglomeration. According to air quality guidelines issued by the World
Health Organization (WHO) in 2005, the average daily concentration should not exceed 25ug/m3,
otherwise it should be considered unsafe living conditions. It seems that most cities in CPEZ were not
up to the standard of health, but the PM2.5 pollution tended to be moderate in recent years. According
to the PM2.5 concentration from 2006–2016 in CPEZ, global Moran’s I was calculated, shown in Table 3.
In 2006, Moran’s I of PM2.5 in CPEZ was 0.190 (p < 0.05), indicating that PM2.5 concentration showed
spatial aggregation. However, with the passage of time, such spatial aggregation characteristics
gradually weaken year by year (average 1% reduction per year). At the end of 2016, Moran’s I of PM2.5

in CPEZ was 0.083 (p < 0.1), which was less than half of 2006.
In order to further explore the changes of spatial aggregation of PM2.5 concentration with time,

a cluster and outlier analysis of PM2.5 concentrations from 2006-2016 is adopted, as shown in Figure 5.
By the figure we can clearly see that the cluster areas with statistical significance (p < 0.05) are mainly
Chengdu and cities in the east of Chengdu such as Deyang, Ziyang and suining. While, the outlier
areas with statistical significance (p < 0.05) are mainly located at the edge of CPEZ, where is relatively
far from Chengdu. From the perspective of temporal variation trend, the spatial distribution of cluster
and outlier before 2012 showed an obvious change state. Almost every year is different. While in the
recent four years, the spatial distribution of cluster and outlier showed a stable state.
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Table 3. Test results of Global Moran’s I of PM2.5 concentration in the CPEZ.

Time Moran’ I Standard Error Z-Score p-Value

2006 0.191 ** 0.386 1.655 0.049
2007 0.096 * 0.360 1.461 0.072
2008 0.091 * 0.361 1.379 0.084
2009 0.103 * 0.371 1.522 0.064
2010 0.150 ** 0.372 1.728 0.042
2011 0.101 * 0.344 1.405 0.080
2012 0.094 * 0.352 1.580 0.057
2013 0.132 * 0.372 1.607 0.054
2014 0.093 * 0.304 1.379 0.084
2015 0.089 * 0.319 1.491 0.068
2016 0.083 * 0.308 1.483 0.069

Notes: *, ** represent the significance at the 10%, 5%, and 1% level, respectively.

The Moran scatter plot [41] is a useful visual tool for exploratory analysis, because it enables you
to assess how similar an observed value is to its neighboring observations. Its horizontal axis is based
on the values of the observations and is also known as the response axis. The vertical Y axis is based
on the weighted average or spatial lag of the corresponding observation on the horizontal X axis.

Through the scatter plot of Moran’s I based on local Moran’s I analysis (Figure 6), it can be seen
that most of the scatter is located in the first quadrant (Chengdu, Deyang, Suining, and Ziyang).
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Figure 6. Local Moran’s I of eight cities in CPZE.

This indicates that areas with high PM2.5 tend to be adjacent to high PM2.5 areas. In the third
quadrant (Leshan), low PM2.5 areas tend to be adjacent to low PM2.5 areas. The clusters of “high–high”
and “low–low” reflect a positive spatial correlation of PM2.5 in the different cities of CPEZ. However,
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there are still a few clusters in the second and fourth quadrants (Meishan, Mianyang, and Ya’an),
meaning the low-level area is encircled by the surrounding high-level area. From the perspective of
the entire period from 2006 to 2016 (Figure 7), local Moran’s I of Leshan, Ziyang, and Deyang is greater
than 0, which means that PM2.5 tends to form spatial aggregation and would lead to much worse air
pollution. In Chengdu, Meishan, and Suining, local Moran’s I is approximately equal to 0, which means
the PM2.5 of these areas is relatively stable, neither aggregating nor diffusing. However, local Moran’s I
in the Ya’an and Mianyang areas is less than 0, and the PM2.5 concentration in these regions is relatively
low, trending toward scattered spatial aggregation.
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3.2. Spatial Econometric Regression

The purpose of the model (SDM) is to identify the impact of social-economic variables on PM2.5

concentration which contain the dimensions of space and time, but we cannot determine directly
whether the difference in PM2.5 concentration caused by time and space is random (random effect)
or presenting a certain regularity (fixed effect), so we adopt four models for comparison and a brief
introduction of those models as follows:

(1) SDM time fixed effect: for different spatial individuals, differences caused by time are consistent.
(2) SDM spatial fixed effect: among cross-sectional data of different time series, differences caused by

spatial characteristics are consistent.
(3) SDM time and spatial fixed effect: among cross-sectional data of different time series, differences

caused by space are consistent, and among different spatial individuals, differences caused by
time are consistent.

(4) SDM random effect: the differences caused by space and time is random.

When comparing R2 and AdjR2 of the regression results of the four effects in Table 4, the fitting
degree of model 1 (SDM time fixed effect) is higher than that of other models. Therefore, this paper
uses this model to identify the spatiotemporal distribution characteristics of PM2.5 concentration.
The direct effects of regression results demonstrate that population density, energy consumption per
unit of output, and per capita park area are significant socioeconomic variables that influence PM2.5

concentration (p < 0.01) in CPEZ. The relatively significant indicators (p < 0.05) are regional GDP and
urban green rate, and the slightly significant variable (p < 0.1) is per capita GDP, while the proportions
of secondary industry (SIR) and built-up areas are insignificant variables for PM2.5 concentration.
Among the socioeconomic variables, population density, per capita GDP, and energy consumption per
unit of output have a positive effect on PM2.5 concentration, that is, as these variables increase, PM2.5

concentration will increase, whereas urban green rate and per capita park area have a negative effect
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on PM2.5 concentration, indicating that increasing the urban green rate and per capita park areas will
alleviate PM2.5 pollution.

Table 4. The regression results of various effects of SDM.

Models Model 1 Model 2 Model 3 Model 4

Variables SDM Time Fixed
Effect

SDM Spatial Fixed
Effect

SDM Time and
Spatial Fixed

Effect

SDM Random
Effect

lnPD 0.3606 (0.5552) *** 0.1420 (0.1486) 0.2378 (0.1737) * 0.2214 (0.1878) *
lnGDP 0.0770 (0.1186) ** 0.0531 (0.0556) 0.2155 (0.1574) * 0.2293 (0.1945)

lnGDPP 0.2068 (0.3184) * 0.0231 (0.0242) 0.0201 (0.0147) 0.0407 (0.0345)
lnSIR 0.0149 (0.0229) 0.1046 (0.1095) 0.0011 (0.0008) 0.0300 (0.0254)
lnEC 0.1350 (0.2079) *** 0.5369 (0.5620) ** 0.6741 (0.4925) ** 0.5738 (0.4866) **
lnBR 0.0389 (0.0599) 0.0252 (0.0264) 0.1709 (0.1249) * 0.1848 (0.1567)
lnGR −0.1259 (0.1938) ** −0.1317 (0.1378) ** −0.1519 (0.1110) ** −0.1447 (0.1227) ***
lnPP −0.1118 (0.1721) *** −0.0027 (−0.0028) −0.0144 (0.0105) −0.0021 (0.0018)

W lnPD 0.10818 (0.16656) *** 0.0426 (0.04458) 0.07134 (0.05211) ** 0.06642 (0.05634) *
W lnGDP 0.0231 (0.03558) *** 0.01593 (0.01668) 0.06465 (0.04722) * 0.06879 (0.05835)

W lnGDPP 0.06204 (0.09552) ** 0.00693 (0.00726) 0.00603 (0.00441) 0.01221 (0.01035)
W lnSIR 0.00447 (0.00687) 0.03138 (0.03285) 0.00033 (0.00024) 0.009 (0.00762)
W lnEC 0.0405 (0.06237) ** 0.16107 (0.1686) *** 0.20223 (0.14775) ** 0.17214 (0.14598) **
W lnBR 0.01167 (0.01797) 0.00756 (0.00792) 0.05127 (0.03747) 0.05544 (0.04701)
W lnGR −0.08777 (0.10814) *** −0.03951 (0.04134) ** −0.04557 (0.0333) ** −0.04341 (0.03681) ***
W lnPP −0.09354 (0.11163) ** −0.00081 (0.00084) −0.00432 (0.00315) −0.00063 (0.00054)
rho(ρ) 0.154 (0.1831) *** 0.2049 (0.2145) *** 0.2155 (0.1574) 0.146 (0.1390)

R2 0.9495 0.8272 0.8601 0.8110
Sig. 0.0061 0.0041 0.0057 0.0063

AdjR2 0.6323 0.4416 0.5216 0.4012
observations 88 88 88 88

Notes: Standard errors in parentheses; *, **, *** represent the significance at the 10%, 5%, and 1% level, respectively.

The effect decomposition results are shown in Table 5. In fact, except for the degree of impact,
the result of indirect (spillover) effects shows similar results to the direct effect, that is, population
density, per capita GDP, and output value of energy consumption have a positive effect on PM2.5

concentration, while greening rate and per capita park area have a negative effect. However, it has
a discriminative implication, which indicates that apart from a local city’s socioeconomic variables,
the socioeconomic variables of neighboring cities also effect the PM2.5 concentration of the local city.
What is meant by this is that in CPEZ, the socioeconomic influence factors of both a particular city and
its neighboring cities drive the city’s change of PM2.5 emissions.

Table 5. The results of the effect decomposition.

Variables Direct Effect Indirect Effect Total Effect

lnPD 0.3606 *** (0.5552) 0.10818 *** (0.1665) 0.46878 *** (0.7217)
lnGDP 0.0770 ** (0.1186) 0.0231 *** (0.0355) 0.1001 ** (0.1541)

lnGDPP 0.2068 * (0.3184) 0.06204 ** (0.0955) 0.26884 * (0.4139)
lnSIR 0.0149 (0.0229) 0.00447 (0.0068) 0.01937 (0.0297)
lnEC 0.1350 *** (0.2079) 0.0405 ** (0.06237) 0.1755 ** (0.27027)
lnBR 0.0389 (0.0599) 0.01167 (0.0179) 0.05057 (0.0778)
lnGR −0.1259 ** (0.1938) −0.08777 *** (0.1081) −0.16367 ** (0.3019)
lnPP −0.1118 *** (0.1721) −0.09354 ** (0.1116) −0.14534 *** (0.2837)

Notes: Standard errors in parentheses; *, **, *** represent the significance at the 10%, 5%, and 1% level, respectively.
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4. Discussion

The Moran’s I of PM2.5 concentration in CPEZ is about 0.08–0.19, which reveals an autocorrelation
of PM2.5 concentration in the region. However, Moran’s I of PM2.5 concentration in CPEZ is relatively
lower compared with the three major economic growth areas (BTH, YRD, and PRD), which is about 0.4
to 0.9 [42–44]. There are two possible reasons for this situation. For Economic reason, it can be seen
from Appendix A Table A1 that the GDP of Chengdu is far higher than that of other cities in CPEZ.
Because of the positive correlation between the economy and PM2.5 pollution [45,46], unbalanced
economic development also leads to unbalanced PM2.5 distribution, resulting in the weak spatial
correlation of CPEZ. Compared with Chengdu, the economic development of cities in the PRD, YRD,
and BTH regions is more balanced. For Geography reason, unlike the PRD, YRD, and BTH regions,
CPEZ is located in a plain of the Sichuan Basin. This kind of terrain makes it difficult for the central city
group to form air flow with its peripheral cities [22,23,47]. It is reflected in Moran’s I that the central
city group has strong correlation, but the overall correlation of all cities is not strong.

Among the factors related to PM2.5 concentration, previous studies by Zhang [48], Yun [10],
Xie [49], and Ding [50] also showed a significant positive correlation between population density and
PM2.5; in addition, Guo and Ding showed that population density is the most important socioeconomic
factor affecting PM2.5 concentration [51,52]. This study also confirms their results with similar
findings. Additionally, our study found that there is a significant positive correlation between energy
consumption and PM2.5 concentration, which is consistent with the existing results that higher energy
consumption leads to higher PM2.5 concentration [53,54]. Furthermore, this study identified that
GDP and per capita GDP have a positive effect on PM2.5 concentration. Some studies also claimed
that economic development will lead to increased PM2.5 concentration [55–57] But Wang’s [58] study
revealed a negative relationship between per capita GDP and PM2.5 in southeast China (the most
developed part of the country) and backward areas in China. He argued that the main reason for the
different results is different development levels of Chinese cities leading to varying PM2.5 profiles.
Moreover, there is a significant negative correlation between PM2.5 and per capita park green space
and urban greening rate, and their growth can effectively reduce PM2.5 concentration. From an
ecological point of view, green spaces in urban areas can absorb and purify PM2.5, which can improve
air quality [59]. The existing research also shows that there is a significant relationship between these
factors and PM2.5 [28].

Besides that, in our study, there are two factors that are not relevant: the proportions of secondary
industry and built-up areas. However, in studies of 289 cities in China [37], YRD [36], Bohai Rim
Urban Agglomeration [60], and PRD [61], it was shown that the proportions of secondary industry
and built-up areas are significantly related to PM2.5. In fact, different types of cities will face different
problems in the development process [62]. Yan’s [63] research showed that the industrial results need
to exceed the threshold value to have an impact on PM2.5, while the secondary industry in CPEZ is
weaker than that in the YRD, PRD, and BTH regions, so the impact of the proportion of secondary
industry on PM2.5 is too low to be significantly reflected.

Finally, in order to make the comparison between CPEZ and BTH [9], YRD [10], and PRD [11]
more intuitive, we sorted out the regression coefficients obtained from relevant studies according
to population, affluence level, technical level and urban environment, and normalized the results,
as shown in Figure 8. It is clearly that although there are differences in the weight of influencing factors
in each region, population factor is the most important influencing factor. Addtionally, in CPEZ the
weight of affluence level factor is higher than that of other regions, while the weight of technology
level factor is lower than that of other regions. Which means the economy of CPEZ is less value-added
and energy efficient than elsewhere and the development of green economy and high value-added
industries needs to be strengthened. The influence factors of urban environment lie in the middle level
between these regions, indicating that the urban ecological construction performs well but still has
room for improvement.
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5. Conclusions

In this paper, we studied temporal and spatial patterns of PM2.5 concentration in CPEZ, an inland
urban agglomeration of China. Global Moran’s I was used to analyze spatiotemporal variations in
the region, while the STIRPAT model and spatial econometrics method were applied to explain the
spatial heterogeneity of regional PM2.5 concentration in CPEZ over the study period from 2006 to 2016.
A better understanding of the identified driving factors and their impacts on PM2.5 pollution may be
useful for policy-makers in implementing PM2.5 pollution control policies.

The Moran’s I of PM2.5 concentration over the study period indicated that PM2.5 concentration in
CPEZ did show spatial aggregation and was risks to human health in a majority of cities in CPEZ.
In general, the closer to Chengdu, the higher the PM2.5 concentration. In addition, from 2006 to 2016,
the spatial aggregation characteristics showed that the initial high and low fluctuation states gradually
changed to stable low fluctuation states.

Among socioeconomic factors, population density, per capita GDP, and output value of energy
consumption have a positive effect on PM2.5 concentration, while greening rate and per capita park
area have a negative effect. We also recognized the significance of the spatial spillover effect in regional
air pollution control.

Based on the findings above, we propose some policy recommendations as follows. Due to the
existing spatial autocorrelations and spatial spillover effect between regions, the government should
pay attention to the importance of regional joint governance mechanisms in the PM2.5 governance
process. This means that implementing environmental regulations in a separate region cannot bring
sufficient benefits to a region without emphasizing regional linkages of environmental regulations.
Additionally, it is necessary to promote the use of clean energy, increase the added value of energy
consumption, and realize the green transformation of the economy. Moreover, different from the
treatment methods of reducing pollution sources and controlling PM2.5 emissions, measures such as
low-carbon cities, forest cites, and ecological cities, which take advantage of the biological characteristics
of plants to absorb and retain particles in the atmosphere, would also be of benefit for reducing and
controlling the particle content in the atmosphere.

Although the results fill a research gap in the inland cities and put forward a range of meaningful
suggestions, there are still some deficiencies that mainly in two aspects. On the one hand, the selection
of factors only emphasizes the role of socio-economic impact factors, while ignoring the role of physical
environment variables such as wind, temperature and terrain. On the other hand, the number of
cities or scope of study area is small, so more samples are needed for further research in the future to
improve the credibility of the research results.
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Abbreviations

BR The ratio of urban built-up area
BTH Beijing-Tianjin-Hebei
CPEZ Chengdu Plain Economic Zone
EC Energy consumption per unit of output
GDP Gross regional product
GDPP Per capita gross regional product
GR Ratio of green space
PD Population density
PP Per capita park area
PRD Pearl River Delta
SDM Spatial model
SEDAC Socioeconomic data and applications center
SEM Spatial error model
SIR The ratio of secondary industry
SLM Spatial lag model
STIRPAT Stochastic impacts by regression on population, affluence, and technology
YRD Yangtze River Delta

Appendix A

Table A1. The statistical description of socioeconomic and environment variables.

Cities lnGDP lnGDPP lnSIR lnPD lnBR lnEC lnGR lnPP

Chengdu

Min 7.92 10.01 −0.85 6.82 −3.41 −0.90 −1.12 0.48
Max 9.64 11.47 −0.76 7.10 −2.84 −0.38 −1.00 0.72

Mean 8.88 10.84 −0.80 7.01 −3.18 −0.61 −1.04 0.62
SD 0.51 0.44 0.03 0.10 0.18 0.16 0.03 0.07

Deyang

Min 6.29 9.60 −0.62 6.39 −5.01 −0.49 −1.31 −0.74
Max 7.70 11.05 −0.51 6.46 −4.37 0.06 −1.03 0.18

Mean 7.05 10.38 −0.56 6.41 −4.65 −0.19 −1.14 −0.24
SD 0.41 0.42 0.04 0.03 0.25 0.17 0.11 0.32

Mianyang

Min 6.33 9.34 −0.83 5.43 −5.52 −0.66 −1.21 −0.47
Max 7.64 10.77 −0.65 5.59 −4.98 0.003 −1.01 0.31

Mean 7.10 10.13 −0.73 5.49 −5.29 −0.27 −1.07 −0.04
SD 0.41 0.42 0.07 0.06 0.19 0.20 0.08 0.22

Suining

Min 5.48 8.82 −0.93 6.42 −4.76 −0.53 −1.18 −0.82
Max 7.11 10.54 −0.58 6.64 −4.21 0.05 −0.96 0.60

Mean 6.41 9.81 −0.69 6.50 −4.46 −0.21 −1.08 −0.02
SD 0.47 0.51 0.12 0.09 0.23 0.19 0.07 0.45

Leshan

Min 5.90 9.29 −0.61 5.52 −5.63 0.03 −1.23 −0.20
Max 7.39 10.81 −0.48 5.60 −5.12 0.61 −1.04 0.60

Mean 6.80 10.21 −0.54 5.55 −5.38 0.35 −1.13 0.07
SD 0.45 0.46 0.05 0.03 0.19 0.19 0.07 0.24
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Table A1. Cont.

Cities lnGDP lnGDPP lnSIR lnPD lnBR lnEC lnGR lnPP

Meishan

Min 5.64 9.13 −0.72 6.03 −5.20 −0.40 −1.46 −2.04
Max 7.14 10.65 −0.56 6.20 −4.72 0.28 −1.12 −0.49

Mean 6.53 10.03 −0.62 6.07 −5.01 0.002 −1.28 −1.39
SD 0.47 0.47 0.06 0.06 0.18 0.21 0.15 0.57

Ya’an

Min 5.00 9.19 −0.77 4.61 −6.66 −0.23 −1.57 −0.28
Max 6.47 10.65 −0.53 4.63 −6.10 0.29 −0.99 0.28

Mean 5.85 10.04 −0.62 4.62 −6.42 0.06 −1.19 0.07
SD 0.44 0.43 0.08 0.01 0.22 0.16 0.26 0.26

Ziyang

Min 5.70 8.86 −0.89 6.10 −5.79 −0.86 −1.54 −1.52
Max 7.15 10.64 −0.58 6.42 −4.76 −0.17 −0.98 0.24

Mean 6.63 9.96 −0.67 6.19 −5.37 −0.43 −1.16 −0.93
SD 0.49 0.59 0.11 0.13 0.30 0.20 0.21 0.51
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