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A B S T R A C T   

Food remains a major source of human exposure to chemical contaminants that are unintentionally present in 
commodities globally, despite strict regulation. Scientific literature is a valuable source of quantification data on 
those contaminants in various foods, but manually summarizing the information is not practicable. In this re
view, literature mining and machine learning techniques were applied in 72 foods to obtain relevant information 
on 96 contaminants, including heavy metals, polychlorinated biphenyls, dioxins, furans, polycyclic aromatic 
hydrocarbons (PAHs), pesticides, mycotoxins, and heterocyclic aromatic amines (HAAs). The 11,723 data points 
collected from 254 papers from the last two decades were then used to identify the patterns of contaminants 
distribution. Considering contaminant categories, metals were the most studied globally, followed by PAHs, 
mycotoxins, pesticides, and HAAs. As for geographical region, the distribution was uneven, with Europe and Asia 
having the highest number of studies, followed by North and South America, Africa and Oceania. Regarding food 
groups, all contained metals, while PAHs were found in seven out of 12 groups. Mycotoxins were found in six 
groups, and pesticides in almost all except meat, eggs, and vegetable oils. HAAs appeared in only three food 
groups, with fish and seafood reporting the highest levels. The median concentrations of contaminants varied 
across food groups, with citrinin having the highest median value. The information gathered is highly relevant to 
explore, establish connections, and identify patterns between diverse datasets, aiming at a comprehensive view 
of food contamination.   

1. Introduction 

Despite strict regulatory systems imposed for food contaminants to 
facilitate world trade and protect consumers’ health (European Court of 
Auditors, 2019), foods remain a major route for human exposure to 
chemical contamination because hazardous toxicants are unintention
ally present in commodities produced all over the world, making 
exposure to those chemicals unavoidable (European Court of Auditors, 
2019; Thompson and Darwish, 2019). As schematized in Fig. 1, a di
versity of contaminants can enter food-chain: i) environmental pollut
ants, including heavy metals (Pinto et al., 2016), polychlorinated 

biphenyls (PCBs), dioxins, and furans (Fechner et al., 2022), abundant in 
areas of intense industrial, shipping and/or commercial activities, are 
dispersed in the soil, water and air (Melo et al., 2012); ii) polycyclic 
aromatic hydrocarbons (PAHs) formed during incomplete combustion of 
carbonaceous material are ubiquitous in the environment (Raposo et al., 
2022) and accumulated in smoked and charcoal-grilled products (Silva 
et al., 2018; Viegas et al., 2014); iii) residues of agricultural chemicals, 
such as pesticides, may remain in food products after intentional use(EC, 
2018; Pesticide residues in food, 2022); iv) mycotoxins, produced by 
fungi (Sá et al., 2021); v) processing contaminants as heterocyclic aro
matic amines (HAAs), formed by cooking muscle foods (Viegas et al., 
2015), or disinfection by-products formed in situ when disinfectants 
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Abbreviations 

4,8dMQx 2-amino-3,4,8-trimethylimdazo[4,5-f]quinoxaline 
7,8dMQx 2-Amino-3,7,8-trimethylimidazo(4,5-f)quinoxaline 
8MQx 2-amino-3,8-dimethylimdazo[4,5-f]quinoxaline 
AαC 2-amino-α-carboline 
AAL Alternaria toxins 
Ace Acenaphthene 
ACET Acetamiprid 
Acy Acenaphthylene 
AFB1 Aflatoxin B1 
An Anthracene 
As Arsenic 
B[a]A Benz[a]anthracene 
B[a]P Benzo[a]pyrene 
B[b]F Benzo[b]fluoranthene 
BEA Beauvericin 
B[ghi]P Benzo[g,h,i]perylene 
B[k]F Benzo[k]fluoranthene 
Cd Cadmium 
Chr Chrysene 
CIT Citrinin 
CP Cypermethrin 
CPS Chlorpyrifos 
CULM Culmorin 
D[ah]A Dibenz[a,h]anthracene 
DLM Deltamethrin 
DON Deoxynivalenol 
ENs Enniatins 
ErAs Ergot alkaloids 
FB1 Fumonisin B1 
FHCl Formetanate (hydrochloride) 
Fla Fluoranthene 
Fle Fluorene 
FSA Fusaric Acid 

GP1 2-Amino-6-methyldipyrido[1,2-a:3′,2′-d]imidazole 
GP2 2-aminodipyrido(1,2-a-3′,2′-d)imidazole 
H Harman 
HAAs Heterocyclic aromatic amines 
Hg Mercury 
Ind Indeno[1,2,3-cd]pyrene 
IQ 2-Amino-3-methyl-3H-imidazo[4,5-f]quinoline 
IQx 3-Methyl-3H-imidazo[4,5-f]quinoxalin-2-amine 
LCH λ-cyhalothrin 
MAαC 2-amino-3-methyl-α-carboline 
MIQ 2-amino-3,4-dimethylimdazo[4,5-f]quinoline 
ML Machine learning 
MML Methomyl 
MON Moniliformin 
Nap Naphthalene 
NH Norharman 
NIV Nivalenol 
OTA Ochratoxin A 
PAHs Polycyclic aromatic hydrocarbons 
PAT Patulin 
Pb Lead 
PCZ Propiconazole 
Ph Phenanthrene 
PhIP 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine 
Py Pyrene 
PYR Pyraclostrobin 
TBZ Tebuconazole 
TBD Thiabendazole 
TP1 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole 
TP2 3-amino-1-methyl-5H-pyrido[4,3-b]indole 
ST Sterigmatocystin 
T2 T-2 toxin 
TeA Tenuazonic acid 
ZEN Zearalenone  

Fig. 1. Hazardous chemicals from different origins (environmental pollutants, agricultural/natural/processing contaminants, among others) can reach all types of 
food commodities. Twelve food groups were formed based on similar characteristics of foods. Correspondence between names in the figure and the respective group 
of foods can be seen in detail in Table S1. The icons selected for each food group are used throughout the manuscript. 
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react with dissolved organic matter (Vizioli et al., 2022). 
Scientific literature provides a great amount of valuable data con

cerning analyses of food contaminants in different foods; however, in
formation is dispersed and summarizing it manually is not feasible. To 
tackle this gap, our goal was to implement a systematic organization of 
existing knowledge concerning food contaminants in highly produced/ 
consumed food items, using a Pubmed Entrez API based protocol and 

machine learning (ML) techniques, and apply exploratory data analysis 
to identify the patterns of contaminants distribution, in a great variety of 
foods, over the last two decades. 

Fig. 2. Overview of literature mining and data 
collection process. The automatic step started with a 
list of paper titles and abstracts that were obtained 
using Pubmed Entrez API, followed by text matching 
to automatically filter the search results and classified 
(potentially useful/not useful) by a machine learning 
algorithm, obtaining a subset of papers. This subset 
was then read and manually evaluated. If papers 
contained information on the 96 food contaminants 
quantification for the 72 foods included in the study, 
relevant information was manually extracted. Finally, 
values were converted to comparable units. The bars 
show, by food group, the results obtained in every 
step for each food included in the study. 
* Only one food nomenclature was chosen for the 
output, and the corresponding nomenclature was 
omitted; ** These food items were included in wheat 
output.   
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2. Pool of foods, selection of contaminants, literature mining 
and machine learning 

Food items were chosen based on the highest worldwide food supply 
according to the United Nations Food and Agricultural Organization 
statistical database (FAOSTAT, 2022), except for the fish/seafood group, 
due to the lack of the intended and relevant data. In this case, data were 
collected from the European Market Observatory for Fisheries and 
Aquaculture Products (EC, 2019) and National Oceanic and Atmo
spheric Administration (National Marine Fisheries Service, 2020). Food 
items were organized in aggregated food groups based on the FoodEx2 
system (Table S1). The groups were based on hierarchical level 1, except 
for the “Legumes”, “Nuts, oilseeds and oilfruits” and “Spices” (hierar
chical level 2), and “Vegetable fats and oils, edible” (hierarchical level 
3). Contaminants selection was based on EU reports, regulation, rec
ommendations and reference publications (EC, 2006, 2013, 2018; EFSA, 
2014; European Court of Auditors, 2019; Thompson and Darwish, 2019; 
Viegas et al., 2015; Vizioli et al., 2022). 

The FoodMine’s protocol (Hooton et al., 2020) was used for litera
ture mining as summarized in Fig. 2 and detailed in Supplementary File 
1. Some modifications were done to the codes used, namely the terms 
included in the predefined (restricted to food and contaminants under 
study) and generic (i.e., ‘food’, ‘contaminant’, ‘database’) dictionaries, 
as well as measurement methods (i.e., ‘spectrometry’, ‘chromatog
raphy’, ‘spectrophotometry’). Since the algorithm performs the search in 
PubMed, search strategy for food terms was optimised considering 
PubMed’s automated term mapping and our specific goal (Supplemen
tary file 1). This process was carried out for 72 foods across 12 food 
groups included in the study. A total of 96 food contaminants were 

searched, including 4 heavy metals, 16 PAHs, 9 dioxins and dioxin-like 
PCBs, 13 pesticide residues, 5 disinfection by-products, 15 heterocyclic 
aromatic amines, and 34 mycotoxins. ML algorithm applied to predict 
potentially useful papers showed good performance metrics, namely 
cross-validation (10 k-fold) = 0.9100, Accuracy = 0.8600, Sensitivity =
0.9223, Specificity: 0.7977, and F1 score = 0.8682. A total of 1,932,345 
papers were identified initially, a number that was narrowed to 26,739 
after applying the text matching filter. The ML algorithm was subse
quently applied to the remaining foods, resulting in a subset of 2442 
papers classified as potentially useful (Martins et al., 2023). Nine of the 
authors of this publication contributed to manual evaluation. Papers 
were divided by food groups, with each one having three authors 
independently reviewing them. In all steps, selection disagreements 
were solved by meeting with all authors and making decisions together 
regarding the inclusion or exclusion of the papers. Papers prior to 2000 
and not related to selected contaminants or foods were assigned as “not 
useful” and removed. The full texts of the remaining 1924 papers were 
reviewed. Articles with no access to the full text, not written in English, 
reviews, conference papers, books, as well as studies with quantification 
in spiked food samples and/or in a mixture of foods were not included. 
Studies reporting data as below limits of detection/quantification but 
without providing values were also excluded. After removing duplicates, 
254 papers were used to collect 11,723 data points. Finally, content 
values across all data points were standardised in units of μg/kg and 
weight basis. 

The number of papers, as well as the number of data points obtained 
varied among food groups (Fig. 2). Meat and Cereals had the highest 
number of initial papers (585,822 and 330,590, respectively), while 
Nuts, Spices, and Starchy Roots had the lowest (33,743, 33,509, and 

Fig. 3. Treemap plot showing the distribution of the 254 papers resulting from mining, grouped, and coloured according to the contaminant categories, reflecting the 
study pattern of different food contaminants. 
HAAs: 4,8dMQx, 2-amino-3,4,8-trimethylimdazo[4,5-f]quinoxaline; 7,8dMQx, 2-Amino-3,7,8-trimethylimidazo(4,5-f)quinoxaline; 8MQx, 2-amino-3,8-dimethy
limdazo[4,5-f]quinoxaline; AαC, 2-amino-α-carboline; GP1, 2-Amino-6-methyldipyrido[1,2-a:3′,2′-d]imidazole; GP2, 2-aminodipyrido(1,2-a-3′,2′-d)imidazole; H, 
Harman; IQ, 2-Amino-3-methyl-3H-imidazo[4,5-f]quinoline; IQx, 3-Methyl-3H-imidazo[4,5-f]quinoxalin-2-amine; MAαC, 2-amino-3-methyl-α-carboline; MIQ, 2- 
amino-3,4-dimethylimdazo[4,5-f]quinoline; NH, Norharman; PhIP, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine; TP1, 3-amino-1,4-dimethyl-5H-pyrido 
[4,3-b]indole; TP2, 3-amino-1-methyl-5H-pyrido[4,3-b]indole. 
Metals: As, Arsenic; Cd, Cadmium; Pb, Lead; Hg, Mercury. 
Mycotoxins: AAL, Alternaria toxins; AFB1, Aflatoxin B1; BEA, Beauvericin; CIT, Citrinin; CULM, Culmorin; DON, Deoxynivalenol; ENs, Enniatins; ErAs, Ergot 
alkaloids; FB1, Fumonisin B1; FSA, Fusaric Acid; MON, Moniliformin; NIV, Nivalenol; OTA, Ochratoxin A; PAT, Patulin; ST, Sterigmatocystin; T2, T-2 toxin; TeA, 
Tenuazonic acid; ZEN, Zearalenone. 
PAHs: Ace, Acenaphthene; Acy, Acenaphthylene; An, Anthracene; B[a]A, Benz[a]anthracene; B[a]P, Benzo[a]pyrene; B[b]F, Benzo[b]fluoranthene; B[ghi]P, 
Benzo[g,h,i]perylene; B[k]F, Benzo[k]fluoranthene; Chr, Chrysene; D[ah]A, Dibenz[a,h]anthracene; Fla, Fluoranthene; Fle, Fluorene; Ind, Indeno[1,2,3-cd] 
pyrene; Nap, Naphthalene; Ph, Phenanthrene; Py, Pyrene. 
Pesticides: ACET, Acetamiprid; CPS, Chlorpyrifos; CP, Cypermethrin; DLM, Deltamethrin; FHCl, Formetanate (hydrochloride); MML, Methomyl; PCZ, Propico
nazole; PYR, Pyraclostrobin; TBZ, Tebuconazole; TBD, Thiabendazole; LCH, λ-cyhalothrin. 
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32,792). The ML paper classification algorithm step contributed to the 
highest reduction of papers, with values ranging from 0.02% (Eggs) to 
0.27% (Fish and Seafood) of papers filtered. Between 68% (Cereals) and 
86% (Meat) of papers to review were dated from 2000 to 2022. Papers 
used to collect data points ranged from 10% (Fruits) to 54% (Spices) 
from the papers to review. Cereals had the highest data points (3,455), 
while Eggs had the lowest (86). 

3. Distribution of papers grouped by contaminant 

The distribution of works resulting from the complete process of 
literature mining was grouped in a treemap plot according to contami
nant categories (Fig. 3). Dioxins and dioxin-like PCBs, and disinfection 
by-products are not represented since no useful information could be 
retrieved from papers obtained from the literature mining. The treemap 
shows that metals (271) are the most studied contaminant category 
globally, followed by PAHs (185), mycotoxins (148), pesticides (77) and 
HAAs (35). Within metals, the specific toxicants studied are in general 
well balanced with 77, 71, 71 and 52 papers, respectively, for Cd, Pb, As 
and Hg. Regarding PAHs, the data is evenly distributed across all 
considered contaminants. B[a]P and Nap compiled the largest and 
smallest number of quantitative studies, respectively, ranging from 18 to 
6. The mycotoxins herein represented are very more heterogeneous 
regarding the number of studies: DON (30), ZEN (20), OTA and NIV (12 
each), T2 (11), AFB1 and FB1 (9 each), AAL and BEA (8 each), MON (6), 
CIT and ENs (5 each), TeA (4), ErAs (3), FSA and ST (2 each) and also 
CULM and PAT (1 each). 

Pesticide data reports are dispersed across the 12 representative 
molecules: CPS (22) and CP (15) are the ones whose levels found in food 
are most frequently reported. The number of studies found for the 
remaining pesticides was less than ten for each, ranging from eight for 
DLM to one for FHCl. Lastly, despite the importance of HAAs as food 
contaminants, their representativeness in the treemap is very low; 
therefore, in the future, special attention should be paid to this group. 
Even so, of the 15 HAAs here studied, 8MQx is the one that gathers the 
most data (5), followed by 4,8dMQx (4), 7,8dMQx, NH and PhIP (3 
each), AαC, H, IQ, MAαC, MIQ, TP1 and TP2 (2 each), and finally GP1, 
GP2 and IQx which have only one study each. 

4. Distribution of papers grouped by geographical location 

Fig. 4 presents a graphical overview of papers distribution by 
geographical origin divided by the regions: Asia, Africa, Europe, Oce
ania, North and South America. The figure indicates that the worldwide 
geographical distribution of papers dealing with contaminants quanti
fication in food is not homogeneous. Europe and Asia presented a higher 
number of studies, followed by North and South America, Africa and 
Oceania. This uneven distribution can be explained by several factors, 
namely: (i) probability of contamination phenomena, (ii) demands from 
contamination prevention strategies, (iii) regulation and certification 

requirements, which induces methodological developments, (iv) avail
ability of analytical and research capacity, (v) awareness and 
demanding level of consumers, etc. Moreover, the number of reports 
does not always reflect local requirements, as is the case of foodstuffs 
imported to the EU in which the country of origin is legally responsible 
for compliance with EU legislation (EC, 2007). 

The described distribution is most probably dynamic and subjected 
to many changes in the upcoming years, particularly related to the fast 
evolving climate changes and the global food trade complexity rises 
(Knüsli et al., 2015). Climate change is foreseen to play a particularly 
relevant role in the probability of contamination, which depends on 
environmental factors (temperature, humidity, and rainfall) and farm 
management practices (cropping, harvesting, and storage conditions), 
key players in contamination occurrence of many of the reported 
chemicals. 

5. Distribution of contaminants data mined in foods sorted by 
food group 

The distribution of contaminants data mined in foods sorted by food 
group is presented in Fig. 5. The heatmap summarises contaminants 
concentration (μg/kg) z-scores (by contaminant group) in the 12 food 
groups. Each heatmap cell shows the z-score of positive samples for a 
given contaminant and food group through a chromatic scale (from dark 
blue, low values, to dark red, high values). Grey cells correspond to 
missing values. The scatter plot presents the median concentration of 
each contaminant for all foods, expressed as μg/kg. 

Metals were reported in all food groups, in a wide range of concen
trations (up to 90 μg/kg), being As the toxicant found in higher levels. 
All four targeted elements were found in all food groups except Hg in 
eggs and vegetables. PAHs are the second most reported compounds 
appearing in seven of the 12 groups. Meat, dairy, fish and seafood, and 
vegetable oils contained all 16 compounds. Cereals, legumes and vege
tables contain at least five, and the other groups have none. Nap and 
PhIP were found in higher concentrations. Mycotoxins contamination 
was described in six of the 12 food groups; higher levels were observed 
for cereals, fruits, nuts, vegetable oils, legumes and vegetables. The 
mycotoxins median concentration was evenly distributed, except for 
CIT, with a medium value of 1800 μg/kg. Pesticide residues were re
ported in almost all foods (except meat, eggs and vegetable oils), with a 
greater diversity of residues observed in cereals, fruits, spices and veg
etables. The pesticides with the highest median concentration across all 
food groups are DLM and FHCl. HAA appeared only in three food groups 
(meat, fish and seafood, and vegetable oils), being NH and PhIP those 
reported in higher concentrations. Fish and seafood was the only group 
reporting all the HAAs targeted. 

6. Conclusions 

Relevant information concerning the distribution and quantification 

Fig. 4. Bubble world map with the distribution of 
papers resulting from literature mining by geograph
ical region (i.e., Asia, Africa, Europe, North America, 
Oceania, and South America) distribution. Bubbles’ 
size increases according to paper frequency. Bubble’s 
colours represent a group of contaminants: dark cyan 
for HAAs, blue for Metals, yellow for Mycotoxins, 
green for PAHs, and red for Pesticides. (For inter
pretation of the references to colour in this figure 
legend, the reader is referred to the Web version of 
this article.)   
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of food contaminants in highly produced/consumed food items in the 
last two decades was summarized. A significant amount of data was 
extracted to create a FAIR database to be shared with the scientific 
community. The information collected is of major relevance to explore, 
make linkages, and find patterns between diverse datasets. Nevertheless, 
some limitations must be pointed out. This FoodMine protocol is based 

on retrospective data up to 2022, and external factors, such as produc
tion conditions, climate changes, food availability, legislation parame
ters, among others, may change those patterns. Consequently, the 
database must be regularly updated in the future. Moreover, the data 
quality depends on the original studies, which can differ from one study 
to another and may generate some bias. Also, in upcoming application, 

Fig. 5. Heatmap: Distribution of contaminants data 
mined in foods sorted by food group. The heatmap 
summarises contaminants concentration (μg/kg) z- 
scores (by contaminant group) in the 12 food groups. 
Each heatmap cell shows the z-score of positive 
samples for a given contaminant and food group 
through a chromatic scale (from dark blue, low 
values, to dark red, high values). Grey cells corre
spond to missing values. Scatter plot: Median con
centration of each contaminant for all raw materials/ 
foods in the 12 food groups, expressed as μg/kg. (For 
interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of 
this article.)   
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additional search engines APIs should be used, which will require 
modifications of FoodMine protocol, since they have different search 
criteria. In conclusion, the adaptations carried out on the original 
FoodMines’ ML algorithm showed good performance metrics and 
excellent potential to be applied in an extremely large pool of papers 
that need to be revised and the possibility of improvement. 

Funding 

This research was supported by help DIETxPOSOME project (PTDC/ 
SAU-NUT/6061/2020). 

CRediT authorship contribution statement 

Zita E. Martins: Conceptualization, Methodology, Software, Formal 
analysis, Data curation, Visualization, Writing – review & editing. 
Helena Ramos: Conceptualization, Methodology, Data curation, Visu
alization. Ana Margarida Araújo: Conceptualization, Data curation, 
Visualization, Writing – review & editing. Marta Silva: Conceptualiza
tion, Methodology, Software, Data curation, Writing – review & editing. 
Mafalda Ribeiro: Conceptualization, Methodology, Data curation, 
Writing – review & editing. Armindo Melo: Conceptualization, Meth
odology, Data curation, Visualization, Writing – review & editing. Cat
arina Mansilha: Conceptualization, Visualization. Olga Viegas: 
Conceptualization, Methodology, Data curation. Miguel A. Faria: 
Conceptualization, Methodology, Data curation, Visualization, Writing 
– review & editing. Isabel M.P.L.V.O. Ferreira: Conceptualization, 
Methodology, Data curation, Writing – review & editing, Supervision. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

The raw data and processing code were made available by us at 
https://github. 
com/I3ALAQV/Literature_mining_of_contaminants_in_food_groups. 

Current Research in Food Science (Reference data) (Github) 

Acknowledgements 

Zita E. Martins acknowledges support from QREN (NORTE-01-0145- 
FEDER-000052). Marta Silva acknowledges FCT for the Ph.D. Grant 
(2020.05266. BD). Miguel A. Faria acknowledges FCT/MEC for the 
researcher contract. This work was also supported by FCT – UIDB/ 
50006/2020 and project SYSTEMIC from ERA-NET ERA-HDHL (n◦

696295). Authors acknowledge support and collaboration provided by 
FoodMine author Giulia Menichetti (Network Science Institute, North
eastern University, Boston, MA, USA). 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.crfs.2023.100557. 

References 

EC, 2006. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting 
maximum levels for certain contaminants in foodstuffs and its amendments. Off. J. 
Eur. Union L 364, 5–24. 

EC, 2007. Health & Consumer Protection Directorate-General. Managing food 
contaminants: how the EU ensures that our food is safe. www.heatox.org. 

EC, 2013. Commission Recommendation of 27 March 2013 on the presence of T-2 and 
HT-2 toxin in cereals and cereal products. Off. J. Eur. Union L 91, 12–15. 

EC, 2018. European Commission – Pesticides in the European Union Authorisation and 
Use. 

EC, 2019. Directorate-General for Maritime Affairs and Fisheries, the EU Fish Market : 
2019 Edition. Publications Office. https://doi.org/10.2771/168390. 

EFSA, 2014. Dietary exposure to inorganic arsenic in the European population. European 
Food Safety Authority. EFSA J. 12 (3), 3597. 

European Court of Auditors, 2019. Chemical hazards in our food. EU food safety policy 
protects us but faces challenges 287 (2). https://www.eca.europa.eu/en/Pages/ 
DocItem.aspx?did=48864. 

FAOSTAT, 2022. https://www.fao.org/faostat/en/#data. 
Fechner, C., Frantzen, S., Lindtner, O., Mathisen, G.H., Lillegaard, I.T.L., 2022. Human 

dietary exposure to dioxins and dioxin-like PCBs through the consumption of 
Atlantic herring from fishing areas in the Norwegian Sea and Baltic Sea. J. Fish. 
China 18 (1), 19–25. 

Hooton, F., Menichetti, G., Barabási, A.L., 2020. Exploring food contents in scientific 
literature with FoodMine. Sci. Rep. 10 (1), 1–8. 

Knüsli, D., Friedli, R., Busenhart, J., 2015. Food safety in a globalised world. Swiss Re. 
Martins, Z.E., Ramos, H., Araújo, A.M., Silva, M., Ribeiro, M., Melo, A., Mansilha, C., 

Viegas, O., Faria, M.A., Ferreira, I.M.P.L.V.O., 2023. DIETxPOSOME - selection of 
potentially useful papers from literature mining and machine learning protocols. 
Zenodo. https://doi.org/10.5281/zenodo.7826130. 

Melo, A., Cunha, S.C., Mansilha, C., Aguiar, A., Pinho, O., Ferreira, I.M.P.L.V.O., 2012. 
Monitoring pesticide residues in greenhouse tomato by combining acetonitrile-based 
extraction with dispersive liquid–liquid microextraction followed by gas- 
chromatography–mass spectrometry. Food Chem. 135 (3), 1071–1077. 

National Marine Fisheries Service, 2020. Fisheries of the United States, 2018. U.S. 
Department of Commerce, NOAA Current Fishery Statistics. No. 2018. https://www. 
fisheries.noaa.gov/national/commercial-fishing/fisheries-united-states-2018. 

Pesticide residues in food, 2022. https://www.who.int/news-room/fact-sheets/detai 
l/pesticide-residues-in-food. 

Pinto, E., Almeida, A., Ferreira, I.M.P.L.V.O., 2016. Essential and non-essential/toxic 
elements in rice available in the Portuguese and Spanish markets. J. Food Compos. 
Anal. 48, 81–87. 

Raposo, A., Mansilha, C., Veber, A., Melo, A., Rodrigues, J., Matias, R., Rebelo, H., 
Grossinho, J., Cano, M., Almeida, C., Nogueira, I.D., Puskar, L., Schade, U., 
Jordao, L., 2022. Occurrence of polycyclic aromatic hydrocarbons, microplastics and 
biofilms in Alqueva surface water at touristic spots. Sci. Total Environ. 850, 157983. 
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