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Abstract

Quantitative genetic analysis has long been used to study how natural variation of genotype can influence an organism’s
phenotype. While most studies have focused on genetic determinants of phenotypic average, it is rapidly becoming
understood that stochastic noise is genetically determined. However, it is not known how many traits display genetic
control of stochastic noise nor how broadly these stochastic loci are distributed within the genome. Understanding these
questions is critical to our understanding of quantitative traits and how they relate to the underlying causal loci, especially
since stochastic noise may be directly influenced by underlying changes in the wiring of regulatory networks. We identified
QTLs controlling natural variation in stochastic noise of glucosinolates, plant defense metabolites, as well as QTLs for
stochastic noise of related transcripts. These loci included stochastic noise QTLs unique for either transcript or metabolite
variation. Validation of these loci showed that genetic polymorphism within the regulatory network alters stochastic noise
independent of effects on corresponding average levels. We examined this phenomenon more globally, using
transcriptomic datasets, and found that the Arabidopsis transcriptome exhibits significant, heritable differences in
stochastic noise. Further analysis allowed us to identify QTLs that control genomic stochastic noise. Some genomic QTL
were in common with those altering average transcript abundance, while others were unique to stochastic noise. Using a
single isogenic population, we confirmed that natural variation at ELF3 alters stochastic noise in the circadian clock and
metabolism. Since polymorphisms controlling stochastic noise in genomic phenotypes exist within wild germplasm for
naturally selected phenotypes, this suggests that analysis of Arabidopsis evolution should account for genetic control of
stochastic variance and average phenotypes. It remains to be determined if natural genetic variation controlling
stochasticity is equally distributed across the genomes of other multi-cellular eukaryotes.
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Introduction

Almost all phenotypes are not fixed within species but instead

exhibit significant levels of variation among individuals that is

controlled by quantitative genetic loci. The study of such

quantitative genetic variation has long been fundamental to

evolution and ecology and is rapidly becoming a central focus of

numerous other research fields, including breeding for improved

crops and individualized medicine for humans. An ultimate goal of

research on the basis of quantitative genetic variation is to

generate a sufficient level of understanding to be able to predict

phenotypic range of a species based on knowledge of that species’

genetic variation. These efforts are complicated because pheno-

typic diversity is typically under polygenic control and can involve

complex interactions with numerous factors including, but not

limited to, the environment, development, epistatic interactions

between genes, and potential higher-order interaction among

these factors [1,2]. Yet even in systems where these are understood

to a significant degree, it has been difficult to develop predictive

frameworks linking genotype to phenotype. Some of this difficulty

has been ascribed to concepts such as epigenetic variance and

difficulties in detecting small-effect loci [3,4]. In this report, we

propose that an additional explanation is the presence of

numerous polymorphic loci that specify the amount of stochastic

noise. If these polymorphisms are frequent in number, heritable

and discrete from loci altering mean phenotpyes they can lead to

an inability to fully describe the variance within any phenotype

using current statistical approaches that focus solely upon the

mean phenotype.

The idea that phenotypic variance is genetically determined is

supported by a significant amount of research on how cells can

limit stochastic noise/variance in genetic, metabolic, and signaling

networks through network topology, a characteristic that is known

as network robustness [5–10]. The specific topology of a network

can increase or decrease the robustness of the output, wherein

robustness is defined as the inverse of variance. Therefore, the

genetic variation for loci within these networks could lead to allele

specific changes in robustness/variance of the phenotype.

Typically, robustness is thought to be under directional selection

pressure to reduce the variance of an output and correspondingly

increase network robustness. In evolutionary theory, this is

predominantly described as canalization wherein genes function
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to minimize the variance (maximize the robustness) of a phenotype

[11,12]. In yeast, phenotypic and genetic robustness (i.e.

canalization) were shown to correlate using genomic knockout

datasets [13]. In plants, loci that control natural variation in

canalization of critical developmental processes such as cotyledon

opening and leaf formation have been mapped and cloned

revealing that canalization genes can be known members of

regulatory networks controlling these processes [14,15]. Addition-

ally, it has been shown that heat-shock protein 90 plays a major

role in canalizing existing natural variation possibly as a pool of

hidden evolutionary potential [16-18]. However it should be noted

that the genomic level of, distribution of and importance of

naturally variable loci controlling within-genotype variance is

currently not fully described in most eukaryotes [19].

While canalization and robustness research focuses on the

benefits of decreasing within-genotype variance, there is evidence

that increases in per genotype variance can also be beneficial. This

is occasionally called the portfolio effect wherein the fitness of a

genotype is determined by the portfolio of phenotypes that it can

obtain [20]. In some bacterial settings rapid environmental

fluctuations have been shown to favor the development of

stochastic switching as the optimal means of response [21–25].

Similarly in eukaryotes, it has been shown that natural variation

can alter stochastic noise of gene expression [19,26] and that

stochastic noise in defense phenotypes could help to delay the

evolution of counter-resistance in biotic pests [27,28]. As such, it is

possible that there is wide-spread genetic variation controlling

stochastic noise in eukaryotic phenotypes that may play a

beneficial role in the evolution of these organisms [16–18,25].

However, little is understood about the genomic distribution of

natural quantitative genetic variation for stochastic noise in

eukaryotes or about the direction of selection on that natural

variation.

The concept that stochastic noise is genetically determined in

a quantitative, polygenic manner is supported by the analysis of

stochastic variation in expression of a MET17 reporter fusion

construct in Saccharomyces cerevisiae [29]. This study identified

significant genetic diversity regulating stochastic noise of gene

expression and showed that stochastic noise was a complex trait

controlled by at least three quantitative trait loci (QTLs) [29].

However, given the nature of these alleles, it is not known if these

polymorphisms are present in wild populations or are laboratory

derived. Additional evidence comes from the study of the S.

cerevisiae galactose regulon where it was found that genetic

manipulation of the regulatory feedback loop could lead to

increased stochastic noise in the network’s output [30,31].

Genetic control of stochastic noise has also been identified using

QTLs for yield stability in crops [32] and gene expression in 18

isogenic mouse lines [19]. Further, it has been shown that

HSP90 likely buffers genetic variation which could appear as

stochastic noise in fluctuating environments, but little is known

about the genomic distribution of natural variation in stochastic

noise within a constrained environment [16–18]. These studies

indicate that there is the genetic variation to regulate stochastic

noise in physiology and gene expression suggesting that

stochastic noise itself is a phenotype subject to natural selection

with potential for pressure in both positive and negative

directions.

To begin testing the genomic extent of natural genetic variation

in stochastic noise we used the model plant, Arabidopsis thaliana.

Arabidopsis is quickly becoming a key organism in the study of

complex traits through the use of systems biology and quantitative

genomics approaches [33–40]. This is due to large repositories of

transcriptomic and metabolomic data for homozygous QTL and

association mapping populations that, when combined with whole

genome sequence of natural accessions, provides the ability to

rapidly develop and test hypotheses as well as find causal genes

underlying specific loci of interest [41–44]. This has enabled the

identification and validation of numerous genes and defense

pathways under natural selection [45–50]. Among these defense

mechanisms with known selective consequences are the glucosi-

nolate metabolites, thioglucosides that provide defense against

numerous biotic pests and whose accumulation is heritable and

under balancing or fluctuating selection in the field [51–62]. This

makes Arabidopsis an ideal system to search for the genetic and

molecular basis of complex phenotypes, such as stochastic noise, in

higher organisms.

Using previous datasets, we identified QTLs that control

natural variation in stochastic noise of glucosinolate metabolites

and related transcripts within a single controlled environment.

There were QTLs unique for the different phenotypic levels and

we showed that known genes underlying these glucosinolate loci

led to altered glucosinolate stochastic noise. We then extended

this analysis to show that the Arabidopsis transcriptome shows

significantly heritable stochastic noise for expression levels.

Further, we were able to identify QTLs that control global

stochastic noise in gene expression. Some loci were in common

with those altering the average transcript abundance while

others appeared unique to controlling transcriptomic stochastic

noise. Using an existing single isogenic population, we

confirmed that natural variation at the ELF3 locus alters

stochastic noise in both physiological and metabolic phenotypes.

Given the wide spread genomic variation controlling natural

variation in stochastic noise in a single environment that we

found within the wild Arabidopsis germplasm, our results

suggest that any analysis of Arabidopsis evolution needs to

account not only for genetic control of average phenotype value

but also for genetic control of stochasticity. It remains to be

determined how widely distributed this level of genomic natural

variation exists for stochasticity within a wider range of multi-

cellular eukaryotes.

Author Summary

Understanding how genetic variation controls phenotypic
variation is a fundamental goal of biology in both modern
medicine and agriculture. Yet, frequently, even a large set
of genetic polymorphisms do not fully explain variance of
a phenotype within a discrete set of individuals. Numerous
mechanistic theories have been proposed, e.g. epigenetics,
but we postulated that there may be genome-wide
polymorphism controlling phenotype stochastic noise
among genotypes. This is similar to what is being found
in studies of bet-hedging theory in prokaryotic or single-
celled organisms or stability in eukaryotes. Utilizing
Arabidopsis, we tested this hypothesis at a genomic level
by mapping quantitative trait loci for stochastic noise in
global transcriptomics, plant defense metabolism, circadi-
an clock oscillation, and flowering time within a single
non-stressful environment. We cloned and validated a set
of genes including transcription factors and enzymes that
control natural variation in phenotypic noise. These genes
provided evidence that stochastic noise can vary indepen-
dently of average phenotypes. Since population genetic
models and quantitative genetic studies focus on natural
genetic variations impact upon average phenotypes, these
observations suggest that stochastic noise needs to be
incorporated to better explain the genotype-to-phenotype
link.

Genomic-Wide QTLs Controlling Phenotypic Noise
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Results

QTLs controlling stochastic noise of plant defense
metabolism

To test if there is genetic variation affecting stochastic noise in

the higher plant Arabidopsis thaliana we used a previous analysis of

quantitative variation in glucosinolate defense metabolites [63].

The glucosinolate biosynthetic, transport and regulatory networks

have been highly characterized [64–69], providing extensive

information about the loci responsible for differences in mean

glucosinolates within Arabidopsis thaliana accessions [60,70–72].

Given the extensive knowledge it is possible to use existing

glucosinolate data to search for QTLs controlling stochastic noise

in glucosinolate accumulation. If stochastic noise QTLs are found

they can be compared to existing analyses to determine if the same

QTLs control phenotypic mean.

A previous analysis of glucosinolate variation in the Arabidopsis

thaliana recombinant inbred line population (RIL) derived from the

Bayreuth (Bay) and Shahdara (Sha; syn:Shakdara) accessions [42]

reported both the mean glucosinolate accumulation and standard

deviation per line for three replicated experiments quantifying

concentrations of 62 different glucosinolate phenotypes in 392

RILs [63]. We used this information to obtain the coefficient of

variation (CV) of each glucosinolate phenotype for each RIL by

dividing the standard deviation of the phenotype by its mean, and

used this dimensionless measure of stochastic noise in glucosinolate

accumulation to perform QTL analysis [21,26]. This identified

five QTL hotspots controlling differences in glucosinolate CV

(Figure 1). The pattern of CV QTL was similar to that found for

QTL affecting differences in mean phenotype where GSL.ELONG

and GSL.AOP are the major loci followed by two additional

hotspots on chromosome 2 that had also been found to affect

mean glucosinolates but were less significant than for glucosinolate

CV (Figure 1) [63]. Further, we found a new QTL for CV that was

not found for the mean phenotype within this population but had

previously been found as a glucosinolate QTL in other

populations, GSL.MYB2976 (Figure 1) [63]. There were also

several QTLs that affected the mean phenotype but did not cause

significant differences in glucosinolate CV (Figure 1) [63]. Thus, it

is possible to find QTLs controlling CV differences and these are

not necessarily the same loci as those that affect the phenotypic

mean.

Fortunately, several of the identified QTLs have already been

cloned and previously published single gene validation lines exist

with published glucosinolate data to allow rapid validation of the

CV phenotypes [63,67,73]. We have previously shown that the

GSL.AOP locus is controlled by differential expression of two

enzymes, AOP2 and AOP3, which evolved from a tandem

duplication event to control different reactions with the same

precursor [63,74]. Using the same data set which previously

showed that the QTL allele for increased glucosinolate accumu-

lation and glucosinolate network transcript abundance was caused

by expression of the AOP2 gene [63], we showed that introducing

the AOP2 gene into a natural knockout background (Col-0) also

significantly increased glucosinolate CV (Figure 1B and C). This

increase correlates with the elevated CV found in Sha, which

contains the functional AOP2 allele at the GSL.AOP locus (data not

shown).

The GSL.MYB2976 locus co-localizes with a previously cloned

QTL from a different RIL population (Ler x Cvi) that is controlled

by two glucosinolate transcription factors, MYB29 and MYB76

[67,72,73]. We used data from previous single gene manipulations

of MYB29 and MYB76 as well as the related MYB28, also linked to

glucosinolate QTLs in other populations, to test if these genes can

influence natural variation in glucosinolate CV [62,67–69,73,75].

Interestingly, increasing or decreasing MYB28 expression signifi-

cantly increases CV for all glucosinolates (Figure 1B and C). This

is in contrast to previously published data showing that increasing

MYB28 expression increased glucosinolate content while decreas-

ing MYB28 expression correspondingly diminished glucosinolate

content. Together this suggests that the effect of genetic variants

on CV and mean is not always correlated [67–69,73,75].

In contrast to MYB28, only increases in MYB29 and MYB76

expression altered metabolite CV while decreased expression at

either gene had no impact on glucosinolate CV (Figure 1B and C).

This differs from their impact on mean glucosinolate accumulation

where increases and decreases in all three gene expression lead to

correlated increases and decreases in glucosinolate metabolites

[67–69,73,75]. Interestingly, the natural variation in gene expres-

sion of MYB29 and 76 in the Bay-0 x Sha population appears to

be a shift from a Col-0 like level in the Bay-0 genotype to

elevated expression in the Sha genotype [40,76] agreeing with

the observed introduction of a CV QTL in this position. It is

possible absence of a MYB2976 QTL altering the mean

phenotypes may be an issue of not having sufficient RILs to

identify this locus in the background of the other QTLs showing

significant epistatic interactions [63]. To test if the use of CV

may be biasing our analysis, we used Levene’s F-test to compare

variances between the various mutants and WT and obtained

similar results (Figure 1). In summary, MYB28, MYB29, MYB76

and AOP2 alter glucosinolate CV, mean and unadjusted variance

(Figure 1) [63,67–69,73,75]. Since MYB29, MYB76 and AOP2

underlie CV QTLs, they are good candidates to control natural

variation in glucosinolate CV within Arabidopsis thaliana. The

observation that MYB28 and MYB29 perturbations have similar

consequences upon mean glucosinolate accumulation but dif-

ferent influences on glucosinolate CV shows that the CV is not

being driven by underlying changes in mean and is a valid

approach for this analysis.

QTLs controlling stochastic noise of plant defense
transcript abundance

The GSL.AOP and GSL.MYB2976 QTLs control differences in

both the mean accumulation of glucosinolate metabolites and the

relevant biochemical pathway transcripts [63,67,73]. Having

found that these QTL controlled differences in CV for

glucosinolate metabolites, we next tested whether these QTL also

control differences in CV for transcripts involved in glucosinolate

production. We used pre-existing microarray data [40,77]

and found little evidence for impacts of the GSL.AOP and

GSL.MYB2976 loci on the CV of transcript accumulation for

individual transcripts in the GLS pathway (Figure S1), in contrast

to their effect on CV for glucosinolate metabolites. Hereafter these

loci are referred to as CV eQTL (CV eQTL = a QTL altering

the coefficient of variation in transcript accumulation) to delineate

them from standard eQTL (eQTL = a QTL altering the mean

transcript accumulation). Similarly, there was no evidence that

these loci impact the GLS related biosynthetic networks (Figure

S2). This is in contrast to previous observations showing that

AOP2, MYB29 and MYB76 can cause changes in glucosinolate

pathway transcription and are known eQTL (expression QTL)

hotspots for mean glucosinolate transcript abundance[63]. This is

not entirely surprising as glucosinolate regulation shows extensive

hallmarks of incoherent feed-forward loops [65,67,73] which can

cause non-linear relationships in variance at different output levels.

Thus the difference in CV partitioning between metabolites and

transcripts at these loci is not entirely unexpected. Together, these

data suggest that although the GSL.AOP and GSL.MYB2976 QTLs

Genomic-Wide QTLs Controlling Phenotypic Noise

PLoS Genetics | www.plosgenetics.org 3 September 2011 | Volume 7 | Issue 9 | e1002295



and the underlying causal loci (AOP2, MYB29 and MYB76) affect

the mean transcript and metabolite abundance in the GLS

pathway, and the CV of metabolite abundance, they don’t alter

the CV of transcript accumulation in this pathway. Interestingly, a

hotspot on chromosome 2, controls the per transcript CV

abundance of most genes in the GLS pathway and CV in

glucosinolate content (GSL.ELF3, Figure 1). This locus fits the

definition of a network CV eQTL as it alters the CV of the

glucosinolate transcript network.

While there was no network CV eQTL at the GSL.AOP locus,

the AOP2 and AOP3 genes showed evidence for a cis positioned

eQTL controlling the CV for transcript accumulation for only

these two genes and not the entire pathway (Figures S1 and S2).

Interestingly, not all glucosinolate associated transcripts known to

have a large effect cis-eQTL also had a cis-CV eQTL. For

instance, the GSL.MAM locus contains cis-eQTL for the MAM

genes yet there was no corresponding cis-CV eQTL (Figure S1)

[63]. If our use of CV was solely tracking changes in mean

Figure 1. QTLs and known genes controlling per line CV in Glucosinolates. (A) Shows the position of QTLs for 40 CV glucosinolate
phenotypes. Random permutation threshold for significant enrichment of co-localized QTL is 2. The y-axis indicates the total number of phenotypes
controlled by a given QTL. Labels show the position of known QTLs and the new MTB2976 QTL. The 392 line Bay x Sha RIL population was utilized to
map QTL for this analysis and this has a smaller genetic map than the 211 RIL subset due to a lower marker density. Black circles below the x-axis
show the position of QTLS found to control the average phenotype [63]. GSL.ELF3 was previously described as GSL.ALIPH.II.42 [63]. (B) The effect of
single gene variation at GSL.AOP and GSL.MYB QTLs on the CV for aliphatic glucosinolates is presented as the ratio of the average aliphatic
glucosinolate CV within the single gene variant to the parental WT Col-0. 28-1, 29-1 and 76-1 are homozygous insertional T-DNA mutants for MYB28,
MYB29 and MYB76 respectively. The AOP2 genotype is the Arabidopsis Col-0 accession (contains a natural knockout in AOP2) expressing a functional
AOP2 enzyme [115]. Black boxes show those comparisons where the single gene variant was significantly different from WT (P,0.05, Levene’s F-test
comparing variance between mutant and WT genotypes). (C) The effect of single gene variation at GSL.AOP and GSL.MYB QTLs on the CV for indolic
glucosinolates is presented as the ratio of the average aliphatic glucosinolate CV within the single gene variant to the parental WT Col-0. 28-1, 29-1
and 76-1 are homozygous insertional T-DNA mutants for MYB28, MYB29 and MYB76 respectively. The AOP2 genotype is the Arabidopsis Col-0
accession (contains a natural knockout in AOP2) expressing a functional AOP2 enzyme. Black boxes show those comparisons where the single gene
variant was significantly different from WT (P,0.05, Levene’s F-test comparing variance between mutant and WT genotypes).
doi:10.1371/journal.pgen.1002295.g001

Genomic-Wide QTLs Controlling Phenotypic Noise
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abundance, the large effect cis-eQTL by default should have large

effect cis-CV eQTL. The lack of this absolute relationship suggests

that changes in mean are not driving changes in CV and supports

the use of CV for mapping stochastic noise QTLs. Additionally

supporting this is the fact that we utilized the same threshold

estimation approaches for both CV-eQTL and cis-eQTL detection

arguing against this being different statistical power issues [40].

Analysis of quantitative genetics controlling stochastic
noise in gene expression

The above analysis of existing glucosinolate quantifications

suggests that there is significant genetic control of the CV for these

defense metabolites. The CV itself may be under selective pressure

to generate differences in stochastic variability between different

natural populations of Arabidopsis [25,28]. To query if genetic

control of phenotypic CV is a global phenomenon within

Arabidopsis, we used a pre-existing dataset consisting of replicated

microarray experiments conducted on 211 lines of the Bay x Sha

RIL population and the RIL parents [40,77]. The distribution of

CV across the transcripts was similar between Bay and Sha with a

statistically significant difference of Bay showing a slight shift of the

peak towards a higher CV (Figure 2A). Interestingly, the

distribution of CV across the transcripts was more distinctly

bimodal within the RILs suggesting significant transgressive

segregation in the population only impacting a specific subset of

transcripts (Figure 2A). The replicated nature of this experiment

allowed us to directly assess the heritability of per line CV

differences in both the parents and the RILs across 22,746

different transcripts representing the majority of the genome. The

per transcript CV were correlated between Bay and Sha with an

average heritability of 17% (Figure 2B and Figure 3A). The

average heritability of per transcript CV was much higher in the

RILs than the parental genotypes with an average heritability of

57% (Figure 2B). This is similar to the average heritability

reported for the mean transcript abundance for the same

experiment (,68%) with the majority of this difference being

due to the lack of a high heritability tail for transcript CV as

compared to heritability for mean transcript abundance [40,77].

As found previously for the mean transcript values, there was very

little relationship between the heritability as measured in the Bay/

Sha parents versus the RIL (Figure 3B). For the mean transcript

abundance, this discrepancy was explainable by transgressive

segregation due to QTLs of opposing effect and is likely true for

CV-eQTLs as well, suggesting that similar levels of robustness in

the two parents are obtained via different genetic networks

[40,77]. Supporting this is the observation that the standard

deviation of transcript CV across the RILs is significantly greater

than would be expected by modeling the expected CV using the

parental values. In 1000 models, the maximal standard deviation

of CV averaged across the transcripts in the RILs was 0.09 with a

mean of 0.08. In contrast, the actual biological values showed an

average standard deviation of CV per transcript across the RILs of

0.17 indicating that the RILs show a significantly larger

distribution of CVs per transcript per RIL than would be expected

given the parental value.

One concern with CV and any other estimate of variance is the

potential for a correlation between variance and mean. The above

analysis with glucosinolate accumulation did not suggest that this

was a concern within Arabidopsis natural variation because we

could identify instances where there were QTLs with large effect

on the mean but no effect on the CV, even when identical

approaches were used to determine significance thresholds. Within

the RIL transcriptomic data, we did observe a statistically negative

correlation (P,0.001) whereby transcripts with the lowest average

abundance had the highest CV and vice versa however this

correlation explained only 0.8% of the total variation in CV

leaving 99.2% of the variation to be available for genetic control of

CV independent of the mean (Figure 3C). This significant but

minimal negative correlation likely derives from technical issues in

microarrays surrounding the detection of lower expressed

transcripts using Affymetrix microarray technology. To test if this

technical issue constrains our ability to identify biologically

controlled transcript CV, we compared the average per transcript

expression to the heritability of per transcript CV within the RILs.

This analysis showed that higher expressed genes had only a

slightly more reproducible transcript CVs, therefore the technical

issues surrounding low expressed genes does not impact our ability

to identify biologically controlled CV (Figure 3E). Additionally, the

magnitude of per transcript CVs in the RILs showed very little

relationship to the heritability of per transcript CV suggesting that

any CV/expression level correlation is not creating relationships at

higher levels (Figure 3D). Thus, the use of CV to map QTLs for

the transcripts appears to be valid. Interestingly, there was a strong

negative correlation between the heritability of transcript abun-

dance and the transcript CV, such that transcripts with the lowest

CV had the highest heritability (P,0.0001, R2 = 0.59; Figure 3F).

To ensure that the relationship between mean transcript

abundance and transcript CV was not driving this correlation

we repeated the analysis as a partial correlation while controlling

for mean transcript abundance, this still showed a highly

Figure 2. Summary of per transcript CV in Bay, Sha, and 211
RILs. The average per transcript CV for 22,746 transcripts from Bay, Sha
and across 211 Bay x Sha RILs was measured from two independent
microarray experiments each containing independent biological
replicates per genotype. (A) The distribution of CV across the transcripts
is shown for Sha (yellow-green), Bay (red) and 211 Bay x Sha RILs (blue).
For the RIL histogram, CV is averaged across all 211 RILs per transcript.
The Bay and Sha distributions are significantly different (t-test,
P,0.001). (B) The estimated heritability for per transcript CV between
the Bay/Sha parents (Red) and within the 211 RILs (Blue).
doi:10.1371/journal.pgen.1002295.g002

Genomic-Wide QTLs Controlling Phenotypic Noise
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significant negative relationship between the heritability of

transcript abundance and the transcript CV (P,0.0001,

R2 = 0.42). Together, this suggests that quantitative genetic

control of CV is a genome wide phenomenon within Arabidopsis

thaliana that is not limited to defense metabolites and is at least

partially independent from genetic variation controlling the mean

phenotype.

Identifying CV eQTLs controlling stochastic noise for the
Arabidopsis transcriptome

The high estimated heritability of per transcript CV within the

Bay x Sha RIL population suggests that it is possible to map CV

eQTL for all transcripts. We used composite interval mapping to

map CV eQTL for all 22,746 transcripts within 211 lines of the

Figure 3. Relationship of transcript CV to heritability and average expression. Heritability, average expression and CV for Bay, Sha and the
RILs was measured for all 22,746 transcripts. Graphs are hexbin histograms with the counts per hex shown to the right of each graph. (A) Correlation
of measured transcript CV in Bay and Sha. (B) Comparison of transcript CV heritability in the Parents and RILs. (C) Comparison of average transcript
expression and average transcript CV within the RILs. (D) Comparison of transcript CV heritability and average transcript CV within the RILs. (E)
Comparison of transcript CV heritability and average transcript abundance within the RILs.
doi:10.1371/journal.pgen.1002295.g003

Genomic-Wide QTLs Controlling Phenotypic Noise
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Bay x Sha population previously used to map eQTL [40,77]. This

identified 98,014 significant CV eQTLs that altered the stochastic

noise for 21,974 transcripts for an average of nearly 4 CV eQTL

per transcript (Figure S3). This is nearly twice the number of

eQTLs per transcript found using the average transcript

abundance as a phenotype [40]. This difference may be due to

the use of two different experiments in the CV eQTL analysis,

whereas the eQTL analysis used just one experiment, reducing its

statistical power [40]. Given that we used identical methods to

identify global permutation thresholds for both datasets, we do not

feel that a higher false positive rate can explain the elevated

number of CV eQTLs [40,78-80]. In addition, the elevated

number of CV eQTLs is not universal as the glucosinolate

transcript measurements actually identified more eQTLs than CV

eQTL (Figure S1) [63]. Thus, the elevated CV eQTL level may be

more indicative of the specific biological process within which that

transcript functions.

An analysis of the distribution of additive effects for the CV

eQTL showed a slight bias towards Bay alleles having a negative

impact on CV (50429 CV eQTLs with Bay additive effect ,0

versus 47585 with Bay additive effect .0)(Figure 4A). The vast

majority of CV eQTLs had absolute effects less than 0.1 CV and

these were almost entirely acting in trans (Figure 4A and B). In

contrast, CV eQTL with absolute effects greater than 0.1 were

predominantly acting in cis (Figure 4B). This is similar to eQTL

controlling the mean accumulation of a transcript where on

average trans-eQTLs have smaller additive effects than cis-eQTLs

[38,40]. This analysis identified 3,720 transcripts as having a cis-

CV eQTL, in contrast with the 5,127 transcripts having a cis-

eQTL for mean expression level (Figure 4) [40]. While about J of

all eQTLs detected were cis, only 1/26th of all CV eQTL were cis,

showing that natural variation at trans positions is dramatically

more prevalent in controlling transcript CV than average

expression (Figure 4) [40]. As expected by the decreased ratio of

cis-CV eQTL relative to that found for eQTL, the cis diagonal,

while present, was very faint (Figure 5B). Only 1,660 transcripts

had both a cis-eQTL and cis-CV eQTL and these included nearly

all of the large effect CV eQTLs (Figure 4) [40]. Thus, while a cis-

eQTL can be associated with a cis-CV eQTL, it is not a necessity

(Figure 4). These results show that stochastic noise measured as

CV in transcript abundance is a highly heritable trait suitable for

genome wide QTL analysis in multi-cellular eukaryotes. As in

eQTL analyses of mean transcript abundance, differences in the

CV of transcript accumulation seem to be broadly caused by

abundant loci acting in trans, while substantial changes are less

frequent and usually associated with variation in cis.

Identifying QTLs controlling global stochastic noise in
transcripts

We counted the number of loci per chromosomal position

controlling stochastic noise within the Arabidopsis transcriptome

to better understand the genomic distribution of CV eQTLs

(Figure 5A). This identified a number of locations within the

genome that contain trans-hotspots for CV eQTL. Several of these

were in common with eQTL trans-hotpots that had previously

been identified such as the locations on Chromosome II. However,

the relative impact of the trans-hotspots upon the transcriptome

was different for the two traits (Figure 5A) [40]. For instance, the

trans-hotspots at 12 and 42 cM on chromosome II caused similar

numbers of eQTL, yet the hotspot at 42 cM affected many more

CV eQTLs than the hotspot at 12cM. Additional hotspots were

detected with CV eQTL that were not detected using mean

transcript accumulation, most notable is the locus at the bottom of

chromosome III that is the highest trans-hotspot for CV eQTL but

barely registered for eQTL (Figure 5A) [40]. Two other apparent

CV eQTL specific trans-hotspots were peaks over the permutation

threshold near the GSL.AOP and GSL.MYB2976 loci on chromo-

somes IV and V (Figure 5A) [40]. However, none of the

glucosinolate transcripts’ CVs were regulated by the trans-CV

eQTL hotspots near GSL.AOP and GSL.MYB2976 (Figure S1).

This raises the question of whether these CV loci near GSL.AOP

and GSL.MYB2976 are due to pleiotropic consequences of the

metabolic CV controlled by GSL.AOP and GSL.MYB2976

(Figure 1) or if there are additional genes in these regions that

alter transcriptomic CV.

The detected CV eQTL hotspots have additive effect biases,

with most of the CV eQTLs in one hotspot increasing the CV in

the same direction, as noticed before for eQTL hotspots

(Figure 5B) [40]. The two major hotspots had opposite effects;

with the Sha allele causing increased stochastic noise at the hotspot

in chromosome III and decreasing stochastic noise in all hotspots

Figure 4. Distribution of additive effects of allele variation
upon CV for significant CV eQTL. The absence of values near 0 is
likely due to statistical power that does not allow detection of these loci
if they exist. Additive effect is defined as the estimated impact of the
Sha allele. (A) The distribution of all CV eQTL additive effects is shown in
a log scale to allow for better visualization of the tails. (B) The fraction of
CV eQTL that are due to cis localized CV eQTL. (C) Comparison of
additive effect between genes with a cis eQTL for just transcript CV
(Red) and for both transcript CV and mean (Blue).
doi:10.1371/journal.pgen.1002295.g004
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Figure 5. CV eQTL for Bay x Sha RIL population. CV eQTLs were mapped for 21,974 out of 22,746 transcript CVs tested. (A) The solid line shows
a 2.5 cM sliding window analysis of the average number of CV eQTL per region. Chromosomes are labeled at the top and cM per chromosome is at
the bottom. The horizontal line represents the a= 0.05 threshold for regions with a significant enrichment in CV eQTL (1,000 random permutations).
The dashed line shows an equivalent 2.5 cM sliding window analysis of the average number of mean eQTL per region using the same transcripts as a
reference. (B) Heat map of CV eQTL for transcripts. Chromosomes are as labeled in A. The physical position of the genes from which the transcript are
derived are ordered on the y-axis by their physical position with the first gene on chromosome I at the top and the last gene on chromosome V on
the bottom. Red represents a negative effect of the Bay allele upon CV while blue is a positive effect. Genes are plotted in bins so the map positions
do not exactly align with those in A.
doi:10.1371/journal.pgen.1002295.g005
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on chromosome II (Figure 5B). = This observation further shows

that increased mean abundance does not inherently cause

increased CV. Thus, transcript mean abundance and CV are

not measures of a single phenotype and instead can involve

different genetic mechanisms even when investigating the same

locus.

The global effect of trans-CV eQTL hotspots led us to test if we

could directly map QTL controlling genome-wide transcriptomic

CV (as opposed to per transcript CV). Taking the average CV

across all transcripts showed that Bay and Sha have different CV

and that the main source of this is the previously identified loci on

Chromosome II and III (Figure 6). Thus, these loci appear to have

genome wide effects upon stochastic noise of gene expression and

likely other traits.

ELF3 genetic variation controls global stochastic noise in
numerous phenotypes

The chromosome II locus found using the global CVs of

transcript abundance, glucosinolate accumulation and glucosino-

late network expression maps close to the previously identified

ELF3 QTL (Figure 1, Figures S1 and S2) [81]. Allelic variation in

ELF3 between Bay and Sha has been shown to affect circadian

rhythms and shade avoidance responses but not the wave form of

the circadian oscillation [81]. We next wanted to test if the ELF3

locus could be the same as the global CV eQTL hotspot. Because

of ELF3’s involvement in the circadian clock, we first asked

whether we could identify stochastic noise QTL for circadian

rhythms in the Bay x Sha population and whether these QTL

Figure 6. Genetics of global transcript CV. The average global transcript CV per RIL was taken by averaging across all 22,746 transcript CVs per
RIL. The Bay and Sha parents global transcript CV are respectively 0.411 and 0.399 (P,0.05, ANOVA). Bay and Sha parental plants were grown with the
RILs. (A) Histogram of global transcript CV across the 211 RILs. (B) The LOD plot for mapping QTL within the 211 RILs that control global transcript CV
variation. (C) Additive effect plot for the QTL. The direction is based on the Sha allele.
doi:10.1371/journal.pgen.1002295.g006
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would overlap the ELF3 region. Circadian rhythms in transcript

abundance have been measured in this population [82]; we used

this same approach to map CV for the expression of circadian

clock regulated genes. Briefly, transcripts previously identified as

being regulated by the circadian clock were grouped into 24 CT

phase groups based upon each transcript’s time of peak expression

(CT) during the 24 hour photoperiod [82-84]. Transcript

expression values were then Z normalized and a single expression

estimate was independently obtained for each CT phase group for

each microarray. These were then used to estimate the variance of

the CT phase groups expression as described. Both the ELF3 locus

and the chromosome III hotspot were found to alter CV for gene

expression across the circadian clock output networks with

opposing effects as had been found for general gene expression

(Figure 5 and Figure 7). In contrast, the other identified trans-CV

eQTL hotspots (Figure 5), do not appear to influence the CV of

Figure 7. CT phase group CV QTL for circadian clock outputs. All transcripts previously identified as being regulated by the circadian clock
were grouped into 24 different CT phase groups based upon the transcripts time of peak expression (CT) during the 24 hour photoperiod [82–84].
For instance, a transcript that peaks at CT 0 is binned within the CT0 phase group. All individual transcripts values within a CT phase group were then
Z normalized and the average across all transcripts per CT phase group was obtained to derive a single expression estimate for each CT phase group
for each microarray. These were then used to estimate the variance of the CT phase groups expression as described. (A) LOD plot for the 23 CT phase
groups. (B) The additive effect of the Sha allele (y-axis) at the putative ELF3 CV QTL (Blue) and the Chromosome III QTL located between At3g58680
and At3g61100 (Red) is shown across all 24 CT phase groups (x-axis).
doi:10.1371/journal.pgen.1002295.g007
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transcripts regulated by the circadian clock (Figure 7 versus

Figure 5).

To test if ELF3 is the causative gene controlling stochastic noise

in this region we utilized previously generated Col-0 elf3.1

knockout mutants lines containing a CCR2:luc reporter gene that

were rescued with the genomic Bay and Sha ELF3 alleles (elf3:Bay-

0 and elf3:Sha) [81]. Since Bay and Sha ELF3 genomic alleles have

been shown to affect the period of CCR2:luc oscillations in free

running conditions under different light environments [81], we

monitored the CV in period in at least 650 T1 plants per transgene

distributed in 10 independent experiments performed in constant

red or in constant red plus far red light. Independent of light

conditions we found that the Sha ELF3 allele reduced stochastic

noise in the circadian oscillation period, in agreement with the

direction of the global CV eQTL and circadian CT phase group

QTL at the ELF3 position (Figure 7 and Figure 8). Although plants

in both red and red plus far red light presented lower CV

((P = 0.002 in red light versus P = 0.043 in red plus far red light, via

ANOVA), the difference in CV between the two alleles was not

significantly affected by the light treatment (Figure 8, P = 0.35 via

ANOVA). The Bay and Sha alleles of ELF3 did not affect CV for

amplitude, phase or quality of the rhythms (measured as the

relative amplitude error) in the transgenic plants (P = 0.10,

P = 0.18 and P = 0.50 respectively, data not shown).

To further test if ELF3, could be the gene underlying other the

CV QTL identified for other phenotypes at this locus, we tested if

the transgenic lines differed in the level of stochastic noise for

glucosinolate metabolites (Figure 1). Different alleles of ELF3 led

Figure 8. ELF3 alters phenotypic CV. (A) Average coefficient of variance for the elf3-1:ELF3Bay and elf3-1:ELF3Sha T1 transgenic plants from 10
experiments performed in either constant red or red plus far red light. The mean coefficients of variance are statistically different between the alleles
with a p = 0.0019 via ANOVA. Results were also significant by Levene’s F-test. (B) Coefficient of variance for flowering time in the elf3-1:ELF3Bay and
elf3-1:ELF3Sha T1 transgenic plants from 10 experiments performed in either constant red or red plus far red light. Significance by Levene’s F-test is
shown. (C) Coefficient of variance for the time to bolting in elf3-1:ELF3Bay and elf3-1:ELF3Sha T1 transgenic plants from 10 experiments performed in
either constant red or red plus far red light. Significance by Levene’s F-test is shown. (D) Coefficient of variance in 4-methylsulfinylbutyl (4-MSOB) and
7-methylsulfinylheptyl (7-MSOH) glucosinolate in elf3-1:ELF3Bay and elf3-1:ELF3Sha T1 transgenic plants from 9experiments. Significance by Levene’s
F-test is shown.
doi:10.1371/journal.pgen.1002295.g008
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to changes in glucosinolate stochastic noise with the Sha ELF3

allele increasing stochastic noise for the short chain aliphatic

glucosinolate 4-methylsulfinylbutyl (4-MSOB) but decreasing

stochastic noise for the long chain aliphatic glucosinolate 7-

methylsulfinylheptyl (7-MSOH) (Figure 1 and Figure 8). Since the

different alleles of ELF3 (Bay v Sha) have also been shown to affect

flowering time [81], we measured two traits related to this

character in the transgenic lines and found that variation between

the ELF3 alleles led to differences in stochastic noise for flowering

(Figure 8, Figure S4).

The observation that the Sha allele of ELF3 led to higher

stochastic noise in flowering time and 4-MSOB accumulation,

whereas it was also associated with lower stochastic noise in

circadian periodicity and 7-MSOH accumulation suggests that

ELF3 is not simply making the plant more or less robust but

instead is partitioning noise between specific phenotypes (Figure 8).

Interestingly, this differential effect of ELF3 upon stochastic noise

agrees with the observed CV eQTL at this locus.: The Sha allele at

the ELF3 QTL was associated with decreased stochastic noise of

transcriptional networks for circadian genes and most glucosino-

late networks but the Sha allele had increased stochastic noise in

the FLC (At5G10140 –Flowering locus C) and GS-OX2 (At1g62540)

transcripts (Table S1) [85–88]. The increased noise in FLC nicely

correlates with the observed flowering time noise. Furthermore,

GS-OX2 is required to synthesize 4-MSOB and concordantly links

to the increased noise in this metabolite. Interestingly, YUCCA3

(At1g04610) transcript accumulation also shows a CV eQTL at the

ELF3 locus suggesting a potential impact on auxin by this locus

[89]. In summary, our results show that natural variation in ELF3

leads to changes in stochastic noise in both plant and molecular

phenotypes and that the direction of effect depends upon the

specific phenotype. Therefore, ELF3 is not a gene leading to plants

displaying a general increase in phenotypic noise but instead

affects noise in a network specific manner. Finally, it should be

noted that there is no measurable difference in gene expression

between the Bay and Sha alleles at ELF3 showing that these

altered stochastic noise phenotypes in metabolism, transcription

and physiology are dependent upon the biochemical differences in

the two alleles [40,90].

Discussion

The accurate measurement of any phenotype in biology

produces two numbers, a measure of central tendency, such as

the mean and a measure of variance. However, most genomic

studies of quantitative genetics or systems biology in multi-cellular

organisms limit the analysis to whether the genetic, environmental

or developmental perturbation altered the phenotype’s mean and

typical do not analyze effects on the stochastic variance. However,

numerous microbial and modeling analyses have shown that

stochastic noise can be a meaningful phenotypic descriptor

that contains information not conveyed by the average

[21,25,26,29,30,91]. We hypothesized that there may be an

unrecognized and broad genomic distribution of natural variation

in stochastic noise within higher eukaryotes. The data described in

this report shows that there is significant genomic variation in

phenotypic stochastic noise within the model plant, Arabidopsis

thaliana within a single environment. This genetic variation in

stochastic noise, as measured by CV, is highly heritable and

influences multiple phenotypic levels ranging from transcripts to

metabolites to complex physiology like circadian clock periodicity.

We mapped numerous QTLs controlling metabolic and tran-

scriptional CV and demonstrated that specific genes underlying

these loci have the ability to influence the phenotypic CV for these

traits. Further, phenotypes with higher stochastic noise had lower

heritability. As such, it is likely that genetic variation in stochastic

noise is widespread with a diverse mechanistic basis, and that to

fully understand a quantitative trait both the mean and the

stochastic variance of the phenotype need to be investigated.

Our QTL analysis showed that CV and average can be

genetically separable measures of a phenotype. QTL mapping

using phenotypic CV as the trait identified loci that were not found

using the phenotypic average. One example is the transcriptome

trans-CV eQTL hotspot on the bottom of chromosome III that did

not appear as a major hotspot when using the average transcript

accumulation to map eQTL (Figure 5) [40]. Further, natural

variation at the ELF3 locus impacts the average circadian clock

period and flowering time while only effecting CV of the circadian

clock (Figure 8 and Figure S4) [81]. Further, Levene’s F-tests of the

individual causal genes supports the use of CV to identify genes

controlling natural variation in stochastic noise. Thus, directly

interrogating stochastic noise as a separate measure of a phenotype

can lead to new insights into the biology of a system.

Extrinsic versus intrinsic noise
Stochastic noise is frequently divided into that which comes

from sources internal to the organism (intrinsic) and environmen-

tal sources external to the organism (extrinsic) [26]. In unicellular

organisms it is possible to use internal reporters and massive

population sizes to begin to partition the two sources. This is much

more difficult for multi-cellular organisms. However, in this study,

a number of findings support that we are likely measuring largely

intrinsic sources of noise rather than purely extrinsic sources. The

first is that our measures of noise are correlated with the genotype

of the organism, which would not have been true if the variance

we were measuring was purely extrinsic/environmental noise. It

could be argued that we are mapping genetic variation that leads

to differential sensitivity to extrinsic noise. However, each

experiment is highly replicated so to be mapping differential

sensitivity to extrinsic noise would have required the sources of

extrinsic noise to be the same in each experiment and to show

similar variations across the experiments. While we can not

entirely rule out this possibility, it is much more likely that we have

identified loci controlling natural variation in intrinsic stochastic

noise within a multi-cellular organism.

Stochastic noise in plant/environment interactions and
evolution

An interesting observation in this data is that there is an

unexpectedly high genomic level of natural genetic variation

controlling stochastic noise in transcripts, metabolites and

physiology. The high frequency of trans-CV eQTL rules out the

possibility that this is simply the mapping of large effect indel

polymorphisms that would be expected to alter transcript CV in

cis. Additionally, the finding that the genes underlying trans-CV

eQTL also control stochastic noise in metabolites and complex

physiology such as the circadian clock shows genetic control of

stochastic noise impacts all levels of the plant. Interestingly

previous reports have shown that HSP90 could be expected to

control stochastic noise in numerous Arabidopsis phenotypes but

we did not identify any trans-CV-eQTL hotspots linked to any of

the known HSP90 genes [16–18,92]. This suggests that natural

variation in HSP90 is not a major driver of stochastic variation

within this Arabidopsis population for this environment. It is

possible that if we had used multiple environments that natural

variation in HSP90 may have been identified but this was not the

case.
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Our findings raise the question of what genetically variable

control of noise means in an ecological and evolutionary context.

One possible answer would be that this genetic control of noise is

meaningless because stochastic noise may not be under selection.

However, this answer runs up against two impediments. The first

is that in bacteria, natural variation in phenotypic stochastic noise

has been shown to be adaptive under situations where the

environment is highly unpredictable [25,91], similar to that found

in plant/herbivore interactions [28]. Additionally, several of the

glucosinolate loci, including the GSL.AOP2 locus that we show

controls stochastic noise in glucosinolates, have been shown to be

under selection in Arabidopsis and other related species

[52,56,60,93–100]. While these findings do not show that the

stochastic noise variation is directly under selection pressure, it is

clearly controlled by genetic loci that are themselves likely under

selection pressure. Further, this suggests that selection is not solely

focused upon decreasing stochastic noise within non-stressful

environments especially for defense related traits.

The next question then becomes how natural variation in

stochastic noise within environments that are not overtly stressful

could benefit a multi-cellular organism. The answer to this might

come in the form of a question that is related to the interest in

identifying the genetic basis of local adaptation. However, the term

local adaptation always engenders the response ‘‘what is local?’’. It

is possible that altering the stochastic noise of a system could alter

the range of environments where it can successfully function. For

instance, increasing the stochastic noise of the circadian period

may enable that particular genotype to occupy more longitudinal

niches, albeit at the likely cost of never being the optimal genotype

in any specific niche. In contrast, decreasing the stochastic noise of

the circadian period would optimize the fitness in a specific niche

but likely at the loss of fitness across other niches. In this instance,

natural variation in stochastic noise could lead to genetic control

over what constitutes local for a specific genotype. As such, it may

not be the variance itself that is adaptive, but instead the ability of

variance to produce a more flexible network.

In contrast, stochastic noise in defense metabolites, such as

glucosinolates, could represent a different benefit of natural varia-

tion in CV. Glucosinolates are a major anti-herbivore and anti-

pathogen defense of Arabidopsis and relatives [53,54,58,59,98,99]

and as such could impart a pressure upon these herbivores and

pathogens to counter adapt [101]. One mechanism that has been

suggested as effective in slowing counter-adaptation is to increase

the unpredictability of the defense compound (i.e. stochastic noise)

[27]. As such, genetic control on the stochastic noise of defense

compounds could in and of itself provide direct benefits to the

efficaciousness of the defense. However, the observation that there

is natural variation in stochastic noise of defense metabolites would

suggest that high levels of noise are not always beneficial, possibly

depending upon the ratio of generalist and specialist herbivores in

a given genotype’s normal locale [98]. Testing these different

potential benefits of stochastic noise will require the development

of genotypes that differ solely in stochastic noise to allow this effect

to be partitioned away from any influence upon the mean

phenotype.

Genetic control of stochastic noise and systems biology
A major difficulty in systems biology is the presence of massive

datasets that are largely correlative when comparing different

transcripts. This has lead to numerous attempts to derive causal

information from these correlative datasets. However, even the

best approaches are susceptible to a number of systemic errors that

deal with predicting regulatory loop structure as well as

combinatorial regulation [102]. For regulatory loops, correlative

approaches using average responses generate a number of possible

network topologies that are similar with respect to regulation of

phenotypic average, but that make very different predictions about

how perturbations will control the stochastic noise of the system

[5,6,103–105]. Given this, it may be possible to use the presence of

genetically controlled stochastic noise to help better refine systems

biology models. The mean transcript, protein, or metabolite levels

could be used to generate multiple initial models that could then

be analyzed by using the stochastic noise in the system to

determine which model most accurately predicts the observed

stochastic noise. Future work on this approach could be useful but

would require true independent replication in systems biology

experiments to allow accurate estimations of stochastic noise for

each measured phenotype.

Future potential
The identification that stochastic noise of phenotypes has a level

of genetic control that appears to be on par with that observed for

the phenotype average suggests that there is a fount of phenotypic

information that has largely not been studied in most modern

genetic, genomic or systems biology studies. For instance, numerous

natural and induced mutant screens and surveys have been

conducted in Arabidopsis to determine the genes controlling the

phenotypic average [106–108]. Similar large scale approaches have

been conducted in numerous other organisms focused on

phenotypic averages [109–111]. While these have provided great

advances in our understanding of biology, it raises the question of

what would happen if we repeat these screens and surveys to identify

genetic variation controlling stochastic noise in phenotypes. Would

we identify the same genes or would we begin to identify a large

suite of previously unknown genes that control stochastic variation

rather than phenotypic average? Experiments focused on the

stochastic nature of a phenotype require independent replication

but could yield a new view of organismal biology that is currently

specified by our focus upon phenotypic averages.

Materials and Methods

Measuring transcript CV
To directly estimate the CV for each individual genes transcript

accumulation (22,746 transcripts in total) as a separate phenotype

within the Bay x Sha RIL population [42], we obtained two

independent microarray experiments (TABM-224 and TABM-

518) wherein 211 RILs were each measured in duplicate within

each experiment providing four replications [40]. Raw image data

from the RIL GeneChips were converted to numeric data via

Bioconductor software (www.bioconductor.org). We utilized

quantile normalization across all arrays to reduce non-biological

variation coming from the technology itself, and when applied at

the probe level it has been shown to outperform other

normalization methods that are based on what is referred to as

a ‘‘base-line array’’ [112]. After quantile normalization, we utilized

the absolute expression values to measure the CV for each gene

separately for each experiment using s/m [21,26,113], thus

providing two independent biological replicate measures of CV for

each gene. The use of CV as a direct phenotype has previously

been used in a number of instances. By measuring the within line

CV as a phenotype for the Bay x Sha population allows us to then

utilize CV as a direct measurement of stochastic variation as a

phenotype. The level of per line replication for the array data does

not support the use of Levene’s variance tests or measures.

Additionally, all lines were planted and harvested within a

randomized complete block design at all stages thus limiting any

potential technical bias to generate these observations [40,77].
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Measuring network expression CV
To estimate the CV for specific transcript networks, we utilized

a previously published approach whereby we average the

expression across a group of genes to provide an estimate of the

gene network’s expression value [38,114]. Briefly, this network

approach uses any a priori defined group of genes as a network.

Every transcript that is defined within a network is z transformed

to place them all on the same scale. For every microarray within

the dataset, the network expression value is obtained by averaging

across the z values for all transcripts within the network. This

provides a single network value that can then be utilized for

downstream applications. This approach has previously been used

to map network QTL controlling the difference in average

expression [63] and can be extended to identify differences in

network stochasticity using the CV value instead of the average

expression. Gene membership within specific circadian networks

were defined as previously described [83]. Gene membership

within glucosinolate pathways were defined as previously de-

scribed [63,67]. This approach was also used to generate a global

CV average by averaging the CV across all 22,746 transcripts

measured on the ATH1 Affymetrix microarray.

Measuring glucosinolate metabolite CV
To estimate the CV for specific defense metabolites, we utilized

previously published data wherein the m and s for a large set of

glucosinolates within a Bay x Sha RIL population consisting of 403

lines had been measured [63]. The glucosinolates were measured

in a similar growth stage and growth chamber as that for the

transcriptomics analysis allowing for better comparison between

the datasets [40,63]. For measuring altered glucosinolate metab-

olite CV in the independent transgenic lines, we compiled data

from multiple independent experiments that had previously been

published in separate papers. We analyzed the same lines in at

least four independent experiments with replication allowing us to

test if the CV differed across these genotypes [58,63,67,73].

Glucosinolate genotype analysis: To test if variation at specific

glucosinolate genes could alter the CV of either metabolite or

transcripts, we obtained previously published data involving

multiple independent biological replicates for the following

genotypes all of which are generated within the Arabidopsis Col-

0 accession background. To elevate MYB gene expression, we

used previous lines where the Arabidopsis Col-0 versions of

MYB28, 29 and 76 were separately introduced back into

Arabidopsis Col-0 using a 35S promoter to induce their expression

– 35S:MYB28, 35S:MYB29 or 35S:MYB76 [73]. To mimic natural

variants that have low to no expression of MYB28, 29 or 76, we

used previously obtained insertional T-DNA mutants within each

of these genes obtained from the Arabidopsis Col-0 accession;

myb28-1, myb29-2 and myb76-1 [67,73]. All insertional T-DNA

mutants underwent at least one backcross and had previously been

shown to abolish or dramatically diminish MYB gene expression

[67,73]. To mimic the natural variation at the AOP2 locus, we

utilized the Arabidopsis Col-0 accessions that contains a natural

knockout of AOP2 and introduced the functional enzyme encoding

gene back into this natural null background [63,115]. Thus, all of

these lines are single gene manipulations of major glucosinolate

loci within a common genomic background, Col-0.

Estimation of CV heritability
For estimating broad-sense heritability, we utilized the inde-

pendent measures of CV directly as a phenotypic measure. This

allowed us to estimate broad-sense heritability (H) for each CV

phenotype as H =s2
g/s

2
p, where s2

g is the estimated CV

phenotypes genetic variance among different genotypes in this

sample of 211 RILs, and s2
p is the CV phenotypic variance for

each phenotype [116]. Heritability was estimated for all expression

phenotypes. The metabolite phenotypes did not have the

individual values from each independent experiment, and

therefore, heritability was not measurable.

Mapping QTL for CV phenotypes
To map QTL for the CV phenotypes, metabolic, network and

individual gene expression, we measured the average CV for each

phenotype across all experiments and used the average CV in

conjunction with a previously generated map for 211 Bay x Sha RILs

([42,77]; see also the file ‘‘Average CV per transcript per RIL’’ at

http://plantsciences.ucdavis.edu/kliebenstein/TableS1Plosgenetics.txt

[note: this file is ,28 MB]). For glucosinolates, we utilized a larger

collection of 400 Bay x Sha RILs [42]. Composite interval

mapping (CIM) analysis [117] was employed in conjunction with

the 5 cM framework map. The ‘‘zmapqtl’’ CIM module of QTL-

Cartographer Version 1.17 [118] with a walking speed of 1 cM

and a window size of 10 cM was employed to analyze each

phenotype. To obtain a threshold criterion for declaring

statistically significant eQTL, a global permutation threshold

was obtained by permuting the e-traits while maintaining the

genetic information [40]. For each of 100 randomly selected

phenotypes, the null distribution of the maximum likelihood ratio

test (LRT) statistic was empirically estimated using permutation

thresholds based on 1,000 permutations [40,78–80]. We then

utilized the 95th percentile permutation threshold across the 100

null distributions [40]. We utilized the resulting output to

localize, summarize and count CV QTL using the Eqtl module

of QTL-Cartographer in conjunction with the previously

optimized 5 cM exclusionary window where no CV QTL can

be closer than 5 cM to the nearest QTL (Table S1) [40,118]. This

is an identical approach at all stages to that used to previously

map the eQTL for this dataset and as such should increase the

direct comparison between datasets [40]. Additionally, we have

been able to clone and biologically validate causal loci controlling

several of the trans effect loci controlling subtle shifts in physiological

networks as identified from the eQTL analysis [90,119].

We have previously shown that single-feature polymorphisms

are not a significant difficulty in this population for this array data

when estimating expression values [40,77]. As such, we did not

control for potential single-feature polymorphism issues. The low

level of cis-CV-eQTL within our results further supports this

observation.

CV QTL hotspot significance threshold
To determine whether a genetic location associated with

multiple CV QTLs was a significant cluster or ‘hotspot’, we

estimated a significance threshold using permutation as previously

described for transcriptomic data [40,90,109,120–123]. The

positions of the 98,014 CV eQTLs (Table S1) at the marker

intervals were permuted across the genome 1,000 times, and the

maximal number of CV eQTLs per genetic position per

permutation was obtained. Using the distribution of the maximum

number of CV eQTLs, the criterion for declaration of a significant

eQTL hotspot was 422 CV eQTLs per genetic position at alpha =

0.05. The permutated hotspot approach has been used to identify

genes that cause the transcriptional difference for a number of

hotspots showing that this approach is identifying biologically

validatable effects [39,63,120,124,125].

ELF3 transgenic plants
elf3-1 null mutants carrying the CCR2::luc reporter gene were

obtained from Dr. Stacey Harmer (University of California,
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Davis). Full genomic clones of ELF3 from Bay and Sha including

1.5 kb of upstream promoter were cloned in pJIHOON212. elf3-

1-CCR2::luc plants were transformed with these constructs using

Agrobacterium tumefaciens [81,126]. To account for differences

between elf3.1: Bay and elf3.1:Sha due to the transformation

protocol, transgenic plants obtained from two independent batches

were used, but no effect of the Agrobacterium inoculate was detected

(P = 0.31 via ANOVA, data not shown).

Measuring CV of circadian period for ELF3 alleles
elf3:Bay and elf3:Sha transgenic T1 seeds from two different

Agrobacterium transformation batches were placed on MS

medium with the appropriate antibiotic and stratified for 4 days

(4uC, dark). After entrainment under white light in 12:12

photoperiods for 7 days, resistant plants were transferred to new

MS plates and moved to continuous red light or red + far-red light

conditions, where luminescence was recorded for 6 to 7 days.

Five independent experiments were conducted in continuous

red light (R, total PAR of 64 uE) and 5 experiments in continuous

red plus far red light (R+FR, total PAR of 64uE with a R:FR ratio

of 0.5) conditions created with LED lights. Plants were monitored

using a CCD camera taking pictures every 2 hours. The data

collected was analyzed for rhythmicity using the luciferase activity

method described in [127]. Only plants showing stable rhythms

(Relative Amplitude Error below 0.5) were considered for the

analysis. Between 12 and 150 T1 plants (average 75.2, median 86)

for each transgene were included in each experiment. Coefficient

of variance was calculated as the standard deviation divided by the

mean period estimate for each transgenic line in each experiment.

Measuring variance in glucosinolate accumulation
between ELF3 alleles

elf3:Bay and elf3:Sha transgenic T1 seeds from three different

Agrobacterium tumefaciens transformation batches were planted on soil

including elf3.1 mutants and WT Col-0 as a control. The extreme

hypocotyl length, flowering time and cotyledon color phenotypes

of the elf3.1 mutants were assessed to distinguish transformed from

untransformed plants [128]. Transformed plants were grown for

25 days in a 10 hour photoperiod. At 25 days, leaf tissue was

harvested from each plant and individually extracted and assayed

via HPLC for glucosinolate identity and concentration as

previously described [72,115]. The experiment was replicated 9

times for a total of 106 elf3:Bay and 108 elf3:Sha independent T1

plants. Levene’s F-tests were used to compare variance between

the two T1 genotype classes.

Supporting Information

Figure S1 Individual trait CV eQTL for Aliphatic GLS

biosynthetic network. CV eQTL were mapped using the expression

levels of 60 transcripts associated with Arabidopsis thaliana glucosino-

late biosynthesis using the four replicate microarrays for the Bay x

Sha population. The transcripts controlled by the most significant

CV eQTL are labeled. The AOP2 and AOP3 labels are in the

position of the genes and are cis CV eQTL. The top panel shows

LOD score and the bottom panel shows the additive effect. The

GSL.MAM and GSL.MYB2976 loci are labeled for reference.

(TIF)

Figure S2 Pathway CV QTL for GLS related biosynthetic

networks. QTL analysis of pathway CV QTL across the five

Arabidopsis chromosomes for 13 different metabolic pathways

associated with glucosinolate accumulation. All transcripts associ-

ated with 13 different metabolic pathways were compiled to

estimate the average and standard deviation of pathway expression

per line across all the transcripts in the pathway. This was then

used to estimate the pathway CV per line and this was utilized to

map QTLs for each network as described. The position of the

GSL.AOP, MYB2976 and MAM loci are shown with respect to the

x-axis. A. LOD value for pathway CV QTL. Line color legend is

shown in B. B. QTL locations for pathway CV QTL. The vertical

line within each bar shows the statistical peak and the bar shows

the region of significance for each QTL. C. Graph of estimated

additive effects for pathway CV QTL based upon the Sha allele.

(TIF)

Figure S3 Distribution of CV eQTL per transcript. The number

of CV eQTL per transcript across all 22,746 transcripts CV’s per

RIL.

(TIF)

Figure S4 ELF3 HIF alters Flowering Time CV. Average

coefficient of variance of HIF M for Flowering time in either

constant red (Shade) or red plus far red light (Sun). The mean

coefficients of variance were tested for significant differences using

a paired Levene’s F-test and the P values are shown.

(TIF)

Table S1 List of CV eQTL for transcriptomics analysis of Bay x

Sha.

(XLSX)
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