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b2-integrins are heterodimeric surface receptors that are expressed specifically by
leukocytes and consist of a variable a (CD11a-d) and a common b-subunit (CD18).
Functional impairment of CD18, which causes leukocyte adhesion deficiency type-1
results in an immunocompromised state characterized by severe infections, such as
invasive pulmonary aspergillosis (IPA). The underlying immune defects have largely been
attributed to an impaired migratory and phagocytic activity of polymorphonuclear
granulocytes (PMN). However, the exact contribution of b2-integrins for PMN functions
in-vivo has not been elucidated yet, since the mouse models available so far display a
constitutive CD18 knockout (CD18-/- or CD18hypo). To determine the PMN-specific role of
b2-integrins for innate effector functions and pathogen control, we generated a mouse line
with a Ly6G-specific knockdown of the common b-subunit (CD18Ly6G cKO). We
characterized CD18Ly6G cKO mice in-vitro to confirm the PMN-specific knockdown of
b2-integrins. Next, we investigated the clinical course of IPA in A. fumigatus infected
CD18Ly6G cKO mice with regard to the fungal burden, pulmonary inflammation and PMN
response towards A. fumigatus. Our results revealed that the b2-integrin knockdown was
restricted to PMN and that CD18Ly6G cKO mice showed an aggravated course of IPA. In
accordance, we observed a higher fungal burden and lower levels of proinflammatory
innate cytokines, such as TNF-a, in lungs of IPA-infected CD18Ly6G cKO mice.
Bronchoalveolar lavage revealed higher levels of CXCL1, a stronger PMN-infiltration, but
concomitantly elevated apoptosis of PMN in lungs of CD18Ly6G cKO mice. Ex-vivo
analysis further unveiled a strong impairment of PMN effector function, as reflected by
an attenuated phagocytic activity, and a diminished generation of reactive oxygen species
(ROS) and neutrophil-extracellular traps (NET) in CD18-deficient PMN. Overall, our study
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demonstrates that b2-integrins are required specifically for PMN effector functions and
contribute to the clearance of A. fumigatus by infiltrating PMN, and the establishment of an
inflammatory microenvironment in infected lungs.
Keywords: b2 integrins, CD18, CD11b, polymorphonuclear neutrophils, Aspergillus fumigatus, pneumonia,
complement receptor 3, phagocytosis
1 INTRODUCTION

Humans are constantly exposed to spores of the ubiquitous
environmental mould Aspergillus fumigatus (A. fumigatus) (1,
2). Although A. fumigatus is usually well controlled in healthy
individuals, A. fumigatus can cause lethal invasive pulmonary
aspergillosis (IPA) in immunocompromised patients, e.g., due to
chemotherapeutic treatment of malignant diseases or
immunosuppressive therapy after allogeneic hematopoietic
stem cell transplantation, with mortality varying between 30%
and 90% (1, 3). Commonly, disease follows the inhalation of
airborne conidia , which germinate in the lung of
immunocompromised hosts, sprouting there as hyphae (4).
Despite the clinical application of potent antifungal drugs for
prophylaxis and treatment of invasive fungal diseases in patients
with severe immune deficiency, IPA continues to be a highly
relevant health issue in daily clinical care (5).

The small size of A. fumigatus conidia (2-3µm) allows them to
bypass the physiological epithelial defence of the nasal and
bronchial cavities and to reach the lung alveoli without being
cleared by the ciliated bronchial epithelium (6, 7). Although
several in-vitro studies indicated that epithelial cells may
internalize and subject conidia to phagolysosomal degradation
(8), an engulfment of conidia by bronchial epithelium has not
been observed in-vivo so far (9). Hence, the clearance of A.
fumigatus conidia requires effective cellular and humoral
immune responses.

The innate immune system is considered the key player in the
clearance of conidia and the defence against the outgrowth of A.
fumigatus conidia. Here, resident leukocytes present in the
alveolar lung tissue, such as alveolar macrophages and
dendritic cells (DC) initiate an early response against invasive
aspergil losis (10, 11). However, the recruitment of
polymorphonuclear neutrophils (PMN) to the lung tissue is
essential for an efficient clearing of A. fumigatus (5, 6, 12). The
importance of PMN for an effective protection against IPA was
inferred from the observation, that quantitative [i.e., in
neutropenic patients (13)] or qualitative [i.e., patients with
chronic granulomatous disease (14)] defects of PMN are
critical predisposing factors for IPA (13, 15). PMN mediate the
killing of A. fumigatus via different effector mechanisms
dependent on the size of conidia and hyphae:

Since the size of hyphae prevents phagocytosis, hyphal killing
is mainly conferred by oxidative and non-oxidative PMN effector
functions. These include the generation of reactive oxygen
species (ROS), the formation of neutrophil extracellular traps
(NET) and the release of neutrophil granular content (6, 16, 17).
In the context of oxidative PMN functions, it has been observed,
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that the common beta subunit of b2 integrins (CD18) is critical
for the recognition of A. fumigatus and the subsequent
generation of ROS (18, 19).

By contrast, the small-size of A. fumigatus conidia allows for
the phagocytosis by PMN, which is either mediated by direct
recognition via complement receptor 3 (CR3, i.e., CD11b/CD18),
Dectin-1 or indirectly via complement-dependant opsonization
(6, 18, 19). The importance of b2 integrins in PMN-functions has
been confirmed in more recent reports, which revealed that an
antibody-mediated blockade of CD11b prevents the generation
of ROS (20) and phagocytosis of A. fumigatus conidia by
PMN (21).

The ß2 integrin-family consists of four members, which are
formed by heterodimerization of the common beta subunit
(CD18) with a variable alpha subunit (CD11a-CD11d) (22,
23). The integrin receptor CR-3 is primarily expressed by
leukocytes of the myeloid lineage, which was name-giving
(macrophage antigen 1, MAC-1) (22). MAC-1 serves as an
adhesion receptor for various ligands, including intercellular
adhesion molecule 1 (ICAM-1), which is necessary for the
transendothelial migration of macrophages and PMN (5, 24).
MAC1/CR3 also binds complement-opsonized pathogens, and
immune complexes, non-opsonized pathogens, and numerous
serum factors (25). In addition, MAC-1 serves as a coreceptor for
the Fc-receptor-mediated uptake of antibody-opsonized
pathogens (26). It has further been shown that MAC-1 acts as
a regulator of LPS-induced signaling in macrophages and DC,
and that the engagement of MAC-1 with yet unrecognized T cell
receptors mediates T cell activation (27, 28). Last, MAC-1 is a
modifier of various signaling pathways (29), such as TLR-
induced inflammatory signaling (27), which is involved in the
innate immune response to invasive aspergillosis (10).

In accordance with the importance of b2 integrins for
immune responses, loss-of-function mutations of the CD18
gene in humans result in the so-called leukocyte adhesion
deficiency type 1 (LAD1) syndrome, being characterized by
severe, recurrent bacterial and fungal infections in patients,
which require extensive treatment with anti-infective agents
(30). Several studies have indicated that an impaired migration
and phagocytic activity of CD18-deficient PMN might be largely
causative for the spreading of pathogens in LAD1 patients (31).

However, the exact contribution of b2 integrins for PMN
functions in-vivo has not been fully elucidated yet, since the
mouse models available so far either display a constitutive CD18-
knockdown (CD18hypo) or knockout (CD18-/-), which
complicates to delineate the cell-type specific role of CD18. In
order to reveal the PMN-specific role of b2-integrins for the
control of infectious diseases such as IPA, we established a
June 2022 | Volume 13 | Article 823121
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transgenic mouse with a floxed CD18 gene (CD18fl/fl Ly6GCre-).
By crossing CD18fl/fl mice with transgenic mice expressing Cre
recombinase under control of the PMN-specific (Ly6GCre+)
promoter, offspring with a PMN-specific knockdown of CD18
have been generated, thus allowing to analyze the PMN-specific
role in IPA.

In this study, we show that mice with a Ly6G-specific
knockdown of CD18 (CD18Ly6G conditional knockout, in the
following termed CD18Ly6G cKO) display an impaired survival
during IPA as compared to control-mice (CD18fl/fl). The
impaired survival of CD18Ly6G cKO mice is reflected by a
higher fungal burden in the lung of these mice during the early
phase of pulmonary infection and lower amounts of
proinflammatory innate mediators, such as TNF-a in the
bronchoalveolar lavage fluid (BALF). By contrast, we detected
an enhanced bronchial infiltration of PMN and elevated levels of
the PMN-chemoattractant CXCL-1 in BALF derived from
infected CD18Ly6G cKO mice, which might reflect a
compensatory mechanism. Moreover, we could observe that
CD18-deficient PMN showed a strong attenuation of effector
functions in-vitro, which might explain the higher fungal burden
in the lungs of infected CD18Ly6G cKO mice. In particular, we
observed an impaired phagocytic uptake of A. fumigatus conidia,
and a diminished generation of ROS and NET in CD18-
deficient PMN.
2 MATERIALS AND METHODS

2.1 Fungal Strains and Cultivation
Conditions
The wild type (WT; ATCC 46645) and the GFP-modified
(AfS148) A. fumigatus strains (32) were cultured in Aspergillus
minimal medium (AMM) with 1% (w/v) glucose, 1% Hutner´s
trace element solution and 1M MgSO4 (Carl Roth, Karlsruhe,
Germany) as described earlier (16). Briefly, conidia were
incubated on AMM agar plates for 4 days at 37°C and 5%
CO2. For preparation of spore suspensions, plates were washed
with sterile water containing a small amount of glass pearls (Ø
4mm; Carl Roth, Karlsruhe, Germany) to detach conidia from
agar plates. The obtained spore suspension was filtered twice
through a sterile 40 mm nylon mesh and stored in sterile
water at 4°C.

2.2 Mice
In order to allow for the assessment of the importance of b2-
integrins specifically for PMN, we generated a transgenic mouse
strain with a floxed CD18 gene (CD18fl/fl Ly6GCre- ; B6.Cg-
Itgb2tm2.GrabS), which enabled a conditional knockout of b2
integrins in a cell-type specific manner (Supplementary
Figure 1). The generation of mice with floxed exon 3 of the
CD18 gene locus will be described in detail elsewhere. CD18fl/fl

mice were bred with transgenic mice expressing Cre recombinase
under control of the PMN-specific Ly6G promoter (33, 34) as
described by Hasenberg and coworkers (Ly6GCre+, C57BL/6-
Ly6g(tm2621(Cre-tdTomato)Arte mice) (35), yielding a mouse
Frontiers in Immunology | www.frontiersin.org 3
strain with diminished levels of CD18 on neutrophils (CD18Ly6G

cKO). Resulting CD18wt/fl Ly6GCre- offspring were crossed back
to CD18fl/fl background. Derived male CD18fl/fl Ly6GCre- mice
were paired with CD18fl/fl Ly6GCre- females, yielding mice with
diminished levels of CD18 on neutrophils (CD18fl/fl Ly6GCre-, in
the following termed CD18Ly6G cKO) and CD18fl/fl Ly6GCre-

mice at the same ratio.
The mouse strains (CD18fl/fl Ly6GCre- and CD18Ly6G cKO)

were maintained in the Translational Animal Research Center of
the University Medical Center Mainz under pathogen-free
conditions on a standard diet. All animal procedures were
performed in accordance with the institutional guidelines and
approved by the responsible national authority (National
Investigation Office Rhineland-Pfalz, Approval ID: 23177-07/
G16-1-020). For the experiments, mice of both sexes were used,
although most experiments were done with female mice. Mice
used in the experiments were aged between 6-18 weeks unless
stated otherwise.

2.3 Mouse Genotyping
Gene-targeted animals were verified by PCR (Supplementary
Figure 1). To this end, ear biopsies of mice (2–6 weeks)
were incubated with lysis buffer containing 100µl Direct PCR Ear
Buffer (Viagen Biotec, Los Angeles, CA, USA) and 2µl proteinase
K (ThermoFisher Scientific,Waltham,MA). Sampleswere incubated
at 56°C for 1-3h under shaking. Subsequently the suspension was
heated to 95°C for 5min to inactivate proteinaseK, and the lysatewas
put on ice until further processing. The typical PCR reaction
contained a 25-ml volume containing 5µl PCR Reaction Mix
(Sigma Aldrich, Merck, Darmstadt, Germany), 17,3µl H2O, 0,2µl of
myTaq-Polymerase (Roche, Mannheim, Germany) and 1µl of the
primers (10pmol/µl) for PCR 1 (Mix of 2 primers: CD18 ex3_s2, B2
(s): 5´-GTGACACTTTAC TTGCGACCA-3´; CD18 loxp_as1,B3
(as): 5´-TGCCAATAAAGAATTTCAGAGCC-3´, suspended 1:10
inH2O)or forPCR2(Mixof3primers: Ly6G[78]-s for5´-CCTGCA
ACCTGGTCAGAGAG-3´, and 5064_61_rev for 5´-G
AGGTCCAAGAGACTTTCTGG-3´, and 2240_31 for 5′-
ACGTCCAGACACAGCATAGG-3′ suspended 1:10 in H2O). In
PCR2we also included a control pair of primers for amplifyingActin
as a wild-type allele (Actin FW: 5´-TGTTACCAACTGGG
ACGACA-3´ and Actin REV: 5´-GACATGCAAGGAGTGC
AAGA. The following PCR conditions were applied for PCR
1:initial146denaturation (3 min, 95°C), followed by 35 cycles
(denaturation: 30 s, 95°C; annealing: 30 s, 58°C; elongation: 45 s,
72°C) and by a final elongation step (2 min 72°C). For PCR 2 the
following PCR conditions were applied: initial denaturation (5 min,
95°C), followedby35 cycles (denaturation: 30 s, 95°C; annealing: 30 s,
60°C; elongation: 1min, 72°C) and by a final elongation step (10min
72°C). PCR products were analyzed by agarose gel electrophoresis
(Supplementary Figure 1).

2.4 Mouse Model of Invasive Aspergillosis
Mice were anesthetized with 14.5% Ketamin (50mg/ml)/5.7%
Xylazin (0.2%) and were subsequently challenged with 107 A.
fumigatus conidia (strain ATCC 46645) applied intratracheally
as described (35, 36). In brief, a 22G indwelling venous catheter
(Vasofix, B. Braun AG, Melsungen, Germany) was inserted into
June 2022 | Volume 13 | Article 823121
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the trachea and 100 ml sterile fungal suspension was
administered through the catheter. To enhance dispersion in
the lungs, mice were ventilated mechanically with 250 breaths/
min, 300 ml/breath for 2 min using an animal respirator
(MiniVent, Hugo Sachs, March-Hugstetten, Germany) as
previously described (16). In order to characterize the early
immune response to fungal infection, 10 mice/group were
sacrificed 24h after infection. In two additional groups (n=5-8
mice/group) the course of systemic infection was daily examined
by evaluation of weight, activity, breathing, overall appearance
(as assessed by posture, skin, and fur appearance), and survival
was monitored for 14 days. Mice with severe symptoms as
determined by clinical scoring were immediately euthanized as
required by the institutional animal ethics guidelines. Where
indicated, PMN depletion was induced by i.p. injection of anti-
Gr-1 antibody (150 mg, clone RB6-8C5; BioXCell, Lebanon, NH)
1 day prior to inoculation with fungal suspension.

2.5 Flow Cytometric Analysis
Blood samples, spleens and bone marrow were prepared from
sacrificed mice, and lungs were flushed with 1 ml PBS. Spleen cell
suspensions were generated viamechanical homogenization on a
40µm nylon mesh, washed twice with cold PBS, and red blood
cells (RBC) were lysed with hypotonic Gey´s solution (155mM
NH4Cl, 10mM KHCO3, 10µM EDTA at pH 7,4). RBC from
blood samples were lysed in the same way. Cells derived from
blood, spleen, bone marrow and bronchoalveolar lavage fluid
(BALF) were analyzed by flow cytometry. To this end, cells were
washed with staining buffer (PBS/2% FCS), and Fc receptors
were blocked by incubation with rat anti-mouse CD16/CD32
antibody (clone 2.4G2) for 15 min at 4°C. Then, cells were
incubated with FITC-conjugated anti-CD86 (GL-1), anti-CD45
(30F11), and anti-Annexin-V (Biolegend), PerCP-conjugated
anti-Ly6C (HK1.4), APC-conjugated anti-CD18 (C71/16), anti-
CD14 (Sa14-2), anti-Gr-1 (RB6-8C5) and anti-CD40 (1C10),
APC-eFluor 780 conjugated anti-CD11c (N418), eFluor450-
conjugated anti-MHCII (M5/114 15.2) and anti-F4/80 (BM8),
eFluor506-conjugated anti-CD3 (500A2), Super Bright 600-
conjugated anti-CD11b (M1/70), PE-conjugated anti-CD11a
(M17/4), anti-CD80 (1610A1) and anti-Ly6G (1A8), PE-
eFluor610-conjugated anti-Ly6G (1A8), PE-Cyanine7-
conjugated anti-CD68 (FA11) and anti-CD62L (MEL-14). All
antibodies were obtained from Biolegend (San Diego, CA) or
Thermo Fisher (Waltham, MA). Viability was assessed using
Fixable-viability-dye (FVD), conjugated either with APC eFluor
780, eFluor 450 or eFluor 506 (ThermoFisher). Samples were
analyzed using a flow cytometer (Attune™ NxT Acoustic
Focusing Cytometer, Thermo Fisher), and data were processed
using FlowJo software V8.8.7 (Tree Star Inc., Ashland, OR,
USA). The gating strategy is shown in Supplementary Figure 2.

2.6 Quantification of Fungal Burden
The right lungs of euthanized mice were removed, mechanically
homogenized and serial dilutions were plated on Sabouraud-4%
Glucose agar (Carl Roth, Karlsruhe, Germany), and cultivated at
37°C and 5% CO2. Colony-forming units (CFU) were counted
after 24h and 48h.
Frontiers in Immunology | www.frontiersin.org 4
Moreover, a D-Galactomannan assay based on the Platelia
Aspergillus EIA (Bio-Rad Laboratories, Marne-La-Coquette,
France) was employed to quantify the fungal load in BALF and
serum derived from IPA-infected mice. This enzyme
immunoassay is used in clinical routine and validated for the
detection of A. fumigatus antigen. The test uses the rat
monoclonal antibody EBA-2 directed against Aspergillus
galactomannan. In brief, the antigen is first bound to the wells
of the microplate coated with the EBA-2 antibody and then
revealed by binding to the peroxidase-linked EBA-2 antibody
resulting in a colorimetric reaction, which is measured via optical
density on a Plate Reader as described previously (37).

2.7 Histopathologic Analysis
For histopathological analysis the left lungs of euthanized mice
were filled with 10% formalin via the trachea. Paraffin-embedded
blocks were prepared, and derived sections (5 mm) were stained
with H&E to assess inflammatory responses. For this, H&E-
stained sections were examined by microscopy in a blinded
fashion for per ibronchia l , per ivascular and tissue
inflammation, using a scoring system (0–3). Furthermore,
sections of lungs were stained with Grocott Gomori’s
methenamine silver to assess the fungal burden of the lungs.
Grocott stained sections were examined in a blinded fashion
similar to H&E sections using a scoring system (0–3). In general,
3 randomly selected areas on each slide were analyzed with a
BX40 microscope equipped with a CCD camera (Olympus,
Hamburg, Germany).

2.8 Cytospin Analysis
For detection of lung infiltrating PMN, 100 ml of BALF
containing 0.5-2x105 cells (see above) were cytospun onto
microscope slides (3,500 rpm for 5 min; Cytospin 3, Thermo
Fisher), treated with the Diff Quick Staining Set (Microptic,
Barcelona, Spain), air-dried, and fixed as recommended. Samples
were analyzed using a BX50WI microscope, equipped with a
CCD camera (Olympus, Hamburg, Germany). PMN were
identified based on their characteristic segmented nuclei.

2.9 Cytokine Detection
Serum and BALF were subjected to cytokine detection by
Cytometric bead array (CBA) using the mouse CBA flex sets
following the manufacturer’s instructions (BD Bioscience, San
Jose, CA). Similarly, in-vitro cytokine generation by Ly6G+ PMN
(105/100µl) immunomagnetically sorted from bone marrow of
CD18fl/fl and CD18Ly6G cKO mice (see below) was quantified.
Isolated PMN were incubated in Iscove’s medium (Thermo
Fisher Scientific) supplemented with 5% (v/v) FCS, 2 mM l-
glutamine, 50 mM ß-mercaptoethanol and 1 mM Na-pyruvate
(SERVA Electrophoresis, Heidelberg, Germany) in 96-well plates
(Greiner Bio One, Frickenhausen, Germany) and treated over-
night with PBS, recombinant murine GM-CSF (100ng/ml;
Miltenyi Biotec, Bergsich-Gladbach, Germany), LPS (1µg/ml,
Merck-Millipore, Darmstadt, Germany), CpG (1µg/ml, In
vivogen, Toulouse, France) or R8/48 (1µg/ml, In vivogen).
Supernatants were taken 3h and 24h later from PMN aliquots
generated in n=3 independent experiments.
June 2022 | Volume 13 | Article 823121
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2.10 Fungal Uptake by PMN
PMNwere purified from bone marrow of CD18fl/fl and CD18Ly6G

cKO mice by magnetic cell sorting (MACS) using biotin-labeled
Ly6G-specific antibodies and streptavidin-conjugated beads (both
from Miltenyi Biotec) according to the manufacturer’s protocol.
The cell purity (Ly6G+) exceeded 90% as assessed by flow
cytometry. Freshly isolated PMN were resuspended (106 cells/
ml) in cell culture medium (see above), seeded into 96-well plates
(100µl/well) and were incubated with GFP-fluorescent A.
fumigatus conidia (5) at the indicated ratios in parallel at 4°C
and 37°C to differentiate mere adhesion and energy-dependent
uptake. After 1h of incubation PMN were washed twice with
500µl cold PBS and stained with anti-CD11b, anti-Ly6G, anti-
MHCII and anti-CD62L specific antibodies, and FVD eFluor 506
to determine the uptake and activation status of GFP-labeled
conidia by flow cytometry (Supplementary Figure 8 shows the
gating strategy applied during the experiments).

2.11 Uptake of Inert Particles by PMN
To assess uptake of inert particles, we employed Cy5-labeled
nanoparticles (Ø 50nm) and PE-labeled microBeads (Ø 2µm)
(both Miltenyi Biotec). Immunomagnetically sorted PMN (106

cells/ml) were incubated in cell culture medium in 96-well plates
(100µl) and treated over-night (12h) with GM-CSF (100ng/ml)
or LPS (1µg/ml). Subsequently, PMN were washed once with
500µl cold PBS and were either left untreated, or incubated in
parallel settings with particles, and particles pre-treated with
native or heat-inactivated mouse serum (hiS; 56°C, 30min) at 4°
C and 37°C for various periods of time (15-60 min).
Pretreatment of particles with native versus heat-inactivated
mouse serum served to elucidate the complement-dependent
particle uptake. Subsequently PMN were washed twice with
500µl cold PBS and incubated with anti-CD11b, anti-Ly6G,
anti-MHCII, anti-CD86, anti-Ly6C and anti-CD62L antibodies
and FVD eFluor 506 to determine the PMN-specific uptake of
inert particles by flow cytometry.

2.12 Assessment of Neutrophil Apoptosis
Freshly isolated PMN (1x106/ml) derived from bone marrow of
either mouse strain were incubated in cell culture medium in 24-
well plates and treated over-night (12h) in parallel w/o and with
GM-CSF (100ng/ml), LPS (1µg/ml) and with GM-CSF plus LPS
in order to differentiate spontaneous apoptosis (PBS-treated
control), late-onset apoptosis (GM-CSF) and apoptosis upon
LPS-treatment. Following over-night incubation, samples were
washed twice with 1ml PBS and incubated with anti-Annexin V
(FITC) and FVD (eFluor 506) according to the manufacturer´s
protocol (ThermoFisher) to differentiate apoptosis and necrosis.
Frequencies of apoptotic and necrotic PMN were determined by
flow cytometry as described previously (38).

2.13 Analysis of ROS Production
To assess the rate of ROS production, PMN were isolated from
bone marrow, were seeded into 96-well-plates (106/ml; 100µl/
well) washed once with 200µl PBS and resuspended in 100 ml
ROS-detection solution (2 mM 2´-7´Dichlorodihydrofluorescein
Frontiers in Immunology | www.frontiersin.org 5
[DCFDA] in PBS; Alexis Biochemicals, Lausen, CHE). After
20 min of incubation at 37°C the cells were washed with 200µl
PBS, centrifuged, and the sedimented cells were dispersed in 200
ml PBS. Subsequently, PMN were stimulated with GM-CSF
(100ng/ml), LPS (1µg/ml), A. fumigatus conidia (1:1), or 100
nM PMA (Sigma-Aldrich), respectively at 37°C, 5% CO2 in
triplicates. Median fluorescence intensities (MFI) were measured
using a SPARK multimode microplate-reader (TECAN Trading
AG, CHE) at an excitation of 485nm and an emission of 530nm
for 90min (intervals of 15min). After 90min cells were analyzed
by flow cytometry for DCFDA-positive events.

2.14 Analysis of Neutrophil-Extracellular
Traps Formation
To induce the release of neutrophil extracellular traps (NET)
DNA, we isolated PMN from bone marrow as described
previously and seeded PMN (105/100 µl) in 96-well plates with
100µl RPMI 1640 medium without phenol red (ThermoFisher,
Waltham, CA). PMN were treated either with GM-CSF (100ng/
ml), LPS (1µg/ml), A. fumigatus conidia (1:1), PMA (100 nM), or
calcium ionophore (2,5µM; Sigma, Darmstadt, Germany),
respectively. After incubation at 37°C for 3h, 5µM of Sytox
orange nucleic stain (Invitrogen, Carlsbad, CA) was added and
samples were incubated for 10min at room temperature in the
dark. Subsequently, PMN were centrifugated and washed twice
with 300µl cold PBS. MFI of Sytox orange was measured using a
SPARK multimode microplate reader with an excitation of
547nm and an emission of 580nm. Then, cells were incubated
with an anti-Ly6G antibody and analyzed by flow cytometry for
Ly6G/Sytox orange double-positive cells.

2.15 RNA-Sequencing and
Bioinformatical Analysis
First, PMN were isolated from bone marrow of CD18fl/fl and
CD18Ly6G cKO mice (n=3). Each 106 PMN were either lysed
directly after isolation or cultured overnight with GM-CSF
(10ng/ml) plus LPS (1µg/ml). RNA was purified with the
RNeasy Plus Micro Kit according to the manufacturer’s
protocol (Qiagen). RNA was quantified with a Qubit 2.0
fluorometer (Invitrogen) and the quality was assessed on a
Bioanalyzer 2100 (Agilent) using a RNA 6000 Pico chip
(Agilent). Samples with an RNA integrity number (RIN) of > 8
were used for library preparation. Barcoded mRNA-seq cDNA
libraries were prepared from 10ng of total RNA using NEBNext®

Poly(A) mRNA Magnetic Isolation Module and NEBNext®

Ultra™ II RNA Library Prep Kit for Illumina® according to
the manual with a final amplification of 15 PCR cycles. Quantity
was assessed using Invitrogen’s Qubit HS assay kit and library
size was determined using Agilent’s 2100 Bioanalyzer HS DNA
assay. Barcoded RNA-Seq libraries were onboard clustered using
HiSeq® Rapid SR Cluster Kit v2 using 8pM and 59bps were
sequenced on the Illumina HiSeq2500 using HiSeq® Rapid SBS
Kit v2 (59 Cycle). The raw output data of the HiSeq was
preprocessed according to the Illumina standard protocol.
Sequence reads were trimmed for adapter sequences and
further processed using Qiagen’s software CLC Genomics
June 2022 | Volume 13 | Article 823121

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Haist et al. b2-Integrins Control Neutrophil Effector Functions
Workbench (v20.0 with CLC’s default settings for RNA-Seq
analysis). Reads were aligned to GRCm38 genome. Sequencing
data were first analyzed with CLC Genomics Work Bench
(Qiagen). Further processing was performed in R using the
DESeq2 package for calling differential gene expression (39,
40). To determine the most up- or downregulated genes, genes
were sorted on the basis of log2 [fold change] maximum-
likelihood estimation, and the P-value cut-off was set to 0.05.
Results were illustrated using the pheatmap package. Functional
interaction networks were visualized using the STRING package
in the open-source platform Cytoscape.

2.16 Statistical Analysis
Statistical analysis was conducted with GraphPad Prism (version
5.0a; GraphPad Software, San Diego, CA, USA). Comparison of
two different parameters was performed using paired Student’s t-
test. In case of comparison of more than two groups we employed
one-way ANOVA and posthoc Tukey test. For survival analysis,
Kaplan-Meier plots and hazard ratios have been calculated. For
all analyses, p < 0.05 was considered as statistically significant.
Abbreviations: *p<0.05, **p<0.005, ***p<0,001.
3 RESULTS

3.1 Phenotype and Impairment of PMN
Effector Functions of CD18Ly6G cKO Mice
Assessed by In-Vitro Experiments
In murine leukocytes Ly6G is selectively expressed by PMN (41).
To obtain mice with a diminished CD18 expression specifically
on PMN (CD18Ly6G cKO), we crossed a mice with a floxed CD18
gene (CD18fl/fll) that was generated in our lab (will be described
in detail elsewhere) with transgenic mice expressing the Cre
recombinase under control of the Ly6G promoter (CD18wt/wt

Ly6GCre+). Resulting offspring (CD18wt/fl Ly6GCre+ and CD18wt/
fl Ly6GCre-) were fertile and showed no obvious phenotype.
These mice were crossed back to CD18fl/fl background yielding
CD18Ly6G cKO and CD18fl/fl Cre- mice at expected Mendelian
ratios (not shown). All gene-targeted animals were verified by
PCR (Supplementary Figure 1).

We could observe a downregulation of CD18 and accordingly
of the b2 integrin alpha subunits (CD11a and CD11b) on PMN
of CD18Ly6G cKO mice. The extent of downregulation varied
between 30-50% compared to CD18fl/fl mice depending on the
investigated compartment (blood, spleen or bone marrow)
(Figure 1A), which is in accordance with the extent of Ly6G
Cre-mediated downregulation of targeted genes previously
shown by Gunzer and coworkers (35). Notably, CD18-
reduction was restricted to Ly6G+ PMN, and was not observed
for CD3+ lymphocytes, F4/80+ macrophages and Ly6C+

monocytic cells, thus confirming the cell-type specific targeting
of CD18 (Supplementary Figures 2, 3). Absolute PMN counts
and relative amounts of PMN in both spleen and blood were
found to be slightly higher, whereas PMN counts in the bone
marrow did not show significant differences (Figure 1B). The
percentages of monocytic and lymphocytic cells did not differ
Frontiers in Immunology | www.frontiersin.org 6
significantly between CD18Ly6G cKO mice and CD18fl/fl mice in
spleen (Figure 1C, left panel) and blood (Figure 1C, right panel).

As b2 integrins have also been implicated in the
differentiation and in survival signaling of myeloid cells (42),
we next investigated whether the PMN-restricted CD18-
knockdown affected PMN apoptosis in-vitro. Here, we did not
find significant differences in the apoptosis of PMN after
treatment with GM-CSF or LPS, as assessed by Annexin-V/
FVD negative and Annexin-V positive/FVD negative PMN
derived from spleens and bone marrow (not shown).

3.2 PMN-Specific Knockdown of b2-
Integrins Results in an Aggravated
Course of IPA
To assess the relevance of b2 integrins for PMN-specific clearance
of pulmonary infection with A. fumigatus, we examined the course
of disease in CD18Ly6G cKO and CD18fl/fl mice. In some mice an
anti-Gr-1 antibody was applied prior to infection with A. fumigatus
(d0) to deplete PMN as an internal control for the success of
infection. As expected, all PMN-depleted mice died during the first
days of infection (Figure 2), underlining the pivotal role of PMN to
limit the spread of A. fumigatus. By contrast, all non-depleted
CD18fl/fl mice survived infection monitored over 2 weeks, whereas
25% of CD18Ly6G cKO mice died within the first week of infection.
This finding is consistent with the observation that clinical signs of
IPA infection were more aggravated in case of CD18Ly6G cKOmice
in the first days after inoculation. Furthermore, recovery of from
clinical symptoms was delayed in CD18Ly6G cKO mice as
compared to CD18fl/fl mice (Figure 2).

3.3 CD18Ly6G cKO Mice Show a Higher
Fungal Burden
Next, we focused on the course of the early innate immune
response towards A. fumigatus infection, which is known to be
driven by PMN (12). For this, lungs, BALF, and serum of
infected mice were analyzed 24h after infection in more detail.
Lung homogenates of CD18Ly6G cKO mice showed an enhanced
amount of fungal conidia as compared to lungs from CD18fl/fl

mice (Figure 3). Histopathological analysis confirmed a higher
fungal burden and aggravated lung damage in in lungs of
CD18Ly6G cKO mice as assessed by Grocott-silver and
Hematoxylin & Eosin (H&E) staining. Notably, sprouting of
hyphae has only been observed in CD18Ly6G cKO mice. Despite
the strong differences in terms of fungal burden, H&E staining of
lung tissues showed comparable levels of cellular inflammation,
largely irrespective of the genotype (Figures 3A). D-
Galactomannan-assays revealed that BALF derived from both
mice strains contained A. fumigatus antigen above detection
levels (>5.0), whereas serum analysis showed a higher fungal load
in CD18Ly6G cKO mice (mean= 5.8 ± 0.14 vs. 4.7 ± 0.33, p=0.01).

3.4 CD18Ly6G cKO Mice Reveal a
Decreased Pulmonary Inflammation
In contrast to the increased fungal burden found in lung tissues
of CD18Ly6G cKO mice, these mice displayed no significant
differences in cellular inflammation as assessed by H&E
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staining (Figure 3). However, as depicted in Figure 4, BALF
derived from infected CD18Ly6G cKO mice contained lower
levels of pro-inflammatory cytokines (TNF-a) , and
chemokines (CCL2) compared to CD18fl/fl mice, albeit the
reduction was below statistical significance in some cases (IL-
1a, IL-1b and CCL5). Levels of IL-5, IL-6, IL-10, and GM-CSF
Frontiers in Immunology | www.frontiersin.org 7
were largely comparable. In contrast, BALF obtained from
CD18Ly6G cKO mice contained higher levels of the chemokine
CXCL-1 known as a relevant chemoattractant for PMN (43).

In contrast, cytokine and chemokine levels in serum were
largely comparable between A. fumigatus infected CD18fl/fl and
CD18Ly6G cKO mice (Supplementary Figure 5).
A B

C

FIGURE 1 | Phenotypical and functional characteristics of CD18Ly6G cKO mice compared to CD18fl/fl mice. We found a significant reduction of b2-integrin surface
marker expression (CD11b, CD18) on PMN derived from blood, spleen, and bone marrow (A). Data depict the results of in-vitro experiments from n=7-17 mice/
genotype. In the same set of experiments we further observed higher absolute and relative counts of PMN in CD18Ly6G cKO mice as compared to CD18fl/fl mice
(B,C), whereas the proportions of other leukocyte subpopulations did not differ significantly (C) (n=10/genotype). Legend in (C) applies to all panels. Statistically
significant differences between groups are indicated (*p<0.05, **p<0.005, ***p<0.001).
A B

FIGURE 2 | Infection with IPA caused an impaired survival (A) and an aggravated course of the disease (B) in CD18Ly6G cKO as compared to CD18fl/fl mice. CD18fl/fl

and CD18Ly6G cKO mice were infected i.t. with A fumigatus (each 107 conidia/mouse) in 2 independent experiments. (A) Survival was monitored daily for 2 weeks and is
presented in a Kaplan-Meier survival curve. In parallel settings PMN were depleted in some mice via injection of an anti-Gr-1 antibody one day before infection. Data show
the cumulative results of two independent experiments with a total of 12 (CD18fl/fl) and 13 (CD18Ly6G cKO) mice/group. 5 mice/group received an anti-Gr-1 antibody in
order to deplete PMN in these mice. All Gr-1 depleted mice died within the first days after IPA infection, whereas all non-depleted CD18fl/fl mice survived. By contrast,
some non-depleted CD18Ly6G cKO mice (n=2) deceased within the first week after IPA infection. (B) The clinical course of IPA of monitoring was assessed in CD18fl/fl

(n=7) and CD18Ly6G cKO mice (n=8) for 14 days. Parameters comprised breathing, reaction to pain overall appearance, hypothermia, strong weight loss, motoric
disabilities and apathy (each 0-2).
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3.5 Pulmonary PMN Infiltrates Are
Increased in CD18Ly6G cKO Mice Upon IPA
In accordance with elevated CXCL-1 levels, we observed higher
numbers of PMN in the BALF of infected CD18Ly6G cKO as
compared to CD18fl/fl mice (Figure 5A). In contrast, PMN
counts in spleen and blood remained comparable. Higher
PMN numbers were also found in cytospin analysis
(Figure 5B). Here, we could additionally observe lower counts
of mononuclear cells in CD18Ly6G cKO mice. Consistent with
Frontiers in Immunology | www.frontiersin.org 8
this observation, results of FACS-analysis revealed lower
macrophage counts in the BALF of CD18Ly6G cKO
mice (Figure 5B).

Notably, a higher frequency of PMN in BALF (Figure 5C, left
panel) and blood (Figure 5C, center panel) obtained from IPA-
infected CD18Ly6G cKO mice expressed the early apoptosis
marker Annexin-V as compared to CD18fl/fl mice, indicating
that CD18-deficient PMN might be more susceptible to
apoptosis in response to A. fumigatus. In accordance, we
A B

C

FIGURE 3 | CD18Ly6G cKO mice show a higher pulmonary fungal burden. Histopathological analysis of H&E and Grocott-stained lungs derived from IPA-infected
mice 24h upon A.fumigatus inoculation revealed a higher fungal burden and a stronger lung damage (i.e., hyaline membranes, fibrin-exudate within the alveoli) in
CD18Ly6G cKO mice (A). Cellular inflammation did not show significant genotype-dependent differences. Representative examples of histological analysis are shown
in (B) (Magnification 10x). Data in (A) denote results of histopathological analysis of n=9-10 mice/genotype. We further observed higher CFU counts in serial dilutions
of lung homogenates (1:500) after incubation for 24h on Sabouraud-4% Glucose agar plates (C). Data show the mean ± SEM of 6 mice/group. Statistically
significant differences between groups are indicated (*p<0.05, **p<0.005, ***p<0.001).
FIGURE 4 | The BAL fluid of A. fumigatus infected CD18Ly6G cKO mice contains lower levels of proinflammatory cytokines. CD18fl/fl and CD18Ly6G cKO mice were
infected i.t. with A. fumigatus. On the next day, mice were euthanized, and cytokines in BAL fluid were analyzed. Data denote the mean ± SEM of 6-10 samples analyzed
per group. Statistically significant differences between groups are indicated (*p< 0.05).
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observed a higher frequency of Annexin-V positive PMN in
spleens of CD18Ly6G cKO mice, albeit the differences here were
found to be below statistical significance (Figure 5C,
right panel).

Besides, our data show that a smaller fraction of PMN derived
from BALF of CD18Ly6G cKO mice expressed MHCII (1,6% vs.
4,6% of MHCIIhigh PMN), and CD80 (16.4% vs. 20.1% of CD80+

PMN) and showed a lower degree of degranulation as assessed by
a low expression of CD62L (88.0% vs. 90.8% CD62Llow PMN)
than observed for CD18fl/fl mice. BALF-derived PMN of both
mice strains expressed the mouse DC marker CD11c at a
moderate extent (Supplementary Figure 6). Infection-induced
de novo expression of CD11c by PMN has been reported
previously in different mouse infectious disease models (5).

Numbers of PMN, lymphocytes, and monocytes in the
peripheral blood of A. fumigatus infected mice did not differ in
a genotype-dependent manner (Supplementary Figure 7). In
accordance with our in-vitro experiments, we could confirm that
the knockdown of CD18 was restricted to Ly6G positive cells
(Supplementary Figure 3). Similarly, we could observe a
knockdown of the corresponding alpha subunits CD11a and
CD11b on Ly6G positive PMN of IPA-infected mice
(Supplementary Figure 4), which is consistent with the
physiological role of CD18 as the rate-limiting subunit of b2-
integrin surface expression.
Frontiers in Immunology | www.frontiersin.org 9
3.6 Knockdown of CD18 Affects PMN
Innate Effector Functions
3.6.1 Phagocytosis
Although PMN were able to infiltrate A. fumigatus infected lungs
in CD18Ly6G cKO mice, we observed an impaired ability to limit
fungal spreading. Hence, we analyzed whether the knockdown of
CD18, and thereby b2 integrins, affected the commonly known
pathogen-induced immune responses of PMN.

As phagocytosis is a major effector mechanism of PMN to
clear A. fumigatus conidia, we analyzed purified bone marrow-
derived Ly6G+ PMN to assess potential genotype-dependent
differences in this regard. Here, we first investigated the uptake
of inert nanoparticles (NP, Ø 50nm) and microBeads (Ø 2µm).
In order to dichotomize mere adhesion and energy-dependent
uptake we investigated the uptake in parallel settings at 4°C and
37°C. Since MAC-1 has been attributed to serve as a receptor to
facilitate complement-opsonized phagocytosis of pathogens we
further examined whether the addition of murine serum might
enhance the uptake of particles. Heat-inactivated serum which
lacks complement activity served as an internal negative control.
We could observe for both kinds of particles that their uptake
was strongly impaired in case of PMN with a b2 integrin
knockdown. This effect was predominantly observed for
serum-opsonized particles, indicating that the recognition of
complement- opsonized particles might have been diminished
A

B

C

FIGURE 5 | CD18Ly6G cKO mice infected with A. fumigatus are characterized by elevated lung infiltration of PMN, but not in spleens and blood (n=10/genotype) (A).
Elevated PMN counts have also been found in Cytospins (bars depict the mean ± SEM of n=8 cytospins/genotype; cell infiltration has been assessed using a scoring
system; 0=missing - 3=strongest infiltration) (B). Here, we could additionally observe higher numbers of mononuclear cells (B). This is consistent with the finding of
higher macrophage counts in the BALF of CD18fl/fl mice as compared to CD18Ly6G cKO mice observed in FACS-analysis (B). Assessment of PMN apoptosis
revealed a stronger expression of apoptosis marker Annexin V in PMN derived from BALF and blood of CD18Ly6G cKO mice (C). Bars depict the mean ± SEM of the
relative cell counts found in n=8 cytospins/genotype. Legend in A applies to all panels. Statistically significant differences between groups are indicated (*p<0.05)
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in case of CD18 downregulation on PMN (Figures 6A). In
accordance with the well-known role of MAC-1 (CD11b/
CD18) for the binding and uptake of complement-opsonized
material, we further observed a significant correlation between
CD11b surface marker expression on PMN and the engagement
of the aforementioned particles (Pearson´s r: 0.65; p= 0.0007).

Subsequently, we analyzed the phagocytic capacity of PMN
after incubation with A. fumigatus conidia. Similar to previous
experiments with inert particles, we observed a significantly
lower phagocytic uptake of A. fumigatus conidia by PMN
derived from CD18Ly6G cKO mice (Figure 6B, C).

3.6.2 NETosis
We also investigated the rate of NET-formation of freshly
isolated PMN after differential stimulation. Here, we could
Frontiers in Immunology | www.frontiersin.org 10
observe that the formation of NET by PMN derived from
CD18Ly6G cKO mice was significantly impaired after treatment
with PMA or A. fumigatus conidia, as assessed by Sytox orange
staining. After treatment with GM-CSF or LPS the differences in
the formation of NET by PMN derived from CD18Ly6G cKO vs
CD18fl/fl mice were below statistical significance (Figure 7A).

3.6.3 ROS-Production
Next, we analyzed the generation of ROS as another important
effector mechanism in the innate pathogen defense of PMN. To
this end, we incubated freshly isolated PMN with GM-CSF, LPS,
PMA or A. fumigatus conidia and assessed the generation of ROS
via DCFDA staining in time intervals of 15min for a total period
of 90min. Our results revealed that PMN isolated from CD18Ly6G

cKO mice generated significantly lower amounts of ROS after
A
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C

FIGURE 6 | Phagocytosis of inert particles and fungal conidia is less effective in PMN of CD18Ly6G cKO mice. Freshly isolated PMN were co-incubated either with
nanoparticles (NP), microBeads (A) or with GFP-fluorescent A. fumigatus conidia (AFC) at 37°C with indicated ratios (B). Simultaneous co-incubation at 4°C served
to differentiate mere adhesion from temperature-dependent binding. After 30 min and 60 min the frequency of either Cy5 positive NP, PE-positive microBeads (A), or
GFP-positive PMN (B) was determined by flow cytometry. Data represent the mean ± SEM of 3 samples analyzed/group. Exemplary flow cytometry data depicting
the diminished uptake of GFP-fluorescent conidia by PMN from CD18Ly6G cKO mice are shown in (C). Statistically significant differences between groups are
indicated (*p<0.05, **p<0.005).
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incubation with A. fumigatus conidia, suggesting that a CD18
knockdown might impair the ability of PMN to exercise this
important effector mechanisms in pathogen-defense
(Figure 7B). Referring particularly to the time kinetics of ROS-
generation we could further observe that the ability to generate
ROS was mainly impaired in the course of the first 60min, which
indicates that b2 integrins might be implicated in the early
generation of ROS (not shown).

3.6.4 Cytokine Secretion
b2 integrins have been found to regulate various signaling
pathways in myeloid cells, which modulate the secretion of
inflammatory cytokines (27). Hence, we have investigated the
Frontiers in Immunology | www.frontiersin.org 11
generation of cytokines by PMN after in-vitro stimulation with
GM-CSF, LPS (TLR4 agonist), CpG (TLR9 agonist), and R8/48
(TLR7/8 agonist): Here, we could observe that PMN derived
from CD18Ly6G cKOmice generated significantly less amounts of
TNF-a upon treatment with LPS (Figure 8). On the other hand,
we detected significant concentrations of IL-1b, IL-6 and IL-10
upon PMN stimulation, although genotype-dependent
differences were largely below statistical significance
(Supplementary Figure 9). Other cytokines (IL-12, IL-23 or
IFN-g) showed very low concentrations (not shown), suggesting
that these cytokines might not be secreted by PMN under the
conditions applied. These in-vitro data are consistent with our
observations from in-vivo analysis, showing that BALF and
A B

FIGURE 7 | Impaired oxidative and non-oxidative effector functions of CD18-deficient PMN. We could observe that the formation of NET after 3h of incubation (A)
and ROS-generation (B) were significantly lower in PMN derived from CD18Ly6G cKO mice, particularly after stimulation with A. fumigatus conidia. Data represent the
mean ± SEM of 3 samples analyzed/group. Statistically significant differences between groups are indicated (*p<0.05)
FIGURE 8 | PMN derived from CD18Ly6G cKO mice generate lower amounts of TNF-a after previous stimulation with LPS, CpG or R848. We have purified PMN
from CD18fl/fl (n=3) mice and CD18Ly6G cKO (n=3) mice and incubated them for 24h at the indicated conditions. After 3h and 24h supernatants have been taken and
were analyzed using a CBA. Results show significantly lower levels of TNF-a in supernatants derived from CD18Ly6G cKO mice. *p<0.05, #p<0.05 when comparing
cytokine concentrations from supernatants at 3 vs 24h.
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blood derived from CD18Ly6G cKO mice contained lower
amounts of TNF-a or IL-1.

3.6.5 RNA-Sequencing Analysis
Last, we have analyzed the impact of the b2 integrin knockdown
on the transcriptome of PMN. To this end, we performed RNA-
sequencing analysis of either freshly isolated PMN from
CD18Ly6G cKO and CD18fl/fl mice or treated aliquots of
isolated PMN over-night with LPS (1µg/ml). This genome-
wide gene expression analysis confirmed that both, freshly
isolated and LPS-treated CD18-deficient PMN showed a
significant downregulation of Itgb2 and Ly6G. Referring to the
expression of other integrin genes, we could further observe a
downregulation Itgb3 and Itgb7, whereas the CD11c encoding
gene Itgax, and Itgb2l were found to be upregulated in CD18Ly6G

cKO PMN. Moreover, RNA-sequencing data revealed that
CD18-deficient PMN showed a higher expression of genes
implicated in NFkB signaling, such as CD180, Ly86, CD14,
Bach2 or the LPS antagonistic neutrophilic granule protein
Ngp (44) . On the other hand, we could observe a
downregulation of genes involved in the inhibition of oxidative
effector functions in PMN, such as S100a9 (45), and a
downregulation of genes being implicated in PMN chemotaxis
Frontiers in Immunology | www.frontiersin.org 12
and microbicidal functions (i.e., Defb40) in CD18Ly6G cKO
PMN (Figure 9).
4 DISCUSSION

The critical role of b2 integrins for immunological functions is
confirmed by the severe immunocompromised state of LAD1
patients, which regularly results in reoccurring invasive bacterial
and fungal infections (22, 30). PMN are considered the first line
of defense to prevent the spread of inhaled pathogens in the lung
(46), and were shown to require b2-integrins for transendothelial
migration (24), phagocytosis of opsonized pathogens (21), as
well as oxidative, and non-oxidative effector mechanisms (16).
Due to the importance of b2-integrins for PMN effector
functions and the frequent observation of IPA in LAD1
patients, we aimed to investigate the cell-type specific role of
b2 integrins for PMN antifungal effector functions in the early
innate immune response to IPA.

Here, we have obtained several key findings that corroborate
previous concepts of the pathophysiological role of b2-integrins
in the context of severe infections. Our results put
these observations into a cell-type specific context and
A B
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FIGURE 9 | Transcriptomes and functional interaction networks of PMN-associated genes directly after isolation or upon over-night treatment with LPS. PMN were
sorted from CD18fl/fl and CD18Ly6G cKO mice (each n=3) and RNA-seq was performed from untreated PMN (A) or LPS-treated PMN (C). Expression of indicated
PMN-associated genes was analyzed using CLC Genomics Workbench. Genes being differentially regulated both in LPS-treated and freshly isolated PMN are shown
in bold (A, C). Predicted interaction networks of the encoded proteins were being visualized using the STRING package in Cytoscape. Genes shown in the
interaction networks of untreated PMN (B) or LPS-treated PMN (D) were categorized into 4 groups affecting either PMN cell-cell interactions, NFkB singaling, PMN
metabolism or PMN chemotaxis and PMN effector functions. Colored borders illustrate the degree of the up- or downregulation (log fold change) found for the genes
of PMN isolated from CD18Ly6G cKO mice as compared to PMN isolated from CD18fl/fl mice. Legend in (B, D).
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allow insights into the role of CD18 for antifungal effector
mechanisms of PMN in the course of IPA, which have not
been shown previously.

First, we could observe that the fungal clearance and the early
innate immune response in CD18Ly6G cKO mice are significantly
impaired. In particular, we found that 24 hours after infection,
lungs derived from CD18Ly6G cKO mice showed an enhanced
fungal burden and a lower bronchial inflammation as compared
to those of CD18fl/flmice. When PMN are activated upon contact
with pathogens and by various danger signals (i.e., the A.
fumigatus cell wall component ß-glucan), they contribute to
the inflammatory immune response in infected tissues by
secreting proinflammatory cytokines and chemokines (47). We
observed lower levels of innate proinflammatory mediators, such
as TNF-a, IL-1a, IL-1ß, and chemokines, like CCL2 and CCL5
in BALF derived from CD18Ly6G cKO mice, suggesting that the
knockdown of b2-integrins might have impaired the ability of
PMN to generate these inflammatory mediators. Moreover, we
observed lower expression levels of markers for PMN
degranulation (CD62L) and activation (MHCII, CD80) in
PMN derived from CD18Ly6G cKO mice, indicating that the
inflammatory signaling pathways in PMN might have also been
impaired by CD18 deficiency. In agreement, we found that A.
fumigatus infected CD18Ly6G cKO mice showed an aggravated
course of IPA.

Despite, the significant impairment of the early innate immune
response mediated by PMN, the overall survival of A. fumigatus
infected CD18Ly6G cKO mice was not significantly impaired,
suggesting that CD18 despite its pivotal immunoregulatory
function might not be critical for the long-term control of IPA
or that the residual b2-integrin expression found on PMN of
CD18Ly6G cKO mice was sufficient for PMN-mediated pathogen
clearance in some mice. Additionally, our results revealed several
mechanisms, which may serve to compensate for the impaired
effector functions of PMN in CD18Ly6G cKO mice upon infection:
Particularly, we could observe a higher level of the PMN-attracting
chemokine CXCL-1 in BALF obtained from CD18Ly6G cKO mice.
Accordingly, a significantly higher bronchial infiltration by PMN
has been found in these mice. These findings were unexpected as
b2 integrins were reported to be necessary for the firm adhesion of
PMN to vessel endothelium as a prerequisite of PMN migration
into the extravascular space (48). In this regard, it has been
suggested, that the requirement of CD18 for PMN infiltration
might depend on the type of pathogen used in CD18−/− mice (49)
and the disease specific context investigated (50). Also, it has been
suggested by Mackarel and coworkers, that PMN migration into
inflamed lungs might occur either via a CD18-dependent or
CD18-independent route, which is selected depending on
whether inflammation is acute or chronic (51). In particular,
Mizgerd and coworkers reported that intratracheal instillation
with E. coli or Ps. aeruginosa resulted in a limited pulmonary
PMN-infiltration, whereas infection with S. pneumonia yielded a
stronger PMN-infiltration in a CD18-independent manner (49).
These observations are consistent with previous reports, which
have demonstrated that CD11b−/−mice infected with either S.
pneumoniae (52) or A. fumigatus (5), showed an elevated PMN
Frontiers in Immunology | www.frontiersin.org 13
infiltration 24 hours upon infection. However, also in these disease
models a higher pulmonary burden and a diminished cellular
inflammation have been reported. Similarly, a stronger pulmonary
infiltration by PMN has been observed in LAD1 patients suffering
from pneumonia (53), suggesting that MAC-1 might not be
essential for PMN migration. Rather b2 integrin deficiency may
be compensated by other adhesion receptors in a disease specific
manner (22). In this context, some studies have reported that LFA-
1 (CD11a/CD18) may play a dominant role for transendothelial
migration of PMN (51, 54). Our results could however not reveal
an upregulation of CD11a on PMN, but rather showed a
significant downregulation of CD11a in the context of CD18-
deficiency. This is in line with the physiological regulation of b2-
integrins on PMN. In particular, the downregulation of CD18 in
our knock-out mouse model limits the amount of intracellular
available CD18 protein and thus heterodimerization with the
corresponding alpha subunits on the cell surface is also being
restricted, resulting in lower expression levels of LFA-1 (CD11a/
CD18) and MAC-1 (CD11b/CD18) on PMN. On the other hand,
RNA-sequencing results indicated that other b2 integrin-
associated genes (such as the CD11c coding Itgax or Itgb2l) and
genes coding for chemokine receptors (i.e., Ccr7) might be
upregulated in PMN isolated from CD18Ly6G cKO mice
potentially revealing another compensatory mechanism
(Figure 9). Altogether, our results suggest that the knockdown
of b2 integrins (LFA-1, MAC-1) might not significantly impair the
pulmonary migration of PMN. However, when interpreting the
results of our analysis, it has to be taken into account that a
significant residual expression of CD18 was still being observed on
PMN, which might allow for the CD18-dependent migration of
PMN into inflamed pulmonary tissue.

Furthermore, we could demonstrate that PMN isolated from
CD18Ly6G cKO mice showed an impaired phagocytic activity
towards opsonized A. fumigatus conidia and inert particles as
compared to CD18fl/fl PMN, which is consistent with the
enhanced pulmonary fungal burden found in A. fumigatus
infected CD18Ly6G cKO mice. This finding is in agreement
with previous observations that MAC-1 is required in human
PMN to recognize ß-glucan containing structures (55), such as
A. fumigatus conidia, and thus to kill conidia by phagocytic
uptake (21, 56).

In contrast to small-sized conidia, recognition of A. fumigatus
hyphae has been largely attributed to IgG and Fcg receptors (21).
However, cross-linking of MAC-1 upon pathogen-recognition,
also results in an NADPH-oxidase-dependent oxidative burst by
PMN, which is required for an efficient fungal clearance of both
A. fumigatus conidia and hyphae (19, 21, 57–59). Oxidative burst
protects against invasive fungal infections, because it induces
apoptosis-like cell death in fungal conidia (60) and contributes to
the formation of NET (61, 62). The latter is considered a
mechanism of extracellular killing of hyphae, being too large to
be phagocytosed (63). The proposed role of MAC-1 for the
induction of ROS and the formation of NET by PMN upon
incubation with A. fumigatus conidia indicates that both
antifungal killing-mechanisms might be impaired in CD18Ly6G

cKO mice. These findings are again consistent with previous
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reports, which demonstrated that CD11b−/− mice displayed an
attenuated PMN killing activity and increased fungal burdens in
a mouse model of candidiasis, thus underpinning the pivotal role
of b2 integrins for antifungal effector mechanisms (64), such as
CR3-mediated phagocytosis, NETosis (65) and ROS-generation
(20, 66). Interestingly, Yakubenko and coworkers have more
recently observed that neutrophil oxidative burst might further
contribute to a positive feedback loop with b2 integrins by
enhancing the affinity of MAC-1 ligands to MAC-1 on
macrophages, thus stimulating their migratory activity (67).

Next to the direct cytotoxic effects exerted by PMN, some
studies reported that the engagement of MAC-1 with
extracellular pathogens also promotes proinflammatory
signaling pathways in PMN via activation of members of the
NF-kB transcription factor family, thus yielding an elevated
production of proinflammatory cytokines such as IL-1 and
TNF-a (68, 69). In agreement we observed that a knockdown
of b2 integrins impaired the secretion of TNF-a. Moreover, it has
been found that CD11b facil itates TLR-4 mediated
proinflammatory immune responses by promoting MyD88
signaling pathways (27). Hence, the impaired induction of an
inflammatory milieu in the lungs of CD18Ly6G cKO mice might
be a consequence of the attenuated PMN activation, resulting
from a reduced activity of CD18-deficient PMN to recognize and
phagocytose A. fumigatus conidia and to promote TLR-4-
induced signaling pathways.

Besides the diminished levels of proinflammatory cytokines
found in BALF obtained from CD18Ly6G cKO mice, we could
also observe lower levels of macrophage attracting chemokines
CCL2 and CCL5 therein. CCL5 is known to attract many
leukocyte populations, such as macrophages and PMN (70–
72). Early in the course of inhalative inflammation, CCL5 is
generated by various activated cell types, including airway
epithelial cells (73) or lung fibroblasts (74). Moreover, A.
fumigatus was reported to induce CCL5 in platelets (75), and
activated PMN were demonstrated to produce CCL5 when
incubated with Toxoplasma gondii (76). Therefore, it is
conceivable that a reduced level of b2 integrins on PMN might
impair their ability to generate CCL5.

CCL2, also known as monocyte chemoattractant protein
(MCP)-1 is an important regulator of monocyte and
macrophage trafficking during infection and in the presence of
inflammation (77–79). CCL2 is generated by pulmonary
epithelium (80), endothelial cells (81), fibroblasts and T cells
upon induction with inflammatory stimuli such as LPS or IFN-g
(82). Notably, also PMN contribute to CCL2 generation, which
can be induced upon TLR2-/TLR4-activation (82, 83). CCL2
mainly serves as a chemoattractant for monocytes and
macrophages (82, 84–86). Beyond its role as a monocyte
chemoattractant CCL2 has been implicated in various
molecular and cellular processes impacting myeloid cell
functions and their response to pathogens. In particular, it has
been shown that CCL2 induces b2 integrin expression on
monocytes, thus promoting their migration into inflamed
tissues (82, 87) Moreover an enhanced survival and an
augmented generation of proinflammatory cytokines by
Frontiers in Immunology | www.frontiersin.org 14
CD11b+ cells has been demonstrated upon CCL2 treatment
(88). CCL2 treatment has further been shown to induce
respiratory burst in monocytes, thus contributing to myeloid
cell effector functions in response to pathogens (82, 89). In
agreement, increased CCL2 levels have been reported to
improve the clearance of pathogens and the survival of S.
pneumonia infected mice (90). These studies are consistent
with our observations that CD18fl/fl mice show higher levels of
CCL2, a lower fungal burden and a stronger pulmonary
infiltration with macrophages, which might exert critical
antifungal effector mechanisms in the early innate response to
A. fumigatus infection (90). Due to impaired signaling in CD18-
deficient PMN it also seems conceivable, that PMN might
generate less CCL2 and CCL5 in CD18Ly6G cKO mice.
However, as for the multiple sources of these chemokines,
further studies are required to elucidate which cell types are
responsible for the different concentrations of CCL2 and CCL5
in the lungs of A. fumigatus infected CD18Ly6G cKO mice and
which cells are most likely to be attracted in response to
these chemokines.

In addition to migration, pathogen recognition/phagocytosis,
and the regulation of cell signaling, MAC-1 has also been
implicated in myeloid cell survival. Referring particularly to
PMN apoptosis, we could observe that PMN derived from A.
fumigatus infected CD18Ly6G cKO mice showed a stronger
expression of apoptosis marker Annexin-V, suggesting that a
knockdown of b2 integrins might impair PMN survival. This is
in contrast to previous in-vitro experiments from Coxon and
coworkers, which suggested that CD11b contributes to PMN
survival, as CD11b−/− PMN isolated from the peritoneum after
injection of thioglycollate were characterized by lower apoptosis
than their wild-type counterparts (42). However, the
contribution of MAC-1 signaling to apoptosis of activated
PMN is still subject to controversial discussion. For example,
another report by Zhang et al. showed that phagocytosis of
pathogens by PMN promoted apoptosis of the latter, which was
associated with the induction of reactive oxygen species and was
enhanced by TNF-a (91). In contrast, CD11b−/− PMN were not
found to undergo phagocytosis-induced apoptosis. Similar
findings were reported for human PMN (92). On the contrary,
Yan and coworkers showed that antibody-mediated blockade of
b2 integrins on human PMN elevated apoptosis after their
activation by TNF-a or microbial stimuli (93). Since CD18Ly6G

cKO mice only showed a moderate, PMN-restricted, LAD1
phenotype with a residual b2-integrin expression on PMN it
seems conceivable that apoptosis may not have been significantly
impaired, whereas the same moderate reduction of CD18 on
PMN might yet affect other PMN effector functions, as well as
the overall course of the disease. Hence, further studies are
warranted to elucidate the exact role of MAC-1 on PMN
viability during pathogen control.

Although our study focused on the role of b2 integrins for
PMN effector mechanisms during early innate immune
responses towards inhalative infection with A. fumigatus, it is
likely that a knockdown of b2 integrins might not only impair
PMN functions but may also modulate their interaction with
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other immune cells implicated in IPA-resolution, such as DC
(94), macrophages, lymphocytes or eosinophils (95, 96). Here, a
report by Park and coworkers could show that PMN contribute
to pulmonary infiltration of CD11b+ conventional DC in IPA by
activating CD11b+ DC via DC-SIGN (94). This C-type lectin
receptor expressed by DC and macrophages mediates the
phagocytic uptake of A. fumigatus conidia (97) and engages
with PMN-bound MAC-1 upon DC-PMN interaction (98).
Hence, MAC-1 on PMN may further contribute to the
activation of infiltrating DC, which produce IL-12 and IL-23,
thus inducing Th1 immunity in IPA (99). Notably, IL-23 has also
been reported to stimulate IL-17 production in PMN, and IL-17
induced ROS production by PMN (100), contributing to the
killing of A. fumigatus conidia and hyphae. Thus, the diminished
expression of CD18 on PMN might further impair their
interaction with DC, contributing to an impaired antifungal
immune response in CD18Ly6G cKO mice. However, we could
not find significant differences neither in IL-17 nor IL-23
secretion in BALF and serum. An important limitation of our
experiments is the residual expression of b2-integrins on PMN
derived from CD18dLy6G mice which may only result in a
moderate impairment of PMN effector. On first sight, an
adoptive transfer of PMN from CD11b-/- mice into infected
WT mice after depletion of WT PMN may be suitable to give
more comprehensive insights into the PMN-specific role of b2-
integrins during invasive A. fumigatus infections and exclude
compensatory effects that might result from an intermediate
PMN phenotype. In this context it would also be interesting to
evaluate whether the addition of WT PMN into CD18Ly6G cKO
mice might reverse a severe course of the disease. However, such
adoptive transfer studies might be subject to methodological bias,
including the rather short life span of PMN in general, the
influence of b2 integrins on PMN viability and the possibility of
artificial PMN activation during adoptive transfer procedures. In
conclusion, our results demonstrate, that the PMN-specific
downregulation of CD18 allows for a distinct cell-type specific
analysis of the role of b2 integrins for PMN effector functions,
PMN signaling, survival and the role of b2 integrins as regulators
within the immune cell network (47). We could further show
that CD18 deficiency on PMN particularly affects the early
course of IPA, which might be attributed to the critical role of
MAC−1 for PMN antifungal effector mechanisms, such as
phagocytosis and ROS-generation (5). However, we cannot
rule out that the CD18-knockdown might cause additional
unrecognized effects in PMN effector functions, such as the
release of primary granules or MPO-activity contributing to
the clearance of A. fumigatus or that residual CD18 expression
might compensate some impaired effector functions. Taking into
account that previous PMN-specific knock-out models, such as
the Sykfl/- MRP8CreTg mice reported by van Ziffle and Lowell
(101), also showed a residual expression of the targeted proteins
on PMN, further work is necessary to generate knock-out models
which might allow for a complete knock-out of b2-integrins on
PMN. Also, additional studies will be necessary to elucidate the
long-term course of IPA in CD18Ly6G cKO mice with regard to
the interplay of PMN with DC, the efficacy of adaptive immune
Frontiers in Immunology | www.frontiersin.org 15
responses and the contribution of chemokines such as CCL2
and CCL5.
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