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	 Background:	 Chronic obstructive pulmonary disease (COPD) is a disease with high heterogeneity, which is a major challenge 
in clinical individualized treatment. A mucus phenotype is one of the main characteristics of COPD.

	 Material/Methods:	 Gene expression profiles of lung tissue samples were from the Lung Genomics Research Consortium. MUC5B-
associated gene signatures were obtained based on a nonlinear feature screening algorithm. These signatures 
were used to fit a latent profile analysis (LPA) model to identify COPD molecular subtypes and build a subtype 
classifier to verify the subtypes. Then, we explored the characteristics of cilium assembly and beating signa-
tures, transcriptome features, immune infiltration among the 3 subtypes by xCell, single-sample gene set en-
richment analysis, network perturbation amplitude, and weighted gene co-expression network analysis algo-
rithms. An external dataset was used to verify the above COPD subtypes.

	 Results:	 Three subtypes associated with mucus were identified by LPA and verified in an external dataset. Subtype 1 
displayed higher T helper type 1 (Th1) and basophil infiltration, higher Th17/regulatory T cells (Tregs) ratio, a 
higher level of cilium assembly and beating, and lower mast cell and Treg infiltration. The subtypes 2 and 3 
demonstrated higher macrophage M2 infiltration in lung tissue, while subtype 3 had higher neutrophil and eo-
sinophil infiltration than subtype 2.

	 Conclusions:	 Overall, this work identified 3 mucus-associated molecular subtypes related to MUC5B expression, which deep-
ens the understanding of airway mucus secretion in COPD and potentially provides valuable information for 
precision therapy.
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Background

Mucus serves a vital role in mucociliary clearance (MCC) and 
host defense, which help to maintain the lung health [1]. 
However, a substantial proportion of patients with chronic ob-
structive pulmonary disease (COPD) experience chronic mucus 
hypersecretion. This hypersecretion is associated with severe 
airflow limitation [2], poor quality of life [2-4], a higher number 
of exacerbations and hospitalizations [2-6], and mortality [7-9].

Normally, MCC of the lung consists of 3 elements: motile cil-
ia, a periciliary liquid layer, and a mucus layer [10]. Previous 
studies [11-13] showed that MUC5AC and MUC5B are the ma-
jor oligomeric respiratory mucins. However, the functions of 
MUC5AC and MUC5B are thought to be different, because of 
the differences in secretion sites, domain structure, and gly-
cosylation [14].

The traditional theory holds that the mucous phenotype of 
COPD is driven by MUC5AC, and the contribution of MUC5B 
is unnecessary. However, a series of studies in recent years 
have shown that MUC5B plays a dominant role in the mu-
cous phenotype of COPD. First, a previous study found that 
MUC5B [15] is a major polymeric mucin from COPD sputum. 
Second, MUC5B is critical to respiratory innate immunity and 
MCC, while MUC5AC is secondary. Lowering MUC5B levels could 
result in airway obstruction by mucus, MCC damage, and in-
creased infection risk [14,16]. Thus, understanding the utility 
and role of MUC5B in COPD is important [17].

The heterogeneity of MUC5B expression can affect the het-
erogeneity of the mucus phenotype. A search of the literature 
revealed only a few studies that evaluated the heterogeneity 
of MUC5B expression and relationship between MUC5B with 
the lung immune microenvironment. Therefore, the aim of our 
study was to better understand the correlation of MUC5B ex-
pression with MCC and inflammation. In the present study, a la-
tent profile analysis (LPA) method based on MUC5B-associated 
genes was carried out to identify the COPD subtypes, and the 
findings were validated in another COPD dataset. Then, we 
identified the characteristics of cilium assembly and beating 
signatures, transcriptome features, and immune infiltration 
in the COPD subtypes.

Material and Methods

Data Source

The gene expression profile GSE47460 was downloaded from 
Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.
gov/geo/) by GEOquery R package (version 2.56.0). The pub-
licly available data of the whole-lung homogenate samples 

in GSE47460, which was from the Lung Genomics Research 
Consortium, were from individuals undergoing thoracic sur-
gery. Individuals with cystic fibrosis or pulmonary hyperten-
sion were excluded. A total of 220 patients with COPD and 
108 donor control subjects were selected from the GSE47460-
GPL6480 (75 cases and 17 controls) and GSE47460-GPL14550 
(145 cases and 91 controls) cohorts. Patient characteristics 
are detailed in Supplementary Table 1. The expression pro-
file data of COPD patients were selected for subsequent clus-
tering analysis.

Two-Step Feature Selection

We designed a 2-step feature selection pipeline to identify 
MUC5B-related gene signatures. In the first step, the maximal 
information coefficient (MIC) [18] was used to test the depen-
dence between MUC5B with other genes and whether they have 
a linear or nonlinear relationship, calculated with the miner-
va R package (version 1.5.8). The MIC values between MUC5B 
and the expression of other genes in GSE47460-GPL6480 and 
GSE47460-GPL14550 cohorts were calculated, respectively. The 
robust rank aggregation (RRA) algorithm was used to evalu-
ate the consistency of the rank of genes with MIC ³0.3 in 2 
cohorts by RobustRankAggreg R package (version 1.1). Genes 
with an RRA score <0.05 were considered to be the genes ob-
tained by feature selection in the first step.

In the second step, the Boruta algorithm with default parame-
ters based on the random forest algorithm was used to iden-
tify the genes significantly associated with MUC5B from the 
one-step genes by Boruta R package (version 7.0.0). The “re-
jected” genes were excluded. Then, the overlapping genes 
in the 2 cohorts were confirmed as the final selected genes.

Latent Profile Analysis

To estimate the optimal number of subtypes, latent profile 
models were fit in tidyLPA (version 1.0.8) and mclust (version 
5.4.6) R package based on the selected genes [19]. Models 
ranging from 2 to 5 subtypes and specified variable varianc-
es and covariances arguments were estimated to identify the 
optimal number of subtypes and parameter combinations. 
From these models, the best fit was evaluated by the ana-
lytic hierarchy process method [18] using Akaike information 
criterion, approximate weight of evidence, bayesian informa-
tion criterion, classification likelihood criterion, and Kullback 
information criterion.

Classifier Construction

Following the previous research of Chen et al [20], we used 
a similar method to construct a subtype classifier. For each 
subtype, we computed the average expression value for each 
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of the selected genes based on the gene expression data. We 
then computed the cosine similarity between each external 
expression profile and each subtype averaged profile. We as-
signed each external COPD case to a subtype, according to 
which subtype profile showed the highest correlation with 
the given external dataset profile.

Weighted Gene Co-Expression Network Analysis

Weighted gene co-expression network analysis (WGCNA) was 
used to correlate or associate highly co-expressed genes (mod-
ules) with 3 subtypes by WGCNA R package (version 1.69). 
Modules were selected as further research objects, which dis-
played high correlation according to module-trait relationships. 
The module with the highest positive or negative correlation 
for each COPD subtype was considered to be the key module.

Pathway Analysis

The clusterProfiler (version 3.16.0) and ReactomePA (version 
1.32.0) were used to evaluate the biological and functional 
relevance within COPD subtypes gene-enriched modules. The 
overrepresentation of gene ontology (GO) categories, Kyoto 
Encyclopedia of Genes and Genomes (KEGG), and Reactome 
pathways was examined (Bonferroni-corrected P<0.05 was 
considered significant).

Network Analysis

We constructed the protein-protein interaction network (PPI) 
using STRING (https://string-db.org/). The Cytoscape (version 
3.7.0) plugin cytoHubba (version 0.1) was used to calculated the 
degree, bottleneck, closeness, betweenness, MCC, EcCentricity, 
and radiality scores of each protein node in the PPI network. 
The 7 node lists sorted in reverse order were combined into 
a single ranking prioritized node list using the RRA method 
by the RobustRankAggreg (version 1.1). Genes with an RRA 
score < 0.05 were identified as hub nodes in the PPI network.

Immune Microenvironments in COPD-Affected Lung Tissue 
Analysis

The relative abundance across lung tissue of immune cells was 
scored using xCell R package (version 1.1.0) [21]. The xCell al-
gorithm is a gene signature-based method, which is used to 
examine whole-lung tissue gene expression data to infer 10 
immune cell types, including type 1 T helper (Th1) cells, type 
2 T helper (Th2) cells, regulatory T cells (Tregs), basophils, eo-
sinophils, neutrophils, mast cells, macrophages M1, and mac-
rophages M2.

To verify the results of xCell, the single-sample gene set en-
richment analysis (ssGSEA) algorithm was used to re-evaluate 

the immune score by GSVA R package (version 1.36.0), includ-
ing Th1 cells, Th2 cells, activated Th1 cells, activated Th2 cells, 
Th17 cells, Tregs, basophils, eosinophils, neutrophils, mast cells, 
macrophages M1, and macrophages M2. In addition, the ra-
tios of Th1 score to Th2 score, activated Th1 to activated Th2, 
Th17 to Tregs, and macrophages M1 to macrophages M2 were 
calculated using the ssGSEA score. The gene set and the de-
tailed calculation method used in the calculation are shown 
in Supplementary Table 2.

Further, the network perturbation amplitude (NPA) method-
ology was used to obtain a quantitative assessment of how 
the cause-and-effect network models of neutrophil signaling 
interprets the transcriptomic difference between the various 
subtypes [22,23]. The NPA R package (https://github.com/phil-
ipmorrisintl/NPA) was used to perform NPA analysis, and the 
network models were provided with the NPAModels R pack-
age (https://github.com/philipmorrisintl/NPAModels) [24]. O 
and K statistics were used to test the specificity of the net-
work models [25]. A network was confirmed to be significant-
ly affected if the P value of the confidence interval, *O, and K* 
statistics were below 0.05.

Other Statistical Analysis

All analyses and data plotting were performed using R software 
(version 4.0.2) and Rstudio (version 1.3.1093) for Windows, 
and t test and 1-way analysis of variance (ANOVA) were used 
to test for differences among 2 and 3 groups using ggpubr R 
package (version 0.4.0). The Pearson product moment corre-
lation coefficient was used to determine the correlation by 
Hmisc R package (version 4.4-1). A P-value of <0.05 indicated 
statistical significance.

Results

Three Molecular Subtypes Related to Mucus Secretion

Twelve gene signatures were identified using the 2-step fea-
ture selection pipeline (Figure 1A) and were selected as in-
dicator variables for constructing latent profiles, including 
BPIFB1, SERPINB3, SERPINB4, FAM83F, GSTA2, GSTA5, PLEKHS1 
(C10orf81), ABCA13, TSPAN19, KRT15, ATP12A, and ANKFN1. 
The model with equal variances and equal covariances is con-
sidered to be the best fit in the GSE47460-GPL14550 dataset 
(Supplementary Table 3). Three distinct subtypes were identi-
fied, namely subtype 1, subtype 2, and subtype 3. The principal 
components analysis showed a relatively stable partitioning of 
the samples in the 3 subtypes (Figure 1B). By differential ex-
pression analysis of 3 subtypes, 12 genes of subtype 1 were 
found to be significantly upregulated compared with subtypes 
2 and 3 (Figure 1C). Similarly, the expression level of MUC5B 
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showed the same trend. Further analysis of MUC5B expres-
sion showed that there was no significant difference between 
subtype 2 and normal samples, but subtypes 1 and 3 were sig-
nificantly upregulated. The main source of MUC5B production 
was considered to be the cells of the submucosal glands and 

superficial epithelium of small airways [26]. Human SCGB3A2 is 
the biomarker of serous-like cells of the submucosal gland aci-
nus [27], and subtypes 1 and 3 had a higher level of SCGB3A2 
expression than subtype 2 (Figure 2A). Thus, subtypes 1 and 
3 were mucus phenotypes.
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Figure 1. �The disease subtype of chronic obstructive pulmonary disease related to mucus hypersecretion. (A) The maximal information 
coefficient (MIC) values in 2 datasets. (B) Principal components analysis plot for 3 subtypes in the GSE47460-GPL14550 
dataset. (C) Ridgeline plot showing differences of expression values of 12 gene signatures in 3 subtypes. (D) Violin and box 
plot gave a significant difference in MUC5B expression.
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We constructed the classifier and tested its performance us-
ing a confusion matrix (Figure 2B). Using this classifier, 3 sub-
types were verified on another dataset (GSE47460-GPL6480), 
and the results showed high consistency (Figure 2C).

We further analyzed the relationship between the 3 subtypes 
and clinical characteristics, which revealed that the differenc-
es in the clinical characteristics were not significant in the 2 
datasets, including the age, sex, smoking status, emphysema, 
diffusing capacity for carbon monoxide, forced expiratory vol-
ume in the first second of expiration, and forced vital capaci-
ty (Table 1, Supplementary Table 4).

Two Key Modules Related to 3 Molecular Subtypes 
Identified by WGCNA

WGCNA identified 34 modules (Figure 3A) in the GSE47460-
GPL14550 dataset; of these, the eigengene was significantly 
associated with the 3 subtypes in 17 (Figure 3A). We found the 
blue module (MEblue) displaying highest correlation was signif-
icantly associated with COPD molecular subtypes (Figure 3A).

To investigate the biological functions of MEblue, the pathway 
analysis of GO-biological process, KEGG, and Reactome were 
performed in the target genes corresponding to each module. 
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Variable
Subtype*

P-value**
1 (N=28) 2 (N=57) 3 (N=60)

Age, y 	 66	 (61, 71) 	 68	 (60, 73) 	 67	 (61, 72) 0.7

Sex, n (%) 0.7

	 Female 	 12	 (43) 	 24	 (42) 	 30	 (50)

	 Male 	 16	 (57) 	 33	 (58) 	 30	 (50)

Smoking status, n (%) 0.7

	 Current 	 2	 (7.1) 	 5	 (8.8) 	 4	 (6.7)

	 Ever 	 24	 (86) 	 47	 (82) 	 54	 (90)

	 Never 	 2	 (7.1) 	 5	 (8.8) 	 2	 (3.3)

Emphysema, % 	 7	 (3, 26) 	 12	 (2, 28) 	 5	 (1, 16) 0.4

DLCO, %predicted 	 46	 (35, 68) 	 48	 (38, 67) 	 60	 (48, 77) 0.068

FEV1 (pre-BD), %predicted 	 54	 (26, 73) 	 58	 (28, 66) 	 52	 (44, 66) 0.9

FEV1 (post-BD), %predicted 	 58	 (33, 70) 	 58	 (32, 72) 	 58	 (51, 70) 0.9

FVC (pre-BD), %predicted 	 73	 (62, 90) 	 75	 (64, 86) 	 78	 (66, 88) 0.9

FVC (post-BD), %predicted 	 81	 (74, 93) 	 80	 (69, 91) 	 84	 (71, 94) 0.9

Table 1. Differences in clinical characteristics among subtypes in the GSE47460-GPL14550 dataset.

BD – bronchodilator; DLCO – diffusing capacity for carbon monoxide; FEV1 – forced expiratory volume in the first second of expiration; 
FVC – forced vital capacity; IQR – interquartile range. * Statistics presented: median (IQR); n (%); ** statistical tests performed: 
Wilcoxon rank-sum test, Fisher’s exact test, and chi-square test of independence.
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The key biological functions of MEblue were associated with cil-
ium assembly and beating (Figure 3B, Supplementary Table 5).

We constructed the PPI network on the basis of the MUC5B-
related genes in the MEblue and calculated the topological fea-
tures of each node. Afterward, a subnetwork was extracted 
based on genes linked to MUC5B, in which node rankings in 
each topological feature were integrated using the RRA meth-
od (Figure 4A, 4B). We found that FOXJ1 was the most impor-
tant hub gene (Figure 4C) and had a significant difference in 

expression between the 3 subtypes (Figure 4D). In addition, 
FOXJ1 is a marker of ciliated-to-goblet transdifferentiation 
[28,29] and cilia development [30], and RFX3 is the transcrip-
tional co-activator to FOXJ1 [31].

Correlation analysis showed that MUC5B was positively correlat-
ed with FOXJ1 (Pearson’s r=0.63, P<0.001) and RFX3 (Pearson’s 
r=0.57, P<0.001), respectively. The shape of the loess fitting 
curves indicated that there is a threshold for FOXJ1/RFX3 ex-
pression (Figure 5A, 5B). The slope of the curve after the 
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threshold is greater than the threshold of the curve before the 
threshold. Additionally, FOXJ1 was positively associated with 
RFX3 (Pearson’s r=0.72, P<0.001; Figure 5C).

Further subgroup analysis of the 3 subtypes showed that a sig-
nificant positive relationship was observed between MUC5B and 
FOXJ1/RFX3 (Figure 5D, 5E) only in subtype 1 (FOXJ1, Pearson’s 
r=0.67, P<0.001; RFX3, Pearson’s r=0.68, P<0.001), and only 
subtype 1 and subtype 3 showed a significant positive corre-
lation between FOXJ1 and RFX3 (subtype 1, Pearson’s r=0.86, 
P<0.001; subtype 3, Pearson’s r=0.54, P<0.001; Figure 5F).

Three Subtypes Differ in Immune Microenvironment 
Characteristics

We utilized the xCell algorithm to estimate the relative abun-
dance of 10 cells from the expression profile of COPD-affected 
lung tissue. As shown in Figure 6A, there was a significant 
difference in the degree of immune cell infiltration between 
the 3 subtypes, which differed in immune microenvironment 
characteristics.

As shown in Figure 6A, compared with subtypes 2 and 3, sub-
type 1 had a lower fraction of Tregs (subtype 1 vs subtype 2, 
P=0.013; subtype 1 vs subtype 3, P=0.028) and a higher lev-
el of Th1 cells (subtype 1 vs subtype 2, P=0.013; subtype 1 vs 
subtype 3, P=0.043), but Th2 cell infiltration among the 3 sub-
types showed no significant difference. The fractions of macro-
phages M2 and mast cells were significantly lower in subtype 
1. Subtype 3 had a significantly higher level of neutrophils than 
subtypes 1 and 2 (subtype 1 vs subtype 3, P=0.014; subtype 2 
vs subtype 3, P=0.046), which was consistent with the ssGSEA 
results. What is particularly noteworthy is that basophil infil-
tration was significantly increased in subtype 1 (subtype 1 vs 
subtype 2, P=2.7×10–5; subtype 1 vs subtype 3, P=1.6×10–3).

To verify and complement the results of xCell evaluation, we 
used the ssGSEA algorithm to reanalyze the immune micro-
environment of lung tissue in COPD. As shown in Figure 6B, 
the scores for Th1 and Th2 cells in subtype 1 were higher 
compared with subtypes 2 and 3, while no consistent result 
was found in the scores for activated Th1 cells and Th2 cells. 
However, the ratio of the scores for Th1 cells to Th2 cells was 
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Figure 5. �Expression association between MUC5B and FOXJ1/RFX3. (A, B) Curves fitted using loess showing the MUC5B expression 
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not significantly different between the 3 subtypes, and consis-
tent results were found for the activated Th1/Th2 cells score. 
In contrast with the results calculated by xCell, the level of eo-
sinophil infiltration in subtype 1 was significantly lower than 
that in subtypes 2 and 3 in the ssGSEA calculation. In addi-
tion, the ratio of Th17 cells to Tregs in subtype 1 was higher 
than the other 2 subtypes.

The NPA analysis showed that only the NPA values of sub-
types 2 and 3 were significantly different in neutrophil sig-
naling (Figure 7A). The above results were supported by the 
results of the xCell and ssGSEA. The lung tissue in subtype 3 
possessed a higher degree of neutrophil signaling activation, 

and the activation of top-10 leading nodes was upregulat-
ed, including ALOX5, LTB4R1, IRAK1, leukotriene B4, ICAM1, 
Myd88, IRAK4, ALOX12, neuroprotectin D1, and lipoxin A4 
(Figure 7B). Although there was no statistically significant dif-
ference in other 2 comparison groups of NPA values (subtype 
1 vs subtype 2, subtype 1 vs subtype 3), the above 10 lead-
ing nodes were downregulated in subtype 2 and upregulat-
ed in subtype 3, compared with subtype 1. Subtypes 1 and 3 
had higher ssGSEA scores for the antimicrobial humoral im-
mune response mediated by antimicrobial peptide than sub-
type 2 (Figure 7C, 7D).
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In summary, lung tissue in subtype 1 displayed higher Th1 and 
basophil infiltration, higher Th17/Tregs, and lower mast cell 
and Treg infiltration. Subtypes 2 and 3 demonstrated higher 
macrophage M2 infiltration in lung tissue, while subtype 3 had 
higher neutrophil and eosinophil infiltration than subtype 2.

Discussion

Three subtypes were marked with LPA based on 12 gene sig-
natures, which displayed the heterogeneity of MUC5B-related 
mucus secretion in COPD. The expression level of MUC5B var-
ied from subtype to subtype. However, it was unexpected that 
the 3 COPD subtypes could not reflect the difference in airflow 
limitation. A previous study found that the MUC5B/MUC5AC 
ratio was the factor influencing the lung function [32], so we 
think the airflow limitation cannot be entirely attributable to 
the MUC5B expression.

Additionally, a decreased MUC5B level could hamper MCC 
and airway defense injury [16]. Consistent with that idea, 
our WGCNA analysis showed that subtype 1 with the high-
est MUC5B expression had a significantly positive associa-
tion with MCC. The ssGSEA analysis suggested that subtypes 1 
and 3 had a stronger antimicrobial humoral immune response 
than subtype 2. BPIFB1, which is regarded as the regulator of 
MUC5B [33], was the most upregulated gene. BPIFB1 is a pro-
tective secreted protein of goblet cells [34] to create a chemi-
cal barrier against harmful pathogens and irritants.

Very little is noted in the literature regarding an association 
between MUC5B expression and the immune microenviron-
ment. Previous observational studies [16] found that the infil-
tration level of neutrophils and eosinophils was higher in lung 
tissue with low expression of MUC5B, which was consistent 

with our results. Of interest, our findings suggest that baso-
phil infiltration may be a new mechanism for regulating the 
expression of MUC5B. In a review of the literature, we found 
that basophil infiltration plays a crucial role in emphysema for-
mation [35], and the lower eosinophil/basophil ratio of periph-
eral blood has been linked to a higher rate of exacerbations 
in COPD [36]. The SPIROMICS study [37] recently found that 
patients with low eosinophil counts had a greater degree of 
obstruction. However, the differences between local and sys-
temic inflammation need to be taken in account.

An important caveat to this type of analysis is the limitations 
of how well inferred values from transcriptomic databases can 
reflect immune infiltration. Secondly, our subtypes need to be 
verified in a dataset based on a larger sample size. In addition, 
the infiltration of immune cells in the lung tissue of COPD is 
not uniform, and different sampling locations may affect the 
inferred results of immune infiltration. Despite such limitation, 
this transcriptome-based approach provides insights on the 
interaction between the immune microenvironment and mu-
cus secretion in COPD. Future experiments are needed to ver-
ify the results and conclusion.

Conclusions

Overall, this work identified 3 MUC5B-associated molecular 
subtypes, which deepens the understanding of MUC5B-related 
airway mucus secretion in COPD and could provide valuable 
information for precision therapy.
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Variable

GSE47460-GPL14550 GSE47460-GPL6480

Control
(N=91)*

COPD
(N=145)*

p-value**
Control
(N=17)*

COPD
(N=75)*

p-value**

Age (years) 	 65	 (58, 72) 	 67	 (60, 73) 0.2 	 65	 (56, 71) 	 61	 (56, 70) >0.9

Gender 0.15  0.7

	 Female 	 51	 (56%) 	 66	 (46%) 	 8	 (47%) 	 29	 (39%)

	 Male 	 40	 (44%) 	 79	 (54%) 	 9	 (53%) 	 46	 (61%)  

Smoke Status <0.001   <0.001

	 Current 	 1	 (1.4%) 	 11	 (7.6%) 	 0	 (0%) 	 3	 (4.2%)  

	 Ever 	 49	 (69%) 	 125	 (86%) 	 9	 (53%) 	 66	 (92%)  

	 Never 	 21	 (30%) 	 9	 (6.2%) 	 8	 (47%) 	 3	 (4.2%)  

Emphysema (%) 	 0	 (0, 1) 	 7	 (1, 24) <0.001 	 0	 (0, 1) 	 9	 (2, 36) <0.001

DLCO (%predicted) 	 80	 (72, 92) 	 53	 (39, 72) <0.001 	 88	 (84, 102) 	 57	 (34, 73) <0.001

FEV1 (pre-bd, %predicted) 	 92	 (85, 102) 	 54	 (33, 67) <0.001 	 99	 (91, 104) 	 42	 (24, 68) <0.001

FEV1 (post-bd, %predicted) 	 95	 (90, 104) 	 58	 (35, 71) <0.001 	 102	 (98, 110) 	 59	 (34, 76) <0.001

FVC (pre-bd, %predicted) 	 92	 (86, 102) 	 76	 (64, 88) <0.001 	 95	 (88, 102) 	 71	 (54, 82) <0.001

FVC (post-bd, %predicted) 	 94	 (88, 104) 	 82	 (71, 92) <0.001 	 95	 (94, 104) 	 83	 (66, 94) 0.007

Supplementary Table 1. Clinical characteristics in the GSE47460-GPL14550 and GSE47460-GPL6480 dataset.

* Statistics presented: median (IQR); n (%); ** Statistical tests performed: Wilcoxon rank-sum test; Fisher’s exact test; chi-square test 
of independence.

Supplementary Data
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Immune score Gene signature Method Source

Th1 cells
GSE14308_TH1_VS_NAIVE_CD4_TCELL_UP, GSE14308_TH1_
VS_NAIVE_CD4_TCELL_DN

UP/DN MSigDB-C7

Activated Th1 cells
GSE22886_NAIVE_CD4_TCELL_VS_48H_ACT_TH1_DN, 
GSE22886_NAIVE_CD4_TCELL_VS_48H_ACT_TH1_UP

DN/UP MSigDB-C7

Th2 cells
GSE14308_TH2_VS_NAIVE_CD4_TCELL_UP, GSE14308_TH2_
VS_NAIVE_CD4_TCELL_DN

UP/DN MSigDB-C7

Activated Th2
GSE22886_NAIVE_CD4_TCELL_VS_48H_ACT_TH2_DN, 
GSE22886_NAIVE_CD4_TCELL_VS_48H_ACT_TH2_UP

DN/UP MSigDB-C7

Th1/Th2 ---- Th1 cells/Th2 cells

Activated Th1/
activated Th2

Activated Th1 cells/
activated Th2 cells

Macrophage M1
GSE5099_MONOCYTE_VS_CLASSICAL_M1_MACROPHAGE_DN, 
GSE5099_MONOCYTE_VS_CLASSICAL_M1_MACROPHAGE_UP

DN/UP MSigDB-C7

Macrophage M2
GSE5099_MONOCYTE_VS_ALTERNATIVE_M2_MACROPHAGE_
DN, GSE5099_MONOCYTE_VS_ALTERNATIVE_M2_
MACROPHAGE_UP

DN/UP MSigDB-C7

M1/M2 ----
Macrophage M1/ 
Macrophage M2

----

Tregs
GSE15659_NAIVE_CD4_TCELL_VS_ACTIVATED_TREG_DN, 
GSE15659_NAIVE_CD4_TCELL_VS_ACTIVATED_TREG_UP

DN/UP MSigDB-C7

Th17 cells
GSE14308_TH17_VS_NAIVE_CD4_TCELL_UP, GSE14308_TH17_
VS_NAIVE_CD4_TCELL_DN

UP/DN MSigDB-C7

Th17/Tregs ---- Th17 cells/Tregs

Neutrophil HAY_BONE_MARROW_NEUTROPHIL ---- MSigDB-C8

Eosinophil HAY_BONE_MARROW_EOSINOPHIL ---- MSigDB-C8

Cilium movement Cilium movement (GO: 0003341) ----
Gene 

Ontology-BP

Supplementary Table 2. The source and detailed method of gene signature used to calculate ssgsea score.

Variance Covariance Classes AIC AWE BIC CLC KIC

Equal Equal 2 4243.630 5216.584 4508.560 4067.535 4335.630

Equal Equal 3 4210.429 5314.900 4511.080 4010.259 4314.429

Equal Equal 4 4189.870 5425.714 4526.241 3965.767 4305.870

Equal Equal 5 4168.803 5536.127 4540.895 3920.663 4296.803

Equal Zero 2 5464.454 5834.881 5565.663 5398.445 5501.454

Equal Zero 3 5019.963 5521.886 5156.893 4929.899 5068.963

Equal Zero 4 4870.412 5503.814 5043.063 4756.312 4931.412

Equal Zero 5 4778.130 5542.978 4986.502 4640.025 4851.130

Varying Zero 2 5457.486 5948.400 5591.439 5369.478 5505.486

Varying Zero 3 4942.069 5684.947 5144.486 4808.026 5013.069

Varying Zero 4 4761.656 5756.474 5032.539 4581.603 4855.656

Varying Zero 5 4624.419 5871.185 4963.767 4398.350 4741.419

Supplementary Table 3. Evaluation of fitted multiple latent profile analysis models.
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Variable
Subtype1
(N=21)*

Subtype2
(N=29)*

Subtype3
(N=25)*

p-value**

Age (years) 	 57	 (52, 63) 	 61	 (57, 72) 	 66	 (56, 70) 0.2

Gender 0.3

	 Female 	 10	 (48%) 	 19	 (66%) 	 17	 (68%)

	 Male 	 11	 (52%) 	 10	 (34%) 	 8	 (32%)

Smoke status 0.067

	 Current 	 0	 (0%) 	 0	 (0%) 	 3	 (12%)

	 Ever 	 21	 (100%) 	 26	 (96%) 	 19	 (79%)

	 Never 	 0	 (0%) 	 1	 (3.7%) 	 2	 (8.3%)

Emphysema (%)# 	 27	 (2, 45) 	 14	 (6, 39) 	 4	 (1, 16) 0.081

DLCO (%predicted) 	 56	 (32, 70) 	 54	 (34, 74) 	 64	 (41, 71) 0.9

FEV1 (pre-bd, %predicted)## 	 26	 (18, 57) 	 40	 (24, 70) 	 52	 (35, 64) 0.2

FEV1 (post-bd, %predicted)## 	 58	 (28, 77) 	 58	 (28, 78) 	 59	 (43, 73) >0.9

FVC (pre-bd, %predicted)## 	 68	 (51, 77) 	 73	 (63, 85) 	 74	 (55, 81) 0.4

FVC (post-bd, %predicted)## 	 90	 (68, 97) 	 84	 (76, 99) 	 78	 (64, 88) 0.3

Supplementary Table 4. Differences in clinical characteristics among subtypes in the GSE47460-GPL6480 dataset.

* Statistics presented: median (IQR); n (%); ** statistical tests performed: Wilcoxon rank-sum test; Fisher’s exact test; chi-square test 
of independence; # emphysema(%) was defined as percent of lung attenuation voxels below −950 Hounsfield units (HU); ## BD refers 
to bronchodilator.

Supplementary Table 5. Detailed results of gene enrichment analysis of multiple WGCNA modules.

Supplementary Table 5 available from the corresponding author on request.
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