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The Wnt Signaling Pathway and the Development of
Bronchopulmonary Dysplasia

Extremely premature neonates born at the canalicular to saccular
stage of lung development (22–28 wk of gestation) are at very
high risk of developing bronchopulmonary dysplasia (BPD). The
premature lung, now having to complete lung development in the
extrauterine environment, is subjected to many adverse exposures,
including hyperoxia, that promote the development of BPD. Many
developmental pathways are precisely orchestrated for optimal lung
maturation. Decreased or sustained activation of these pathways
may contribute to the pathogenesis of this disease or may impair
recovery of the lung from injury. Identification of these novel
pathways and their mediators is crucial for the establishment of
mechanisms leading to BPD and the development of novel
therapeutic strategies.

The Wnt signaling pathway is critical both during embryonic
development and in lung diseases throughout the lifespan (1).
The Wnt family of proteins includes a large number of members
that control a variety of developmental processes, including

cell fate, proliferation, polarity, and migration. Wnt signaling
consists of canonical, b-catenin–dependent signaling and two
noncanonical pathways, including planar cell polarity and calcium-
calmodulin–dependent protein kinase II/protein kinase C
signaling. The canonical signaling pathway involves a number
of proteins, including the transmembrane receptor Frizzled,
coreceptors, and a variety of proteins that make up a “destruction
complex” that control degradation versus nuclear translocation of
b-catenin. On translocation to the nucleus, b-catenin activates
several Wnt target genes (1). In distal lung development, Wnts
provide spatiotemporal cues to coordinate an intricate crosstalk
between the lung epithelium and mesenchymal cells (2). Frank and
colleagues showed that Wnt signaling is reactivated during
alveologenesis and leads to proliferation of type 2 alveolar epithelial
cells (AECs), whereas inhibition of Wnt signaling decreased
proliferation and promoted transdifferentiation of type 2 AECs to
type 1 AECs (3). Increased Wnt/b-catenin activity occurs in
patients with BPD, whereas inhibition of WNT/b-catenin signaling
attenuates hyperoxia-induced lung injury in neonatal rodent
models (4–6).

In this issue of the Journal, studies by Sucre and colleagues
(pp. 1249–1262) focus on the role of Wnt5a, a noncanonical Wnt
that is required for normal distal lung morphogenesis (7). The
authors chose to study Wnt5a because of previously published
reports of its role in lung diseases such as idiopathic pulmonary
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fibrosis (8) and chronic obstructive pulmonary disease (9). It is
known that Wnt5a2/2 mice die immediately after birth and show
abnormal functional coupling of capillaries and the developing
alveoli and thickening of the intersaccular interstitium (10). On the
other hand, Wnt5a overexpression in distal lung epithelium using
the SPC promoter reduced epithelial branching and dilated distal
airways (11).

In the current studies, the critical involvement of NFkB
(nuclear factor-kB) in the expression of Wnt5a and the mechanistic
role of Wnt5a in the changes noted because of hyperoxia exposure
during lung development was studied using organotypic cocultures,
ex vivo precision-cut lung slices (PCLS), and in vivo mouse models.
Hyperoxia exposure of organotypic cocultures resulted in increased
expression of the fibrotic genes ACTA2, COL1A1, and ELN and
decreased expression of the alveogenesis genes FOXM1, MYB, and
MCM2. In examining the Wnt signaling pathway, hyperoxia was
associated with increased nuclear accumulation of phosphorylated
b-catenin and expression of AXIN2. Hyperoxia increased the
expression of Wnt2b, Wnt5a, Wnt9a, and Wnt16 and decreased
the expression of Wnt4, Wnt10a, and Wnt11. The increased Wnt5a
expression was in mesenchymal cells. Addition of Wnt5a to
cultures in normoxia demonstrated the same gene expression
changes as observed with hyperoxia, and blockade of Wnt5a using
a neutralizing antibody reversed the changes in gene expression
observed in hyperoxia-exposed cultures. Alveolarization was
decreased in PCLS exposed to hyperoxia, and this was abrogated in
the presence of anti-Wnt5a antibody. In the in vivo mouse model
of BPD (85% oxygen exposure from PN2 to PN14), increased
expression of Wnt5a was noted in hyperoxia-exposed mouse lungs.
Human samples from patients with BPD confirmed the increase in
Wnt5a expression as compared with samples from babies who had
succumbed to nonrespiratory causes. Next, pharmacologic or
genetic inhibition of NFkB in PCLS exposed to hyperoxia showed
decreased expression of Wnt5a and normal alveolarization. Thus,
these exciting studies open the possibility of using Wnt5a as a
potential therapeutic target to prevent or limit the severity of BPD.

The interplay between the developing lung (exposed to various
postnatal stressors including hyperoxia) and other physiological
factors (circulation and the immune system) is critical in the
pathogenesis of injury. The three-dimensional organotypic
coculture model with type 2 AECs and mesenchymal cells (from
canalicular stage of lung development) used in these studies was

able to localize the expression of Wnt5a to the mesenchymal
compartment. Although this model has several advantages over
two-dimensional culture systems (12) and preserves the spatial
context and the lung microenvironment, it is a static system that
does not have the ability to incorporate the contribution of
systemic immune cells that may be recruited to the injured lung
(13). Wnt5a may also play a role in the developing endothelium
(14), which was not studied by Sucre and colleagues (7). For
example, in a recent study by Yuan and colleagues, loss of
endothelial Wnt5a led to small vessel loss in pulmonary arterial
hypertension (15).

The authors show that the blockade of NFkB resulted in
decreased Wnt5a and improved alveolarization. However, NFkB
also drives the transcription of pro-IL1b, and the NLRP3
inflammasome controls the formation of mature IL1b, a system
that is critical for the inflammatory process and the pathogenesis of
BPD (16). Interestingly, IL1b increases the expression of Wnt5a
in myofibroblasts (17), endothelial cells (18), and chondrocytes
(19–21). Ge and colleagues showed induction of Wnt5a by IL1b in
chondrocytes (22), and this was blocked by NFkB inhibition. They
further showed recruitment of NFkB p65 to the Wnt5a promoter
after IL1b treatment. Thus, the decrease in Wnt5a expression
secondary to NFkB inhibition could have been secondary to
decreased IL1b in vivo. Therefore, whether NFkB acts directly
on Wnt5a in this model remains to be clarified. Use of NLRP3
inflammasome inhibitors such as glyburide and IL1b blockers
such as IL1 receptor antagonist in these models would help define
this pathway. In addition, multiple other signaling pathways
such as Hedgehog, TGFb, and Notch can also regulate Wnt5a
expression (23). Figure 1 shows the potential pathways that could
regulate the expression of mesenchymal Wnt5a in the development
of BPD.

NFkB-mediated increase in Wnt5a expression impaired
alveolarization in this study. However, other studies have reported
beneficial effects of NFkB signaling in alveolarization (24),
specifically protecting the saccular and alveolar lung from
hyperoxia-induced injury (25). Even though the upstream
regulation of Wnt5a may be through NFkB, therapeutic strategies
focused on Wnt5a may alleviate hyperoxic lung injury while
preserving the other beneficial aspects of NFkB signaling in the
developing lung. The mechanisms leading to impaired alveolar
development secondary to increased Wnt signaling in the
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Figure 1. NFkB (nuclear factor-kB) drives the transcription of pro-IL1b, and the NLRP3 inflammasome controls the formation of mature IL1b. IL1b
increases the expression of Wnt5a in the mesenchyme, leading to increased Wnt signaling in type 2 alveolar epithelial cells. Wnt5a expression can also be
increased by several other signaling pathways such as Hedgehog, TGFb, and Notch. The mechanisms leading to impaired alveolar development
secondary to increased Wnt signaling in the pulmonary mesenchyme and type 2 alveolar epithelial cells still need to be elucidated.
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pulmonary mesenchyme and type 2 AECs need to be elucidated.
We look forward to future studies that will build on the ex vivo
results in the in vivo model and delineate the potential mechanisms
accounting for Wnt5a-mediated effects. n
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