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Abstract

High throughput screening (HTS) projects like the U.S. Environmental Protection Agency’s

ToxCast program are required to address the large and rapidly increasing number of chemi-

cals for which we have little to no toxicity measurements. Concentration-response parame-

ters such as potency and efficacy are extracted from HTS data using nonlinear regression,

and models and analyses built from these parameters are used to predict in vivo and in vitro

toxicity of thousands of chemicals. How these predictions are impacted by uncertainties that

stem from parameter estimation and propagated through the models and analyses has not

been well explored. While data size and complexity makes uncertainty quantification com-

putationally expensive for HTS datasets, continued advancements in computational

resources have allowed these computational challenges to be met. This study uses non-

parametric bootstrap resampling to calculate uncertainties in concentration-response

parameters from a variety of HTS assays. Using the ToxCast estrogen receptor model for

bioactivity as a case study, we highlight how these uncertainties can be propagated through

models to quantify the uncertainty in model outputs. Uncertainty quantification in model out-

puts is used to identify potential false positives and false negatives and to determine the dis-

tribution of model values around semi-arbitrary activity cutoffs, increasing confidence in

model predictions. At the individual chemical-assay level, curves with high variability are

flagged for manual inspection or retesting, focusing subject-matter-expert time on results

that need further input. This work improves the confidence of predictions made using HTS

data, increasing the ability to use this data in risk assessment.

Introduction

The U.S. Environmental Protection Agency (EPA) Toxic Substances Control Act (TSCA)

inventory currently lists about 85,000 chemical substances manufactured, processed, or

imported in the United States, and roughly 400 new chemicals are added every year [1].

Expensive and lengthy animal-based toxicology studies are not able to keep pace with this

large inventory of chemicals. For those few chemicals where there is in vivo data, extrapolation

across species, doses, and life stages is hindered by a lack of mechanistic information.
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These limitations represent a need to supplement traditional animal toxicity studies. The

National Research Council (NRC) outlined a long-term vision for including new in vitro stud-

ies to complement, extend, and, where applicable, replace animal studies [2]. The stated goals

of this approach included lowering costs, decreasing animal use, increasing throughput, pro-

viding coverage of mechanism and pathways, and increasing the human relevancy of toxicity

results. The EPA has pursued these objectives through the ToxCast program [3,4] as well as

through participation in the Toxicology in the 21st Century (Tox21) program, an interagency

collaboration among the EPA, National Institutes of Health’s National Center for Advancing

Translational Sciences (NIH’s NCATS), the National Toxicology Program (NTP), and the

Food and Drug Administration (FDA) [5,6].

Together the ToxCast and Tox21 programs have had a transformative impact on how

chemicals are evaluated for safety and hazard towards effects on both human health and the

environment. Current chemical coverage represents ~2000 chemicals studied in >800 assays

representing ~400 biological targets and pathways, and an even larger set of>8000 chemicals

have been tested in a subset of these assays [7–9]. Assay sources include: cell-free binding dis-

placement and enzymatic reactions with radioactive, colorimetric, and/or fluorescence detec-

tion (Novascreen/NVS) [10,11]; in cell protein-fragment complementation assays with

fluorescence detection (Odyssey Thera/OT) [12,13]; in cell multiplexed reporter transcription

unit assays with RNA transcript level detection (Attagene/ATG) [14]; cell proliferation moni-

tored by real-time electronic sensing (ACEA) [15]; high-content multiparameter quantitative

digital imaging (Vala) [16]; embryonic stem cell differentiation and cytotoxicity (NHEERL

MESC) [17,18]; zebrafish developmental disruption (NHEERL Zebrafish) [19–21]; stress

response and nuclear receptor signaling (NCATS/NCGC/Tox21) [22–27]; high content imag-

ing of HepG2 cells (Apredica/APR) [28]; human primary cell protein expression (BioSeek/

BSK) [29]; and newly developed assays within the EPA (NCCT TPO). [30]

The rich mechanistic information provided by such a large and diverse dataset has lead to

the results being used in many different contexts. Predictive models have been developed for

reproductive toxicity [14], hepatotoxicity [31,32], carcinogenicity [33], developmental toxicity

[34], vascular development toxicity [35,36], and estrogen receptor (ER) disruption [37,38]. In

addition, researchers have used the large amount of data in HTS to build computational mod-

els to predict HTS results for untested chemicals where little is known about their toxicity

[39,40]. Adverse outcome pathways (AOPs) [41,42] and tools like the Toxicological Prioritiza-

tion Index (ToxPI) [43,44] leverage the unique mechanistic detail provided by ToxCast in

vitro studies and provide a means of connecting ToxCast and Tox21 HTS data to endpoints

meaningful for risk assessment. With this information, results from ToxCast have been used

for prioritizing chemicals for more targeted testing [45]. The ability to link HTS results to high

throughput exposure estimates [46] and in vivo assays using in vitro to in vivo extrapolation

(IVIVE) pharmacokinetics measurements [47–49] has allowed HTS results to be increasingly

used in risk assessment [5,50,51].

However, there have been studies highlighting limitations to predictivity from HTS results

[52,53]. While numerous factors can contribute to reduced predictivity, the uncertainty in

concentration-response parameters of the HTS data has to date been an underexplored con-

tributor. While the need for incorporating quantitative uncertainty analysis for high through-

put screening has been acknowledged, the increased computational expense has limited the

application of robust statistical methods [54–56].

There are several challenges for calculating uncertainty in HTS data. The choice of a

method to quantify uncertainty must consider these issues.
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1. Diverse use. There are multiple ways that HTS values are incorporated into downstream

analysis. Past studies have made use of: binary activity calls [57]; individual fitted parame-

ters such as potency [34]; or all fit parameters [37,38].

2. Diverse assay space. The different assay sources, technologies, and techniques are of great

benefit when building models and identifying technology confounders, but this diversity

can complicate calculations of uncertainty. For example, a given chemical may be tested

with nine concentrations and a single replicate in the ATG assays (n = 9 observations), four

concentrations in triplicate in the OT assays (n = 12), and 15 concentrations in triplicate in

the Tox21 assays (n = 45). The response in an ATG assay may reach 5-fold induction while

NVS and Tox21 report percent inhibition that can be 100% or greater. An algorithm to esti-

mate uncertainty must work on both the highly sampled Tox21 data as well as the sparsely

sampled ATG results.

3. Data size. The October 2015 ToxCast v2 release contained over 2.4 million concentration-

response curves while the current internal database has expanded to over 2.7 million. This

presents a challenge in both computational time as well as data storage. Previous studies

attempted to balance the computational cost with statistical accuracy, employing multistage

classification algorithms [58] or asymptotic methods [54]. However, these studies focused

on NCATs/Tox21 as a single assay source. While the current method of processing ToxCast

data includes an asymptotic approximation of parameter uncertainty, values for small sam-

ple sizes may be inaccurate and uncertainty estimates for parameters near constraint

boundaries will be undefined.

4. Diverse users. The method should be of utility to a researcher processing a new assay, a stu-

dent building a model on HTS results, or a scientist performing risk assessment for a policy

decision. An overly complicated method that requires user input and subject-matter-expert

tuning would limit the applicability of the uncertainty results.

In this paper, we introduce non-parametric bootstrap resampling [59,60] as a method that

can calculate uncertainty estimates in HTS data. While the computational expense of a large

number of resamples has hindered the adoption of bootstrap methods in the past [56,61],

advancements in computational power have made the method feasible to apply to the ToxCast

HTS dataset. We describe a bootstrap implementation suitable for incorporation in the Tox-

Cast pipeline and explore how the method meets the challenges for quantifying uncertainty in

a diverse dataset like ToxCast.

As a case study, we explore an application to the ToxCast estrogen receptor (ER) model for

bioactivity [37,38]. Calculating uncertainty in this model must meet all of the challenges

described above. The model calculates area under the curve (AUC) values for a given chemical

using the fitted curves for that chemical from 18 ER assays. Uncertainty in the fitted curve

requires that we capture uncertainty in the hit call, model selection, and all fit parameters from

the winning model (challenge 1). The assays in the model include ACEA, ATG, NVS, OT, and

Tox21 assays, representing many of the assay sources, technologies, and concentration sam-

pling schemes found in the ToxCast library (challenge 2). With 18 assays and ~1800 chemicals,

~30k concentration-response curves must be bootstrapped to run the complete model (chal-

lenge 3). This model is well characterized and has recently been approved to replace in vivo

tests as part of the Endocrine Disruptor Screening Program (EDSP) Tier 1 battery [62,63].

This means that not only do developers need to understand the uncertainty in the model pre-

diction, but the method used must be easy to communicate to regulators and industry partners

who make use of the model as part of their risk assessments (challenge 4).

Uncertainty quantification in ToxCast high throughput screening
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Results and discussion

Bootstrap selection and smoothing parameter

While numerous bootstrapping algorithms have been described in the literature [63–66], we

chose to use smoothed nonparametric resampling (smooth bootstrap). There are minimal

assumptions used in this method. First, the observed response values are physically possible (a

small assumption since they were observed). Second, for each response value there is some

noise and uncertainty included in the measurement. While non-smoothed nonparametric

resampling (case bootstrap) removes the second assumption, this comes at the cost of jagged

parameter distributions in samples with few points and the inability to bootstrap curves with

only a single biological replicate. Smoothing removes the jaggedness, slightly increases the

amount of variation, and allows resampling for curves with only a single biological replicate.

Because the nonparametric methods do not rely on a specific functional form of the curve,

they can be used to quantify the uncertainty in model selection and activity call as well.

Methods that resample residuals make a hard assumption on the model. Since the residuals

are calculated from the fitted curve, the choice of function must be made prior to bootstrap-

ping, removing the ability to capture uncertainty in model selection and activity. Directly

resampling the residuals makes an additional assumption that the variance of errors is con-

stant, and like case resampling, this method can result in jagged distributions for curves with

few points. Wild resampling removes the assumption of homoscedasticity [63–66], and

depending on the random variable used to multiply the residuals, can smooth out some of the

jaggedness in residual resampling. However, the choice of random variable is not trivial and

may need to be adjusted for different assay types. The wild bootstrap is also sensitive to the

regression method and the pattern of heteroscedasticity [66].

Based on the comparisons summarized in Table 1, the smooth bootstrap was selected as

most applicable to the diverse datasets found in ToxCast in general and the ER assays in partic-

ular. The amount of noise added into the smooth bootstrap can have a significant impact on

the results. Not enough and the results will be much like case resampling: often discrete bins of

parameter values will be observed for curves with few points. If the random noise is too high,

the uncertainty calculated will be artificially inflated. Fortunately, the ToxCast pipeline already

contains an estimate on the noise. In the data fitting process, the baseline median absolute

deviation (bmad) is calculated by binning the response values of the lowest two concentrations

for every chemical, and then computing the scaled mad, bmad ¼ 1:4826 �medianðjXi �
~X jÞ

where Xi is the ith value in the binned baseline response values and ~X is the median of the base-

line response values [67,68]. We use the median and mad rather than mean and standard devi-

ation because a small number of chemicals are highly potent and have a response even at the

lowest concentrations. Within the ToxCast pipeline, the bmad is used as a measure of noise.

Curves without a median response at any concentration greater than 3 � bmad are not fit to the

hill or gnls models. In addition, many assays have the cutoff value for a statistically significant

response set to a multiple of the bmad, with 3, 6, and 10x bmad frequently used.

Table 1. Applicability of bootstrap methods to assays with only one measurement per concentration, determina-

tion of a winning model, and calculating a hit call probability.

Case Smooth Residuals Wild

Sample Single Replicate y y y

Model Selection y y

Hit Call Percent y y

https://doi.org/10.1371/journal.pone.0196963.t001
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Given that the assumption that bmad represents the noise in assay data is already built into

how the ToxCast pipeline is constructed, maintaining that assumption for the smooth boot-

strap makes sense. Therefore, we sampled from random noise calculated from a normal distri-

bution with standard deviation equal to the bmad for that assay.

We compare the empirical baseline values for the two lowest concentrations tested across

all chemicals to the normal distribution built on the bmad in Fig 1 for all 18 ER assays. In each

pane,l the empirical values are plotted as the empirical cumulative distribution function in

black, while the normal distribution with standard deviation set to the bmad is plotted as

orange lines. In all 18 assays, there is substantial similarity between the two distributions. This

indicates that the normal distribution is a good approximation to the actual underlying

distribution.

It is also clear that the largest deviation occurs as the response value increases. This occurs

due to highly potent chemicals with activity within the lowest two concentrations of the tested

range. The effect is greatest in the Odyssey Thera assays (OT_ER). Because these assays were

tested at fewer concentrations clustered at the higher concentration values, more chemicals

show activity in the baseline. In contrast, the Tox21 assays were tested at more than 100-fold

lower concentration. Because of this, there is a much smaller deviation between the two distri-

butions for the Tox21 assays. In all cases, the normal function makes an excellent approxima-

tion for the background noise in the assay, highlighting that a normal distribution built on the

bmad represents a good choice for sampling noise in the smooth bootstrap as well as providing

confidence in the use of bmad within the pipeline for hit call cutoffs.

Confidence intervals in model parameters

The most straightforward analysis of the bootstrap results is to consider the distribution of the

model fit parameters. The three parameters fit in the hill and gain loss (gnls) models are the

log(AC50), top, and hill coefficient. For each parameter, we calculate the distribution of values

using the bootstrapping method, and can then calculate the 95% confidence interval by taking

the 0.025 and 0.975 quantiles of the sample values. An example using bisphenol AF in the Atta-

gene ERa TRANS assay is shown in Fig 2.

It is clear that the hill (Fig 2A–2C) and gnls (Fig 2D–2F) parameters are not always nor-

mally distributed. The hill log(AC50) (A), hill top (C), and gnls coefficient (E) are roughly

Gaussian. However, the other parameters have different distributions. A long tail is observed

for the hill coefficient (B). The gnls log(AC50) (D) has large tails on both sides of the distribu-

tion and gnls top (F) is bi-modal. This indicates that a simple normal distribution and associ-

ated confidence intervals cannot be assumed to be applicable.

Model selection and hit determination

While the distribution of an individual model parameter is informative, many analyses of Tox-

Cast data make use of the winning model rather than focusing on the hill or gnls models spe-

cifically. In addition to individual model fit parameters, each bootstrap sample has the

calculated Akaike information criteria (AIC) for all three models. Using this, we choose a win-

ning model for each resampled curve by selecting the lowest AIC using the same algorithm

used in the ToxCast pipeline point estimate. Fig 2 is an example where the winning model can

vary between bootstrap samples. While there are 1000 measurements for the hill log(AC50)

and the gnls log(AC50), not all of those represent curves where those models are the winning

models. For each bootstrap sample, we select the log(AC50) that corresponds to the winning

model and pool those results (Fig 2G). Comparing Fig 2A, 2D and 2G, it is clear that distribu-

tion of the winning model log(AC50) is broader than either the hill or gnls log(AC50) and is

Uncertainty quantification in ToxCast high throughput screening
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Fig 1. Comparison of normal distribution with standard deviation equal to bmad (orange line) and the empirical cumulative distribution function

(ecdf) for points used to calculated bmad (black line). For each assay, the bmad is calculated as the scaled mad of the response values for the lowest two

concentrations per chemical. Deviations between the ecdf and the normal distribution at higher response values can be attributed to highly potent chemicals

with a biological response at the lowest two concentrations as well as sources of noise that are from a non-normally distributed process.

https://doi.org/10.1371/journal.pone.0196963.g001
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Fig 2. Analysis of bootstrap distribution of model parameters for bisphenol AF in ATG_ERa_TRANS_up assay. A-C: Values for the hill model log(AC50)

(A), coefficient (B), and top (C) parameters for all 1000 bootstrap samples. D-F: Values for the gain loss model gain log(AC50) (D), gain coefficient (E), and top

(F) for all 1000 bootstrap samples. G-I: Values for the winning model gain log(AC50) (G), gain coefficient (H), and top (I) for all 1000 bootstrap samples, colored

by winning model (hill = red, gain loss = blue). J: Correlation plot of winning model top vs. winning model gain log(AC50), colored by winning model (hill = red,

gain loss = blue). K: Normalized experimentally measured values (black circles) and winning model (gain loss, black curve). Subset of fitted bootstrap resamples,

with winning hill (red lines) and gain loss (blue lines) models plotted. Horizontal black lines represent 3x bmad (dashed) and activity cutoff (solid). L:

Uncertainty quantification in ToxCast high throughput screening

PLOS ONE | https://doi.org/10.1371/journal.pone.0196963 July 25, 2018 7 / 23

https://doi.org/10.1371/journal.pone.0196963


bimodal, representing the combination of the two different distributions from the hill and gnls

subsets. Fig 2H and 2I highlight the winning model gain coefficient and top parameter distri-

butions, respectively. The uncertainty in the winning model is adding to the uncertainty in the

potency parameter.

By keeping the parameters paired with the bootstrap sample, the correlations between

parameters can be explored. In Fig 2J, the log(AC50) and top parameters for the winning

model in all 1000 bootstrap samples are shown. Notably, the hill and gnls components of the

winning model parameters have different correlations. The shape and angle are different, with

a stronger correlation between the log(AC50) and the top parameters observed in the gnls

than in the hill model.

The reason for the shift in efficacy and potency between the two models is clarified by

examining the bootstrap sample curves (Fig 2K). The response at 0.3 log(uM) is 3.4, more than

one unit greater than the preceding and following concentrations. In the ToxCast pipeline,

this data fits to the gnls model (solid black curve). When bootstrapped, however, uncertainty

in the points shifts the winning model, such that out of 1000 bootstrap samples the hill (red)

and gnls (blue) models are the chosen 526 and 474 times, respectively. While the maximum of

the blue and red curves differs slightly, ~0.5 response units, the top parameter for the gnls and

hill equations represents the asymptotic value for the gain direction only. In the gnls model,

this is clustered around 4, much greater than the 2.5 to 3 value represented by the maximum of

the gnls curve or the ~2.5 clustering of the hill model (Fig 2I). Because the log(AC50) repre-

sents the calculated concentration where the response is half the value of the top parameter,

the shift in the top between gnls and hill manifests as a shift in the log(AC50) as well.

Finally, we can make a hit call for each sample using the same algorithm as the pipeline: set

each bootstrap sample to a hit if the winning model is hill or gnls, the max median is > cutoff,

and the winning model top is> cutoff. As the winning model can vary between bootstrap sam-

ples, the hit call can change as well. While the current ToxCast pipeline provides a binary Yes/

No hit call determination, bootstrapping provides a means to calculate a hit probability. For

example, if 500 of the 1000 bootstrap samples failed to meet the hit call criteria, the hit percent

would be only 50%, suggesting lowered confidence in the hit call for that curve.

We explored the uncertainty in the hit call and model selection for all 1811 chemicals in 18

ER assays in the ToxCast database. For each chemical assay pair, a model selection and hit call

was made for each bootstrap sample. Therefore, for each curve a hit probability was calculated,

and among the samples that were hits the ratio of hill to gnls was determined. These results are

shown in Fig 3.

The percentage of chemicals with a hit probability greater than 0 but less than 1 varies sub-

stantially between assays. In ACEA_T47D_80hr_Positive over 25% of the curves have a hit

probability between 0 and 1. In contrast, many of the Odyssey Thera assays have a much

smaller number of chemicals in this probability range. The steepness of the transition from 0%

to 100% hit call is driven by the noise of the assay, the choice of cutoff, and the range of

responses observed. The Odyssey Thera assay results have a sharper transition from 0% to

100% than is observed in the ACEA dataset, across the same set of 1811 chemicals tested.

Propagation of model parameters, model selection, and hit call probability will vary

depending on the final use case. If the assay hit call is an input into a model, such as building a

QSAR model to predict assay activity, one option is to leave out any chemical with a hit

Comparison to results from other assays. Cumulative empirical distribution function of winning model gain log(AC50) value for all bisphenol AF samples in all

assays where the experiment results were determined to be a positive hit. Curves are colored by assay source, with TOX21 black, NVS orange, ATG sky blue, OT

bluish green, and ACEA yellow.

https://doi.org/10.1371/journal.pone.0196963.g002
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Fig 3. Model selection in hit call probability for sixteen estrogen receptor agonist assays. For each plot, chemicals are ordered on the x-axis based on their

hit call probability. The y axis indicates the percent of bootstrap resamples that were calculated to be a positive hit with a hill model (red), gain loss (blue), or a

negative hit (black).

https://doi.org/10.1371/journal.pone.0196963.g003
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probability between 0 and 1. Another approach would be assign a hit probability threshold for

a chemical to be included as a positive or negative (e.g. >0.75 or <0.25). In this study, we

explore applications to the ER Model, which is handled differently.

Application to estrogen receptor model

The ToxCast ER model for bioactivity calculates AUC values for a given chemical using the fit-

ted curves for that chemical from the 18 ER assays. The model returns an AUC value for 26 dif-

ferent "receptors" in the pathway model corresponding to predicted patterns of activity. These

include agonist, antagonist, and pseudoreceptors (technology-specific assay interference activ-

ity). The model AUC values are scaled so that chemicals with no ER activity have an AUC

value of 0 and the positive agonist control 17α-Ethinylestradiol used in all assays has an AUC

(agonist) value of 1 [37]. A cutoff of 0.1 AUC(agonist), corresponding to assay potency of

~100 uM, was set for a chemical to be considered positive while scores 0.001< AUC < 0.1

were considered inconclusive [38].

Calculating the uncertainty in the ER AUC value requires meeting the four challenges

highlighted in the introduction. The model is built on the entire curve for each chemical-assay

pair, including all fit parameters, model selection, and activity call. Robustness is introduced to

the model by using 18 assays from five different sources using different assay technologies.

With 1811 chemicals and 18 assays, over 32,000 concentration-response curves are used when

calculating the model scores. The model also has diverse applications. In addition to being

used for regulatory decisions as part of the EDSP Tier 1 screening battery [62], the model has

also been used to build QSAR models so that tens of thousands of additional chemicals can be

screened in silico for estrogen agonism [39]. Therefore, the ER model makes an ideal use case

for understanding how uncertainty quantification can be incorporated into analyzing HTS

data. Uncertainty in all of the fit parameters, model selection, and activity call must be propa-

gated for thousands of chemicals and 18 assays, in a way compatible with different assay tech-

nologies and giving a result useful for both scientific analysis and regulatory risk assessment.

By calculating the ER model score for each bootstrap sample, a distribution of ER model

scores was determined. The ER AUC(Agonist), shown in red in Fig 4, is plotted for all chemi-

cals with an AUC(Agonist) value > 0.1. The bootstrapped uncertainty in this value is repre-

sented by error bars which mark the 2.5% and 97.5% quantile of the distribution of ER AUC

(Agonist) values for that chemical. Similar values and uncertainties are plotted for ER AUC

(Antagonist) and AUC(pseudoreceptor) values if the 97.5% quantile of the AUC value is

greater than 0.1.

For many chemicals, the uncertainty around the ER AUC(Agonist) value is small. Because

the AUC value is calculated by aggregating results from 18 assays, noise from one assay will

tend to be averaged out by noise in another assay, providing robustness to the AUC value.

Chemicals with AUC(Agonist) values greater than 0.6 tend to have larger error bars. These

chemicals are highly potent ER agonist control chemicals and are often active even at the low-

est concentration tested in the ToxCast assays (S1 Fig, 10.23645/epacomptox.6062650). If the

low response values of the hill curve are not sampled (i.e. the chemical is active at all concen-

trations) the exact value of the potency is difficult to determine and larger uncertainty in the

potency estimate translates into greater uncertainty in the AUC value. Other chemicals, like

raloxifene hydrochloride, have a larger uncertainty in the AUC(Agonist) value because there is

another AUC value with similar weighting within the model, in this case AUC(Antagonist).

The uncertainties around both the agonist and antagonist values are large because each boot-

strap sample might skew towards the agonist or antagonist models being dominant (S1 Fig, 10.

23645/epacomptox.6062650). Values for AUC(pseudoreceptor) have high uncertainties in
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general. These values are calculated based on a subset of the assays, and are therefore not as

robust as the AUC(Agonist) value.

There are, however, a few chemicals that have relatively large AUC(Agonist) uncertainty

values. Nordihydroguaiaretic acid, C8-18-Alkydimethylbenzyl ammonium chlorides, and

fenarimol are notable in that the 95% CI crosses the 0.1 AUC activity threshold. A closer exam-

ination of the first of these, nordihydroguaiaretic acid, is explored in detail in Fig 5. By plotting

the bootstrap results for all 18 ER assays for this chemical, the contribution to the ER AUC

uncertainty from each assay is explored. Almost all the assays have a relatively narrow range of

intra-assay potency values. However, the ACEA_T47D_80hr_Positive data has a significantly

more potent AC50 of ~10 nM. Additionally, because the efficacy is barely above the activity

cutoff, the bootstrap samples are active only ~60% of the time. This high potency estimate

combined with high uncertainty in the activity call translates into large uncertainty in the ER

AUC(Agonist) value. For the bootstrap samples where the ACEA data is called active, the high

potency drives the ER AUC(Agonist) value up. When the bootstrap samples are inactive, the

calculated AUC values decrease. Therefore, we conclude that the large uncertainty in the nor-

dihydroguaiaretic acid ER AUC(Agonist) value is driven primarily by the large uncertainty in

Fig 4. Estrogen receptor model AUC values for chemicals with an AUC(Agonist) value> 0.1. Point estimates for agonist (red), antagonist (black), and

pseudoreceptor (blue) values are marked by circles for all AUC values with an upper 95% confidence interval> 0.1. Error bars indicate the 95% confidence interval

obtained by bootstrap resampling.

https://doi.org/10.1371/journal.pone.0196963.g004
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Fig 5. Nordihydroguaiaretic acid bootstrap curves. Each of the 18 ER assays are shown in a separate panel with the assay cutoff indicated with a dashed

horizontal line. Circles represent the pipeline normalized concentration-response data and the solid black line indicates the winning model fit to the data if the

hit call was positive. TOX21_ERa_LUC_BG1_Antagonist was not a hit in the pipeline therefore no black line is drawn. All bootstrap curves with a positive hit

call are drawn with hill and gns models colored red and blue respectively. All assays had a 100% hit call in the bootstrap results except for

ACEA_T47D_80hr_Positive where 602 of the 1000 samples had a positive hit call and assays ATG_ERa_TRANS_up and TOX21_ERa_LUC_BG1_Agonist

where a single bootstrap replicate in each assay was inactive.

https://doi.org/10.1371/journal.pone.0196963.g005
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the ACEA activity call for this chemical. One follow-up to such a finding would be to rerun the

assay driving the overall large uncertainty.

Because one of the purposes of the ER model is to predict in vivo activity, it is informative

to compare model scores to known in vivo activity for the subset of chemicals that have been

tested in vivo. In Fig 6 we plot the ER AUC(Agonist) value for all chemicals that have at least

two guideline-like studies in the uterotrophic assay, and color the values based on the results

of the in vivo experiments. The majority of in vivo positives are above the 0.1 AUC cutoff and

negatives below 0.001. The balanced accuracy of the model is>80% [38] with many of the

false positives and false negatives justified biologically (e.g. differences in metabolism or clear-

ance). By adding uncertainty quantification, we are able to further give context around the

model score and to increase confidence decision making. The majority of compounds small

uncertainty around their model score, and therefore a decision based on that model score can

be made for confidently. Others, such as 4-nonylphenol and benz(a)anthracene, have confi-

dence intervals that cross the activity cutoff, and therefore these cannot be confidently pre-

dicted to be ER in vivo active or not. Similarly, one of the false negatives in the model,

tamoxifen, has a relatively large uncertainty that spans into the inconclusive range of model

values. By quantifying the uncertainty around the model score, results with low confidence

can be flagged to avoid incorrect decision making.

Conclusions

Using smooth nonparametric bootstrapping, we were able to quantify uncertainty in model

fits to the experimental data, and propagate that uncertainty throughout the analysis of the

data. Through the use of the ER model, we showed that the method is applicable to the use

cases highlighted in the introduction. We calculated the uncertainty in all model fit parame-

ters, and then propagated that uncertainty through model selection, hit call, and finally the

ER AUC calculation. This method worked on data from numerous assay sources and tech-

nologies, and was fast enough to allow the full propagation to be calculated for all 1811 chem-

icals. The limited number of assumptions and tuning parameters in applying the method

make it simple for non-subject-matter-experts to apply the calculation to other analyses and

provides confidence in interpreting the results from the uncertainty quantification. The lat-

ter is particularly important for analyses like the ER model that are used in a regulatory

context.

One question that might be raised is how our approach compares with the asymptotic, max-

imum likelihood method for estimating confidence intervals. The estimation process we use

includes features that invalidate standard asymptotic theory for evaluating the uncertainty of

estimates. First, the parameter space is bounded, and estimates do end up on the boundaries of

the space. Standard theory requires estimates to fall on the interior of the parameter space, and

are invalid on the boundary. Second, we fit multiple models, and select the model with the best

AIC. Again, standard theory does not apply. Finally, we believe that the sample sizes are such

that we could not trust the asymptotic theory, even if the two issues above were not true. Thus,

we believe that one would want to use some sort of resampling method in any case to more

reliably quantify uncertainty.

By quantifying uncertainty in the ER model score, we were able to better understand the

semi-arbitrary activity cutoff for in vivo ER activity prediction. The distribution of ER model

scores gives a measure of confidence around this cutoff. In particular, we were able to identify

a false positive by the large uncertainty around the ER AUC(Agonist) value, and then take a

closer look at the individual curves used to calculate this value and identify which curve was

contributing the most variability. Flagging for closer inspection is a powerful aspect of this
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uncertainty quantification. With over 32,000 concentration-response curves used to calculate

the 1811 ER AUC values, a manual inspection of every curve would be difficult and error

prone. By limiting the manual inspection to only those chemicals with large variability and

quantifying which curves are contributing to that variability, subject-matter-expert time is

optimized for studying only the most difficult examples. As the number of assays, molecular

targets, tested chemicals, and analyses grows, tools that target the need for manual inspection

increase in importance. Uncertainty quantification is an important component of this analysis

pipeline.

Fig 6. Estrogen receptor model agonist AUC values for chemicals tested at least twice in the uterotrophic assay. Point estimates for agonist are colored by the

uterotrophic consensus result being positive (red), equivocal (blue), and negative (black). Equivocal results in the uterotrophic assay indicate some tests were

positive while others negative. Error bars indicate the 95% confidence interval obtained by bootstrap resampling.

https://doi.org/10.1371/journal.pone.0196963.g006
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Methods

Estrogen receptor concentration-response data

Concentration response data used in this study was obtained from 18 ER assays in the ToxCast

database. All data was obtained from invitrodb_v2 released October 2015. A summary of the

assays used in this study can be found in Table 2.

ToxCast data pipeline

Normalized concentration-response points, model parameter point estimates, and hit call

results are included in invitrodb_v2. All model fits to the data used the ToxCast data pipeline

R package tcpl version 1.2.2 as described previously [67,68]. The steps relevant to this study are

briefly described.

Three models are fit to the normalized concentration-response data using maximum-

likeliood to estimate the parameters. Robust estimation was provided by basing the

likelihood function on Student’s t distribution with 4 degrees of freedom [69]. The Nelder-

Mead algorithm was used to carry out the optimization. All experimental data concentrations

x[i] and model potency parameters (ga, la), are expressed as the log10(concentration) where

concentration is in uM. The constant (’cnst’) model, with constant value of zero response, is

given by:

m½i� ¼ 0

The second model fit is the constrained hill (’hill’) model:

m i½ � ¼ tp
1

1þ 10ðga� x½i�Þ�gw

� �

Table 2. Estrogen receptor assays included in this study.

Assay Source Normalization Organism Tissue Cell

ACEA_T47D_80hr_Positive ACEA percent_activity human breast T47D

ATG_ERE_CIS_up ATG log2_fold_induction human liver HepG2

ATG_ERa_TRANS_up ATG log2_fold_induction human liver HepG2

NVS_NR_bER NVS percent_activity bovine uterus NA

NVS_NR_hER NVS percent_activity human NA NA

NVS_NR_mERa NVS percent_activity mouse NA NA

OT_ER_ERaERa_0480 OT percent_activity human kidney HEK293T

OT_ER_ERaERa_1440 OT percent_activity human kidney HEK293T

OT_ER_ERaERb_0480 OT percent_activity human kidney HEK293T

OT_ER_ERaERb_1440 OT percent_activity human kidney HEK293T

OT_ER_ERbERb_0480 OT percent_activity human kidney HEK293T

OT_ER_ERbERb_1440 OT percent_activity human kidney HEK293T

OT_ERa_EREGFP_0120 OT percent_activity human cervix HeLa

OT_ERa_EREGFP_0480 OT percent_activity human cervix HeLa

TOX21_ERa_BLA_Agonist_ratio TOX21 percent_activity human kidney HEK293T

TOX21_ERa_BLA_Antagonist_ratio TOX21 percent_activity human kidney HEK293T

TOX21_ERa_LUC_BG1_Agonist TOX21 percent_activity human ovary BG1

TOX21_ERa_LUC_BG1_Antagonist TOX21 percent_activity human ovary BG1

https://doi.org/10.1371/journal.pone.0196963.t002
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subject to constraints:

0 � tp � 1:2�maxðrespÞ

minðconcÞ � 2 � ga � maxðconcÞ þ 0:5

0:3 � gw � 8

Fitted parameters are the top asymptote (tp), concentration at which the activity is half that

of the top asymptote (ga), and hill coefficient (gw) with constraints indicated. All constraints

are subject to the max(resp), min(conc), and max(conc) for the data fit, not at the assay level.

The bottom asymptote is set to zero. Notably the constraints on tp being greater than zero cou-

pled with the bottom asymptote at zero forces the model to fit only in the gain direction.

The final model fit is the constrained gain loss (’gnls’) model. This model is constructed as

product of a gain direction hill model and a hill model that operates in the loss direction with

shared top and bottom asymptotes:

m i½ � ¼ tp
1

1þ 10ðga� x½i�Þ�gw

� �
1

1þ 10ðx½i�� laÞ�lw

� �

subject to constraints:

0 � tp � 1:2�maxðrespÞ

minðconcÞ � 2 � ga � maxðconcÞ

0:3 � gw � 8

minðconcÞ � 2 � la � maxðconcÞ þ 2

0:3 � ga � 18

la � ga > 0:25

In addition to the previous gain hill parameters, the gnls model adds two loss parameters:

the concentration at which the activity of the in loss direction is half that of the top asymptote

(la) and the loss direction hill coefficient (lw). Constraints on these parameters are indicated

above.

The fitted models are constrained to model in vitro toxicology data to accommodate hetero-

geneous assay vendors and technologies. For each curve analyzed using the ToxCast Data

Pipeline, the constant, constrained Hill, and constrained gain-loss functions are fit, with selec-

tion of the winning model corresponding to the minimum Akaike information criterion

(AIC)[70]. For simplicity in understanding the shape of the dose-response curve for chemical-

induced bioactivity, all data in this version of the ToxCast Data Pipeline have been plotted in

the “up” direction; i.e., all curves go in the same direction.

The constraints on the Hill and gain-loss functions are designed to ensure that: (1) an AC50

from the positive portion of the curve is derived for each curve with a positive response, as this

is important summary information for toxicological applications; (2) that the AC50 is a con-

servative estimate of bioactivity, with constraints that allow for estimation of AC50s that may

be below the concentration range screened; and, (3) that smoother curves are generated, such

that estimated AC50s are not overly conservative for toxicology applications. For the Hill and
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gain-loss functions, the bottom asymptote is forced to zero. For the Hill function and gain por-

tion of the gain-loss function, the top asymptote is constrained from 0 to 1.2(maximum

response). The AC50 from the Hill is bounded between the minimum log10(concentration)

minus 2 and the maximum log10(concentration) plus 0.5. For the gain portion of the gain-loss

curve, the AC50 is bounded between the minimum log10(concentration) minus 2 and the

maximum log10(concentration). Thus, for both the Hill and gain-loss models, the AC50 is

allowed to fall outside of the screened concentration range, with more tolerance for this behav-

ior when it occurs at lower concentrations (or to the left on the x-axis). This is justified from a

toxicology perspective because in high-throughput screening, extremely potent chemicals,

often used as a reference, may be screened blindly at the same concentration as all other chem-

icals. As such, these extremely potent chemical may achieve the maximum signal in the assay

at the lowest concentration tested, resulting in an AC50 being predicted to fall below the

screened concentration range. The slopes for the Hill function and gain portion of the gain-

loss function are constrained from 0.3 to 8. These bounds are primarily motivated by the

numerical behavior of the fitting algorithm in extreme data configurations. The two extremes

are: a) data sets with all non-control responses at about the same level, indicating that all the

dose-response must have occurred below the lowest concentration used; and b) the response is

elevated above background only at the highest concentration. In the former case, the ML esti-

mate for the power parameter is 0, but the iterative algorithm optimizing the loglikelihood

function can become unstable as the estimate of the power parameter approaches 0. For practi-

cal purposes, returning a value of 0.3 for that parameter is good enough, and saves time. In the

latter case, the ML estimate for the power parameter is infinity. Practically, often the iterative

algorithm will terminate at some large value, but again, numerical instability sometimes

appears, resulting in an exception that must be handled. The value 8 is a reasonable upper

bound for our purposes.

Including a parameter for variance, the cnst, hill, and gnls models have 1, 4, and 6 parame-

ters, respectively. The winning model is determined by choosing the model with the lowest

Akaike information criteria (AIC) [70]. For each assay, a value for a cutoff is chosen, either

based on the bmad or a value selected. If the winning model is the hill or gnls model, the tp
parameter is greater than the cutoff, and for at least one concentration the median response

value is greater than the cutoff, the curve is declared a hit and parameter hitc is set to 1. If one

of these three criteria is not met, the curve is not a hit and hitc is set to 0.

Bootstrap uncertainty quantification

The approach used in this study to estimate the uncertainty in model parameters is smooth

nonparametric bootstrap resampling:

1. Given N concentration-response measurements at n concentrations with j(i) response mea-

surements at the ith concentration, X = (x1, y1),. . .,(xn, yj(n)), sample j(i) times at the ith con-

centration with replacement Xi = (xi, yi,1), (xi, yi,2),. . .,(xi, yi,j(i)) at all i, generating N
resampled concentration-response measurements X�i ¼ ðxi; yi;aÞ; ðxi; yi;bÞ; . . . ; ðxi; yi;cÞ.

2. Then, to the resampled values X�i ¼ ðxi; yi;aÞ; ðxi; yi;bÞ; . . . ; ðxi; yi;cÞ add random normally

distributed noise (mean zero, standard deviation equal to the bmad) to each value.

3. The resulting values X�i ¼ ðxi; yi;a þ u1Þ; ðxi; yi;b þ u2Þ; . . . ; ðxi; yi;c þ uj½i�Þ are combined for

all i to give a resampled set of concentration-response values with the same number of

response values as the experimentally measured data.
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4. The resampled curve X� is fit to the three ToxCast models to generate point estimates, a

winning model, and a hit call.

5. This procedure is repeated 1000 times.

Fig 7 illustrates the sampled points and sampled fits relative to experimental concentration-

response values and the curve fit to experimental points. A video showing individual bootstrap

resamples and the corresponding fit is included in S1 Video, 10.23645/epacomptox.6062650.

Implementation

All calculations were performed using R version 3.2.3 (2015-12-10) [71]. An R package toxboot

version 0.1.0 [72] was developed to perform all bootstrap resampling. This package makes use

of the ToxCast Data Pipeline R package tpcl version 1.2.2 [68] to retrieve the pipeline normal-

ized data and fit the models. Calculations on bootstrap resampling results were made possible

using R package data.table version 1.9.6 [73]

ToxCast ER model for bioactivity

The ToxCast ER model for bioactivity has been described previously [37,38,62]. Briefly, for

each chemical the computational model integrates the ToxCast pipeline results from all 18 ER

assays. At each concentration, the calculated response from the ToxCast winning model from

all assays are summed linearly such that each assay contributes equally to the score. For curves

fit to the gnls model, only the gain component was used to calculate the response. Assays

where the chemical is not a hit do not contribute to the score. At each concentration, a linear-

model is fit to minimize the difference between the measured and predicted activities. For

Fig 7. Smooth bootstrap resampling. Normalized experimental concentration-response points (cyan circles) and corresponding hill model (cyan line) are shown.

The distribution of smooth bootstrap resampled points (black circles) and fitted values (black lines) are indicated, highlighting the range of resampled observations

for response values and the subsequent possibilities for the fitted hill model.

https://doi.org/10.1371/journal.pone.0196963.g007
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each chemical, the model fits 26 AUC values corresponding to the Agonist, Antagonist, pseu-

doreceptor or single-assay pseudoreceptor modes. This model was calculated for all 1811

chemicals common in the 18 assays found in the October 2015 ToxCast invitrodb_v2 release.

To calculate the uncertainty in the ER activity scores, the bootstrap resampling values were

propagated through the ER model. For a given chemical, the bootstrap results for each assay

were indexed 1 to 1000. The matching index values from the 18 assays were paired and the cor-

responding model parameters were used as inputs for the model exactly as the pipeline values

were used to calculate the initial point estimates. This procedure generated 1000 values for

each chemical/receptor pair. Subsequent analysis uses the point estimate found from the Tox-

Cast pipeline values with 95% confidence intervals calculated from the bootstrap results by cal-

culating the 2.5% and 97.5% quantile from the distribution of bootstrapped ER model score

values.
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