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A B S T R A C T   

Accumulating evidence links cardiometabolic health with social and environmental neighborhood exposures, 
which may contribute to health inequities. We examined whether environmental characteristics were individ-
ually or jointly associated with insulin resistance, hypertension, obesity, type 2 diabetes, and metabolic syn-
drome in San Diego County, CA. As part of the Community of Mine Study, cardiometabolic outcomes of insulin 
resistance, hypertension, BMI, diabetes, and metabolic syndrome were collected in 570 participants. Seven 
census tract level characteristics of participants’ residential environment were assessed and grouped as follows: 
economic, education, health care access, neighborhood conditions, social environment, transportation, and clean 
environment. Generalized estimating equation models were performed, to take into account the clustered nature 
of the data and to estimate β or relative risk (RR) and 95 % confidence intervals (CIs) between each of the seven 
environmental characteristics and cardiometabolic outcomes. Quantile g-computation was used to examine the 
association between the joint effect of a simultaneous increase in all environmental characteristics and car-
diometabolic outcomes. Among 570 participants (mean age 58.8 ± 11 years), environmental economic, 
educational and health characteristics were individually associated with insulin resistance, diabetes, obesity, and 
metabolic syndrome. In the mixture analyses, a joint quartile increase in all environmental characteristics (i.e., 
improvement) was associated with decreasing insulin resistance (β, 95 %CI: − 0.09, − 0.18–0.01)), risk of dia-
betes (RR, 95 %CI: 0.59, 0.36–0.98) and obesity (RR, 95 %CI: 0.81, 0.64–1.02). Environmental characteristics 
synergistically contribute to cardiometabolic health and independent analysis of these determinants may not 
fully capture the potential health impact of social and environmental determinants of health.   

1. Introduction 

Social determinants of health, the conditions in which people are 
born, grow, live, work and age, contribute to explaining observed in-
equalities in a variety of health outcomes (Marmot, 2015). These con-
ditions are driven by the distribution of power, money, and resources 
(Marmot and Bell, 2012) at both the individual and neighborhood levels. 
The social gradient in health is well documented, but its amplitude 
varies across geographical contexts. In the United States (US), health 
disparities remain large (Singh et al., 2017; Braveman et al., 2010; 
National Academies of Sciences, Engineering, and Medi-cine, 2017), 

especially for cardiometabolic diseases (Safford et al., 2021; Havranek 
et al., 2015). Environmental determinants (broadly defined), including 
environmental hazards, public infrastructures, built environment, as 
well as economic, social, health, and educational characteristics, may 
have a major role on these health disparities. Accumulating epidemio-
logical evidence demonstrates that these environmental determinants 
are important factors of cardiometabolic disease risk (Havranek et al., 
2015; Bhatnagar, 2017). 

Cardiovascular disease (CVD) is a leading economic and medical 
burden in the US. CVD is the most frequent cause of death in the US, and 
approximately 655,000 Americans die prematurely from heart disease 
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each year (Virani et al., 2020). By 2030, 40 % of the US population is 
projected to have one or more forms of CVD (Heidenreich et al., 2011). It 
is estimated that CVD is 50–90 % modifiable and preventable (Bhatna-
gar, 2017). Cardiometabolic outcomes, such as cholesterol, blood pres-
sure level, or insulin resistance represent a critical point of intervention 
to reduce CVD burden. In this context, environmental determinants may 
constitute a promising avenue for CVD prevention. 

Neighborhood deprivation (mainly assessed using principal compo-
nents analysis based on census tract-level socioeconomic variables such 
as income, education or employment) has been associated with higher 
CVD mortality and contributes to CVD risk independently of individual- 
level socioeconomic measures (Diez Roux, 2003; Akwo et al., 2018; Xiao 
et al., 2018). Residing in a deprived neighborhood is also associated 
with increased prevalence of obesity (Powell-Wiley et al., 2013), weight 
gain (Powell-Wiley et al., 2014), accelerated longitudinal blood pressure 
elevation and incident hypertension (Claudel et al., 2018), impaired 
glycemic control and type 2 diabetes (Alvarez-Ramos et al., 2020), in-
sulin resistance (Heald et al., 2017), and metabolic syndrome (MetS) 
(Keita et al., 2014). Improving the environment quality could lead to 
improved population cardiometabolic health throughout the life course 
and ultimately reduce environmental health inequities. 

Environmental determinants of cardiometabolic health are complex 
and include many dimensions: natural, social, and material that do not 
act independently from each other. However, previous studies typically 
analyzed the role of such environmental determinants individually or by 
using composite indexes (Woodward et al., 2007; Bevan et al., 2021), 
potentially leading to methodological and statistical issues. First, envi-
ronmental determinants are often highly correlated, driven by similar 
structural factors, which can lead to multi collinearity posing a chal-
lenge for inferential studies. Second, while composite indexes allow for 
the combination of multiple exposures into a single standardized index, 
their interpretation becomes ambiguous. The single value may be driven 
by different contributing factors and may hinder practical recommen-
dations when designing interventions. Mixture methods such as the 
quantile g-computation approach have been developed to assess several 
exposures simultaneously, and are designed to estimate both indepen-
dent and joint effects of exposures (Keil et al., 2020). Such approaches 
can shed light on how environmental conditions jointly impact car-
diometabolic health. 

In this study, we examined the association between seven distinct 
environmental characteristics (economic, education, healthcare access, 
neighborhood conditions, transportation, social environment, and clean 
environment) and five measures of cardiometabolic health (insulin 
resistance, hypertension, obesity, type 2 diabetes, and metabolic syn-
drome). Data used was from the Community of Mine Study, a cross- 
sectional study in an ethnically diverse population in San Diego, CA. 
We assessed the impact of the seven environmental characteristics 
individually with generalized estimating equation models, and jointly 
using quantile g-computation. 

2. Methods 

2.1. Study population 

The Community of Mine Study was an observational study conducted 
from 2014 to 2017 in San Diego County, CA. The protocol and inclusion 
criteria have been described previously (Jankowska et al., 2019). This 
study includes 602 adults aged 35–80 years old living for at least 6 
months in study census block group, which were selected to maximize 
environmental variation. The main objective of the Community of Mine 
Study is to advance methods of cancer risk exposure assessment by 
measuring participant access and exposure to various environments. 
Participants attended a clinical visit where blood pressure, height, 
weight, and hip/waist circumference were recorded, and blood and 
urine samples were collected. Demographic characteristics (e.g., age, 
gender, race/ethnicity) were collected via self-report survey. For this 

study, we conducted a completed analysis. Study ethics approval was 
obtained from the UCSD IRB (protocol #140510). Signed informed 
consent was obtained from all participants. 

2.2. Exposure assessment 

This study focused on seven environmental characteristics (details in 
Supplementary Table 1), that have been shown in previous research to 
be directly or indirectly associated with cardiometabolic risk factors: (1) 
economic, (2) education, (3) health care access, (4) neighborhood 
conditions, (5) social environment, (6) transportation, and (7) clean 
environment. These characteristics were based on indicators available 
from online public sources: U. S. Census Bureau’s American Community 
Survey (ACS), California Environmental Protection Agency (CalEPA), 
Alcoholic Beverage Commission (ABC), Green Info (parks), the National 
Land Cover Database (tree canopy), US Department of Food and Agri-
culture (supermarket access), US Environmental Protection Agency 
(retail density), and University of California, Berkeley (voter 
participation). 

We adopted these indicators following the work by the Public Health 
Alliance of Southern California who developed the California Healthy 
Place Index (Public Health Alliance of Southern California, 2018). For 
each census tract, each indicator was transformed into a standardized 
scale (z-score) of increasing advantage and averaged for each charac-
teristic (economic, education, health care access, neighborhood condi-
tions, social environment, transportation, and clean environment). 
These indicators used data from the 2011 to 2015 time period (the exact 
date of measurement for each indicator was detailed in Table S1). 
Economic characteristics included poverty, employment, and income 
indicators. Education characteristics was based on the percentage of pre- 
school enrollment, high-school enrollment, and bachelor attainment. 
Health care access was based on percentage of insured adults. Neigh-
borhood characteristics included retail jobs, supermarket access, parks, 
tree canopy, and presence of alcohol establishments. Social character-
istics included two parent household and voting indicators. Trans-
portation characteristics included a healthy commuting indicator 
(percentage of workers commuting by walking, cycling, or transit) and 
automobile access. Clean environment characteristics included con-
centrations of diesel PM, Ozone, PM2.5, and drinking water contaminant 
index. For the seven global characteristics, higher values indicated 
greater advantage. These environmental characteristics were assigned to 
participant’s census tract based on their home address. 

2.3. Cardiometabolic outcomes 

We focused on five cardiometabolic outcomes assessed from 2014 to 
2017: obesity, hypertension, type 2 diabetes, insulin resistance, and 
metabolic syndrome. Obesity was defined by a body mass index (BMI) 
greater than or equal to 30 kg/m2. Hypertension was dichotomized in 
two categories according to blood pressure level: normal or pre- 
hypertension (≤129 mmHg systolic and <80 mmHg diastolic) vs hy-
pertension (≥130 mmHg systolic or ≥80 mmHg diastolic). Type 2 dia-
betes was defined by a blood glucose level higher than 125 mg/dL. 
Insulin resistance was assessed using the Homeostatic Model Assessment 
of Insulin Resistance (HOMA-IR) (Matthews et al., 1985). The HOMA-IR 
index was calculated according to the formula: fasting plasma insulin 
(mlU/L) × fasting plasma glucose (mg/dL) /22.5. Using the NCEP ATP 
III definition (Huang, 2009), the presence of Metabolic Syndrome 
(MetS) (yes/no) was indicated based the presence of at least three of the 
following: 1) increased waist circumference (>102 cm [>40 in] for men, 
>88 cm [>35 in] for women); 2) elevated triglycerides (≥150 mg/dL); 
3) low HDL cholesterol (<40 mg/dL in men, <50 mg/dL in women); 4) 
hypertension (≥130/≥80 mmHg); and 5) impaired fasting glucose 
(≥110 mg/dL). 
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2.4. Statistical analysis 

2.4.1. Single environmental characteristics analysis 
First, we performed generalized estimating equations (GEE) models 

with exchangeable matrixes accounting for participants clustering 
within census tracts. We used modified Poisson regressions to account 
for the high prevalence of the binary outcomes of interest (Knol et al., 
2012). For insulin resistance (HOMA-IR index), we used a linear model. 
All models were adjusted for age, sex, ethnicity (Hispanic/Latino vs non- 
Hispanic), income (coded into 3 categories: less then 30 k, 30 k− 55 k, 
>55 k), and current smoking status (yes, no). BMI (categorized into 
lean/normal (<24.9 kg/m2), overweight (25–29.99 kg/m2), and obese 
(≥30 kg/m2)) was further included as a supplementary covariate for 
insulin resistance, type 2 diabetes, and hypertension outcomes. Envi-
ronmental characteristics were considered as continuous variables 
(transformed by dividing by IQR/2), and then categorized into quartiles 
to look at potential non-linear relationships. 

2.4.2. Mixture approach 
We first examined Spearman correlations between each of the 

environment determinants. Then, for analyzing the effects of exposure 
mixture, we used quantile g-computation. Quantile-g-computation is a 
parametric, generalized-linear-model–based approach that uses a basic 
implementation of g-computation to estimate a mixture effect (Keil 
et al., 2020; Robins, 1986). In this study, quantile g-computation esti-
mates the parameters of a marginal structural model that characterizes 
the change in the expected cardiometabolic outcomes (insulin resis-
tance, hypertension, obesity, type 2 diabetes, metabolic syndrome) 
given a joint intervention on all exposures, conditional on confounders 
(sex, age, race/ethnicity, income, smoking and BMI - except for obesity 
and MetS models). Quantile g-computation yields estimates of the effect 
of increasing all exposures by one quantile, simultaneously. Thus, it 
estimates a “mixture effect”. We employed quantile g-computation with 
Poisson regression for all outcomes except HOMA-IR index for which we 
used a linear regression. The estimated coefficient ψ is interpretable as 
the RR of changing (by increasing) all exposures by one quartile at the 
same time. This approach also provides weights that indicate the 
contribution of the individual components of the mixture to the overall 
estimate. Finally, we examined effect measure modification by gender, 
race/ethnicity, age, and income, and compared effect estimates from 
stratified analyses by using a Cochran Q test for heterogeneity. We used 
the same quantile values across categories of each stratifying variable. 
The R package qgcomp was used to implement g-computation for 
analyzing the effects of exposure mixtures (https://cran.r-project. 
org/web/packages/qgcomp/vignettes/qgcomp-vignette.html). All ana-
lyses were performed with RStudio Version 3.6.5. 

3. Results 

3.1. Study population 

Among the 602 participants from the Community of Mine Study, we 
restricted our analyses to the participants with complete data for ex-
posures, covariates, and outcomes (Figure S1). Finally, 570 participants 
(and 566 participants for diabetes and HOMA-IR measures) were 
included in the analytical sample. Among the 570 participants, 318 were 
female (55.8 %) and 241 were Hispanic/Latino (42.3 %) (Table 1). The 
mean (SD) age was 58.8 years (11.0). Among them, 198 (34.7 %) were 
obese, 49 (8.7 %) had type 2 diabetes, 133 (23.3 %) had hypertension 
and 114 (20 %) had metabolic syndrome. The median (IQR) of HOMA-IR 
was 2.1 (1.3–3.6). 

3.2. Single environmental characteristics analysis 

The spatial distribution of the exposures in the study geographical 
area is presented in Figure S2, which shows important variability across 

census tracts in San Diego County suggesting that risk factors are un-
evenly distributed and could influence the cardiometabolic outcomes 
incidence distribution. 

When analyzing exposures individually (Table 2), insulin resistance 
level was lower when environmental economic, educational and health 
characteristics were higher (indicating greater advantage) (adjusted β 
(95 % CI): − 0.05 (-0.10–0.01), − 0.04 (-0.08–0.01), − 0.04 (-0.08–0.01), 
respectively). When an individual lived in an area with high rates of 
economic and educational attainment and high rates of health insur-
ance, the risk of obesity was reduced (adjusted RR (95 % CI): 0.86 
(0.77–0.95), 0.90 (0.83–0.98), 0.92 (0.85–0.99), respectively). The risk 
of diabetes was also reduced when participants lived in environments 
with better economic and healthcare indicators (adjusted RR (95 % CI): 
0.68 (0.52–0.89), 0.72 (0.60–0.86), respectively). Moreover, a negative 
association was identified between environmental educational charac-
teristic and metabolic syndrome (adjusted RR (95 % CI): 0.85 
(0.76–0.96)). For the neighborhood, social and clean environment 
characteristics, we did not identify any association. We were not able to 
detect any association between hypertension and any of the exposures. 
These associations were consistent when exposures were categorized in 
quartiles (Table S2). 

3.3. Mixture analysis 

Most environmental characteristics were correlated. Figure S3 il-
lustrates Spearman correlations among the seven environmental char-
acteristics scores. Economic, educational, social, and healthcare 
characteristics tended to have high correlations with each other (ρ ≥
0.60). This high correlation structure lends to the use of a mixture 
analysis (i.e., quantile g-computation). 

In the quantile g-computation model (Table 3), changing all envi-
ronmental characteristics by one quartile at the same time (i.e., 
improving the overall characteristics of the environment) while 
considering the collinear structure, was negatively associated with in-
sulin resistance (β (95 % CI): − 0.09 (− 0.18–0.01)). The quantile g- 
computation RR estimates (95 % CI) were 0.93 (0.69–1.24) for hyper-
tension, 0.81 (0.64–1.02) for obesity, 0.59 (0.36–0.98) for diabetes and 

Table 1 
Distribution of participants characteristics from the Community of 
Mine Study (N = 570).  

n, (%)  

Socioeconomic characteristics  
Female 318 (55.8) 
Agea 58.8 (11.0) 
Hispanics/Latinos 241 (42.3) 
Income  
<30 k 161 (28.2) 
30 k to 55 k 134 (23.5) 
>55 k 275 (48.2) 

Cardiometabolic outcomes  
HOMA-IRb (N = 566) 2.1 (1.3–3.6) 
Obesity 198 (34.7) 
Diabetes (N = 566) 49 (8.7) 
Hypertension 133 (23.3) 
Presence of MetS (N = 565) 114 (20.0) 

HOMA-IR: Homeostatic Model Assessment of Insulin Resistance; 
MetS: Metabolic Syndrome. 
Obesity: BMI ≥ 30 kg/m2. Hypertension: ≥130 mmHg systolic or ≥
80 mmHg diastolic. Type 2 diabetes: blood glucose level > 125 mg/ 
dL. Insulin resistance using the HOMA-IR: fasting plasma insulin 
(mlU/L) × fasting plasma glucose (mg/dL) /22.5. MetS: presence of at 
least three of the following: waist circumference > 102 cm for men, 
>88 cm for women; triglycerides ≥ 150 mg/dL; HDL cholesterol < 40 
mg/dL in men, <50 mg/dL in women; hypertension ≥ 130/≥80 
mmHg; and fasting glucose ≥ 110 mg/dL. 

a mean (SD). 
b median (IQR). 
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0.87 (0.64–1.19) for metabolic syndrome. 
The weights representing the proportion of the positive or negative 

partial effect in the quantile g-computation models were shown in Fig. 1. 
For obesity, the environmental characteristics with the highest negative 
weights (i.e., those who contribute the most to the association) included 
economic, education, and health care access. For diabetes, the envi-
ronmental characteristic with the highest negative weights was health 
care access, and for insulin resistance, it was educational characteristics. 

When we stratified by gender, ethnicity, age, or income (Table S3), 
associations for the mixture analysis were more pronounced (especially 
for insulin resistance, obesity, and diabetes) among women in compar-
ison to men, among non-Hispanic in comparison to Hispanic/Latino 
participants, and among older (age ≥ 60) than among younger partici-
pants. We identified heterogeneous effect for the association between 
environmental characteristics and obesity according to ethnicity. The 
positive effect of improving all environmental characteristics by one 
quartile on obesity was found only among non-Hispanics participants 
(Cochran test p-value: 0.04). 

4. Discussion 

Among the Community of Mine Study in San Diego County, we 
examined the effect of seven environmental characteristics individually 
and as a mixture on cardiometabolic health. We found that living in area 

where the environmental educational, economic, and health care access 
characteristics were good was associated with reduced insulin resistance 
(i.e., HOMA-IR level), and lower risk of type 2 diabetes, obesity, and 
metabolic syndrome. We also considered the important collinearity 
between these exposures and employed a mixture analysis to investigate 
the potential effect of environmental changes simultaneously. Using g- 
computation analysis, we estimated that a simultaneous increase (i.e., 
improvement) in all environmental characteristics by a quartile was 
associated with a reduced level of HOMA-IR and a decreased risk of type 
2 diabetes and obesity. These joint effects were mostly driven by health 
care access, economic, and educational characteristics. 

Previous studies have highlighted an effect of living environment on 
cardiometabolic health, especially with neighborhood deprivation 
(Claudel et al., 2018; Alvarez-Ramos et al., 2020; Heald et al., 2017; 
Keita et al., 2014) or air pollution (Yu et al., 2020; Kim et al., 2019). 
Generally, these studies look at single exposures, adjusting for some 
other environmental exposures or using a composite score. Quantile g- 
computation has recently been proposed to study the effects of complex 
exposure mixtures. This approach has been used to assess exposures 
such as metal (White et al., 2020; Xu et al., 2020; Niehoff et al., 2020) 
and chemicals (Lebeaux et al., 2020; Lin et al., 2021; Parada et al., 
2021). To the best of our knowledge, only one study used g-computation 
to examine the effect of social/environmental exposure mixtures on fetal 
growth (Goin et al., 2020). 

To identify effective interventions and translate from the evidence to 
reductions in CVD, we need to obtain unbiased effect estimates linking 
environmental determinants and cardiometabolic health. Causal infer-
ence regarding the effects of environmental determinants of health is 
challenging because adverse exposures tend to spatially cluster, so it is 
difficult to isolate the effect of, for example, living in a low-income area 
from living in a polluted area. Quantile g-computation, an approach 
initially developed to study chemical mixtures, evaluates the joint ef-
fects of multiple environmental characteristics, rather than single 
characteristics, and allows accurate identification of risk factors and 
assessment of interactions (Bellavia et al., 2019). This approach allows 
for development of more realistic and targeted public health in-
terventions. Realistic because we know that environmental character-
istics are correlated, thus changing geographical distributions of money 
and resources will impact several environmental characteristics, from 
access to health care to air pollution. Targeted because we can distin-
guish which specific modifiable environmental characteristics will 
impact cardiometabolic health the most. 

Environmental cardiovascular health inequities can be explained by 
differences in medical access, material deprivation, behavioral differ-
ences (diet, physical activity), exposure to psychosocial stressors, 
exposure to physical characteristics like built environment (buildings, 
natural areas, parks, transport infrastructures), or exposure to physical 

Table 2 
Associations between continuously measured environmental characteristics and cardiometabolic outcomes (N = 570).   

Economic Education Health care access Neighborhood Social Transportation Clean 
environment 

β (95 % CI)        
Insulin Resistance (N =

566) 
− 0.05 
(− 0.10–0.01) 

− 0.04 
(− 0.08–0.01) 

− 0.04 
(− 0.08–0.01) 

0.00 
(− 0.03–0.02) 

− 0.01 
(− 0.06–0.04) 

− 0.02 
(− 0.04–0.01) 

0.01 
(− 0.02–0.03) 

RR (95 % CI)        
Hypertension 0.92 (0.81–1.05) 1.01 (0.90–1.13) 0.94 (0.84–1.05) 0.99 (0.91–1.07) 0.96 (0.85–1.08) 0.98 (0.92–1.04) 1.01 (0.94–1.08) 
Obesity 0.86 (0.77–0.95) 0.90 (0.83–0.98) 0.92 (0.85–0.99) 0.96 (0.91–1.02) 0.92 (0.83–1.01) 0.97 (0.92–1.02) 1.03 (0.98–1.08) 
Diabetes (N = 566) 0.68 (0.52–0.89) 0.90 (0.74–1.08) 0.72 (0.60–0.86) 0.95 (0.85–1.06) 0.88 (0.69–1.11) 0.89 (0.78–1.01) 0.98 (0.88–1.10) 
MetS (N = 565) 0.97 (0.82–1.14) 0.85 (0.76–0.96) 0.97 (0.85–1.10) 0.93 (0.87–1.00) 1.14 (0.98–1.33) 0.96 (0.89–1.04) 1.04 (0.97–1.13) 

HOMA-IR: Homeostatic Model Assessment of Insulin Resistance; MetS: Metabolic Syndrome. 
Obesity: BMI ≥ 30 kg/m2. Hypertension: ≥130 mmHg systolic or ≥ 80 mmHg diastolic. Type 2 diabetes: blood glucose level > 125 mg/dL. Insulin resistance using the 
HOMA-IR: fasting plasma insulin (mlU/L) × fasting plasma glucose (mg/dL) /22.5. MetS: presence of at least three of the following: waist circumference > 102 cm for 
men, >88 cm for women; triglycerides ≥ 150 mg/dL; HDL cholesterol < 40 mg/dL in men, <50 mg/dL in women; hypertension ≥ 130/≥80 mmHg; and fasting glucose 
≥ 110 mg/dL. 
Models were adjusted for sex, age, race/ethnicity, income, smoking and BMI (except for obesity and MetS). 

Table 3 
Quantile g-computation estimates for the association between increasing all the 
environmental characteristics by a quartile within the overall mixture (N =
570).  

Cardiometabolic outcomes Quantile g-computation estimates*  

β (95 % CI) 
Insulin Resistance (N = 566) − 0.09 (− 0.18–0.01)  

RR (95 % CI) 
Hypertension 0.93 (0.69–1.24) 
Obesity 0.81 (0.64–1.02) 
Diabetes (N = 566) 0.59 (0.36–0.98) 
MetS (N = 565) 0.87 (0.64–1.19) 

HOMA-IR: Homeostatic Model Assessment of Insulin Resistance; MetS: Meta-
bolic Syndrome. 
Obesity: BMI ≥ 30 kg/m2. Hypertension: ≥130 mmHg systolic or ≥ 80 mmHg 
diastolic. Type 2 diabetes: blood glucose level > 125 mg/dL. Insulin resistance 
using the HOMA-IR: fasting plasma insulin (mlU/L) × fasting plasma glucose 
(mg/dL) /22.5. MetS: presence of at least three of the following: waist circum-
ference > 102 cm for men, >88 cm for women; triglycerides ≥ 150 mg/dL; HDL 
cholesterol < 40 mg/dL in men, <50 mg/dL in women; hypertension ≥ 130/ 
≥80 mmHg; and fasting glucose ≥ 110 mg/dL. 
*Models were adjusted for sex, age, race/ethnicity, income, smoking and BMI 
(except for obesity and MetS). 
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environmental hazards (air pollution, noise) (Bhatnagar, 2017). Using 
quantile g-computation, we can see which characteristic contributes the 
most to the association. In this study, the largest positive effects on 
cardiometabolic health were mainly due to compositional variables (e. 
g., percentage of population employed, enrolled in school, or insured in 
the census tract) and, to a lesser extent, to contextual variables like 
neighborhood and clean environment. This finding confirms the 
importance of neighborhood determinants on cardiometabolic out-
comes and highlights the synergistic effects of such contextual and 
compositional determinants. This helps solving the dualism of “context” 
and “composition” related to their tightly interrelation, and the mutu-
ally reinforcing and reciprocal relationship between people and place, as 
explain by Cummins et al. (Cummins et al., 2007). 

The strengths of our study include biomarker measurement and in-
clusion of large numbers of Hispanic participants. For the first time, we 
employed recently developed analytic methods by Keil et al, the quantile 
g-computation to assess the association between environmental de-
terminants and cardiometabolic outcomes. This approach is an exten-
sion of WQS regression with several advantages due to the flexibility of 
g-computation, for example quantile g-computation does not require a 
directional homogeneity assumption (Keil et al., 2020). However, it will 
be interesting to explore the deviations of linearities in relation to the 
mixture in future studies. 

5. Limitations 

Our study has also several limitations. First, our population sample is 
small, and participants were recruited in San Diego County limiting the 
generalization of these results. Second, environmental characteristics 
were assessed at the census tract level, which are imperfect proxies for 
the places in which people live their lives (Osypuk et al., 2007). Third, 
this is a cross sectional study and so environmental characteristics, and 
health measures were assessed at one time point. We know that exposure 
timing and duration could be important to consider, as they may have 
different effects on individuals throughout the life course due to physi-
ologically sensitive developmental periods or socially defined periods of 
vulnerability (Glymour et al., 2014). Finally, even though our study 
includes an ethnically diverse population, it should be confirmed in 
other cohorts with more racial diversity. 

6. Conclusions 

Better understanding of how our multidimensional living environ-
ment alters cardiometabolic health informs us on how to effectively 
address environment-associated CVD using appropriate prevention 
policies. Our findings highlight the importance of jointly analyzing 
impacts of contextual and compositional neighborhood determinants of 
cardiometabolic health, to ultimately help reducing the global CVD 
burden and health inequalities. 
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