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Abstract

Small therapeutic peptides represent a promising field for the treatment of pathologies such

as cardiac diseases. However, the lack of proper target-selective carriers hampers their

translation towards a potential clinical application. Aptamers are cell-specific carriers that

bind with high affinity to their specific target. However, some limitations on their conjugation

to small peptides and the functionality of the resulting aptamer-peptide chimera exist. Here,

we generated a novel aptamer-peptide chimera through conjugation of the PDGFRβ-target-

ing Gint4.T aptamer to MP, a small mimetic peptide that via targeting of the Cavβ2 subunit of

the L-type calcium channel (LTCC) can recover myocardial function in pathological heart con-

ditions associated with defective LTCC function. The conjugation reaction was performed by

click chemistry in the presence of N,N,N’,N’,N”-pentamethyldiethylenetriamine as a Cu (I)

stabilizing agent in a DMSO-free aqueous buffer. When administered to cardiac cells, the

Gint4.T-MP aptamer-peptide chimera was successfully internalized in cells, allowing the

functional targeting of MP to LTCC. This approach represents the first example of the use of

an internalizing aptamer for selective delivery of a small therapeutic peptide to cardiac cells.

Introduction

Therapeutic peptides for clinical applications have recently obtained increasing interest, reach-

ing over 60 FDA-approved products on the market and more than 150 mimetic peptides in

clinical trials [1, 2]. This achievement has been facilitated by a range of novel peptide technolo-

gies, allowing for dedicated chemical design strategies to avoid aggregation, increase solubility,

and extend the stability of peptides [3, 4]. On the other hand, cell membrane permeability and

low cell-specific targeting are still challenging issues and despite some encouraging results

obtained with a combined use of cell penetrating peptides, such as TAT and R7W [5], these

issues weaken the safe and efficient clinical application of current therapeutic peptides.
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Recently, we developed a cell-penetrating therapeutic peptide (R7W-MP), which is

endowed with the ability to recover myocardial contractility in pathological heart conditions

via restoration of L-type calcium channel (LTCC) density at the plasma membrane [6, 7].

LTCC is a multi-protein complex composed of a pore-forming Cavα1.2 unit and accessory

subunits, such as the cytoplasmic Cavβ2, which is the chaperone of the pore unit. In the heart,

LTCC plays a critical role in regulating cardiac contractility [8]. In line with this, acquired and

genetically determined LTCC dysfunctions have been causally associated with various condi-

tions of human cardiovascular pathologies [9–12]. R7W-MP is composed of a R7W cell-pene-

trating peptide fused to an 11 acid peptide (MP), which is the active component of the

therapeutic molecule. MP, which mimics an amino acidic stretch of the C-terminal tail of the

Cavβ2 cytosolic chaperone, is designed to specifically target the Tail Interacting Domain (TID)

within the Cavβ2 globular domain, facilitating the restoration of Cavα1.2 protein density at the

plasma membrane in heart conditions associated with altered LTCC levels and function [6].

Mechanistically, R7W-MP restores at the plasma membrane the reduced protein levels of dys-

regulated Cavα1.2 by acting on both reverse (degradation) and forward (maturation) traffick-

ing of the channel protein, thereby recovering LTCC density. However, despite the

encouraging results obtained for the therapeutic treatment of LTCC-related cardiac condi-

tions, such as diabetic cardiomyopathy [6, 7], the use of R7W-MP faces limitations due to the

broad tissue targeting of the R7W moiety, which is not cell specific and may thereby lead to

potential side effects at other locations where the Cavβ2 target is expressed. This limitation

highlights the critical need for the identification of novel and more cell-specific targeting

carriers.

Aptamers, which are short single stranded oligonucleotides of DNA, RNA, or modified

RNA and DNA, are emerging as a very interesting class of molecules that can fold into com-

plex tertiary structures and bind with high affinity to a specific target [13]. In particular, iso-

lated from combinatorial libraries by a Systematic Evolution of Ligands by Exponential

enrichment (SELEX) process [14, 15], aptamers can be designed for the recognition of any sur-

face receptor undergoing receptor-mediated cell internalization, thereby serving as cell-selec-

tive carriers for a secondary reagent. Thus, by conjugation to specific aptamers, off-target

effects of therapeutic peptides might be greatly reduced [16]. Moreover, compared to other tar-

geting ligands and monoclonal antibodies, aptamers show many additional advantages, such

as low toxicity, high specificity, and superior stability in biological fluids.

Here, we addressed the specific delivery of MP to cardiac cells and developed a novel

approach based on direct conjugation of the therapeutic peptide to a cell internalizing aptamer

as carrier. In particular, we designed a novel aptamer-peptide chimera and conjugated the

therapeutic MP directly to Gint4.T, an aptamer specifically binding to the platelet-derived

growth factor receptor-β, PDGFRβ [17], which is a receptor expressed in cardiomyocytes [18].

Results obtained with the cell-targeting Gint4.T-MP chimera provide the proof-of-concept for

a significant step forward towards a safe and selective use of MP for the treatment of cardiac

disorders associated with LTCC abnormalities [9, 10, 19]. Furthermore, the development of

aptamer-peptide conjugates has a broader applicability for the selective delivery and intracellu-

lar penetration of therapeutic peptides in several diseases, including cancer [13].

Material and methods

Peptide synthesis

Peptides were obtained by solid phase synthesis using standard protocols [20]. Peptides were

purified by HPLC on a Phenomenex Axia Jupiter 4 μm Proteo 90 Å (250x21.2) column using a

gradient of acetonitrile (0.1% TFA) in water (0.1% TFA) from 5 to 50% in 20 minutes and
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characterized by LC-MS on a LC-MS Agilent Technologies 6230 ESI-TOF using a Phenom-

enex Jupiter 3 μm C18 (150x2.0 mm) column.

MP sequence: NorLeu-DQRPDREAPRS. Calculated mass (Da): 1479.3510; found:

740.8723 [M+2H]2+, 494.2513 [M+3H]3+.

Scramble sequence: NorLeu-DQPPSRRDERA. Calculated mass (Da): 1479.3510; found:

740.8723 [M+2H]2+, 494.2513 [M+3H]3+.

Protocol for the conjugation of peptides to the aptamer Gint4.T

5 nmol of Gint4.T aptamer, equipped with a 3’-propargyl adenosine at the 3’ end in place of

standard adenosine (MW: 10700 Da) were reacted with 7.5 nmol of MP (or scramble, scr) in

100 mM Tris HCl, pH 7.5 buffer containing CuSO4 • 5H2O (5 μmol), ascorbic acid (0.1 μmol),

and pentamethyldiethylenetriamine (PMDETA) (0.01% v/v) in a total reaction volume of

500 μL. The reaction proceeded at room temperature under argon for 2 hours. The crude was

stored at -20˚C. The sample was purified by PAGE purification on a 12% acrylamide 7 M urea

gel, using Gint4.T as control.

RT-PCR of the purified sample was carried out to demonstrate the presence of the aptamer

in the conjugate. 500 ng of Gint4.T and Gint4.T-MP were retro-transcribed with Reverse

Transcriptase M-MuLV (Roche Life Science) and amplified with FIREPol DNA Polymerase

(Microtech) using specific primers: Gint4.T FW: 5’ TAATACGACTCACTATAGGGTGTCGTG
GGGCA; Gint4.T RV: 5’ TGTCGAATTGCATTTACT.

Alkaline hydrolysis of the pure sample was also performed to demonstrate the presence of

the peptide moiety in the conjugate. Briefly, the conjugate (4.4 μg in 18 μL H2O) was diluted

with 12 μL Na2CO3 (4 mM), NaHCO3 (46 mM) buffer, pH 9.2 and incubated at 95˚C for 90

minutes. At the end of the reaction the crude was analyzed by LC-MS as described earlier.

Cell culture conditions and treatment

Cardiac muscle cells (HL-1) were cultured in Claycomb medium (Sigma) supplemented with

10% FBS (Sigma), 100 U/ml penicillin, 0.1 mg/ml streptomycin (Euroclone), 1% Ultragluta-

mine 1 (Lonza), and 0.1M Norepirephrine (Sigma) in a gelatin/fibronectin pre-coated flask.

The treatment with peptides (R7W-MP or R7W-scr) or aptamers (Gint4.T, Gint4.T, or Gint4.

T-scr) was performed in serum-free medium (Opti-MEM I reduced-serum medium, Thermo

Fisher Scientific). After 24 h, cells were collected and analyzed.

Calcium assay

The Fluo-4 Direct Calcium Assay was performed as described by the manufacturer (Thermo

Fisher Scientific). Briefly, HL-1 cells, pretreated as described, were stimulated with Fluo-4

Direct calcium reagent (Thermo Fisher Scientific) and signals were detected one hour post

treatment. 10 mM Bay K8644 (Sigma) was added to cells and signals were immediately

detected using a Synergy 4 instrument (BioTek). Results were analyzed using Prism 6.0 soft-

ware (GraphPad Software, CA).

Western blot analyses

Protein expression was evaluated by Western blot analyses. Samples were homogenized in

RIPA buffer (150 mM NaCl, 10 mM Tris, pH 7.2, 0.1% SDS, 1% Triton-X100, 5 mM EDTA,

100 μM Na3VO4, 10 mM NaF), and Protease inhibitor 1X (Thermo Fisher Scientific), loaded

onto a 4–10% acrylamide gradient gel, separated by electrophoresis, and transferred to a nitro-

cellulose membrane (Millipore). Primary antibodies against the following proteins were used:
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Cavα1.2 (Abcam), GAPDH (14C10) (Cell Signaling Technology). Goat anti-mouse-HRP and

Goat anti-rabbit-HRP (Thermo Fisher Scientific) were used as secondary antibodies. ECL

(Millipore) was used for protein detection using a Chemidoc MP Imaging System (Biorad).

Image J software (National Institutes of Health) was used for densitometry analysis.

Statistical analysis

Prism 6.0 software (GraphPad Software, CA) was used to assess normality of the data using the

Kolmogorov-Smirnov (K-S) test and for statistical comparisons using Dunn’s test.

Results and discussion

Aptamer-peptide conjugation

To provide guidance for targeting of MP to the heart, we conjugated it to the Gint4.T aptamer,

which we previously showed promotes the functional internalization of miRNAs and anti-

miRs in a PDGFRβ-dependent manner [21, 22]. This was achieved through Cu (I)-mediated

click chemistry, an approach poorly explored mainly due to difficulties associated with RNA

degradation caused by Cu (I) disproportionation and subsequent redox reactions. Ligands,

such as tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA) [23] or the water-soluble

tris(3-hydroxypropyl-triazolylmethyl)amine (THPTA) [24], have been employed to stabilize

Cu (I) and prevent the metal disproportionation reaction. In addition, the combination of

TBTA with DMSO has recently been employed for the successful conjugation of RNA to pep-

tides [25]. Nonetheless, this possibility still faces critical issues as DMSO may affect RNA sec-

ondary structure [26] and thereby disturb the aptamer-mediated cell internalization. Thus, we

here decided to perform all reactions in DMSO-free aqueous buffers using N,N,N’,N’,N”-pen-

tamethyldiethylenetriamine (PMDETA) as a Cu (I) stabilizing agent for the conjugation of the

RNA aptamer Gint4.T to MP. The advantage of PMDETA is its water solubility and ease to

separate from the reaction mixture upon purification of the conjugate [27]. The sequence of

the aptamer employed for the conjugation is identical to that previously reported by our group

[17] with the exception of the 3’-propargyl adenosine, which was used for the conjugation in

place of standard adenosine at the 3’ end. The introduction of 2’-fluoro modified pyrimidine

bases grants an increased stability of the RNA aptamer. The reaction is performed between the

aptamer and the MP peptide, which is modified at its N-terminus by an azido-norleucine resi-

due (Fig 1A). The extent of the reaction, which smoothly proceeded in the buffer using a slight

excess of the peptide in 2 hours, was monitored by migration analysis of the resulting high

molecular weight product through urea-acrylamide electrophoresis (Fig 1B). Purification of

the Gint4.T-MP conjugate was then achieved by PAGE and the final product assessed by

RT-PCR analysis to confirm that the Gint4.T sequence is indeed present in the purified high

molecular weight Gint4.T-MP (Fig 1C). To further characterize the conjugate and confirm the

presence of the peptide in the isolated compound, purified Gint4.T-MP was subjected to alka-

line degradation (to remove the RNA) followed by LC-MS analysis. Results showed a product

with a molecular weight of 2135 Da consistent with the degradation of the aptamer up to the

last two bases at the 3’ end (i.e. the clicked propargyl adenosine and the 2’-fluoro-cytosine,

data not shown).

Gint4.T-MP targets cardiac cells and restores LTCC protein levels

To determine whether the Gint4.T-MP chimera facilitates cell internalization of the MP, thus

allowing its therapeutic effects on restoring Cavα1.2 protein stability, we next explored its

recovery effect in a cardiac context where all LTCC players are physiologically expressed. In

Aptamer-peptide delivery to cardiac cells
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line with this, HL-1 cardiac cells were subjected to serum starvation, which corresponds to a

LTCC destabilizing condition [6], whereafter Cavα1.2 protein levels were evaluated with or

without treatment with either Gint4.T-MP or R7W-MP conjugates. As previously shown by

our group [6], treatment of cardiac cells with R7W-MP, where the MP is fused to R7W cell

penetrating peptide, allowed for a full restoration of Cavα1.2 amounts, whereas no such effect

was obtained with R7W fused to a scramble peptide (R7W-scr) (Fig 2). Notably, administra-

tion of Gint4.T-MP lead to similar effects and successfully recovered the protein levels of

Cavα1.2 to levels comparable to those obtained by R7W-MP administration or in serum-rich

Fig 1. Gint4.T-MP conjugation. (A) Strategy for the conjugation of Gint4.T aptamer and MP peptide. (B) Analysis of

click chemistry reactions between Gint4.T 3’-propargyl adenosine and MP by 12% acrylamide 7 M urea

electrophoresis in two different reaction conditions: 1:1,25 (aptamer:peptide) ratio and 1:3 (aptamer:peptide) ratio.

The star indicates the Gint4.T/peptide conjugates. (C) Characterization of the aptamer portion by RT-PCR. Gint4.T

and Gint4.T-MP were reverse-transcribed, amplified, and loaded on a 3% agarose gel. The star indicates Gint4-T,

which is 53 nt. Neg. Ctl RT and Neg. Ctl PCR refers to the mix of reverse-transcription and PCR without template.

https://doi.org/10.1371/journal.pone.0193392.g001
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cells (Fig 2). On the other hand, no effect was obtained when the Gint4.T chimera conjugated

to a scramble peptide (Gint4.T-scr) was applied.

Gint4.T-MP recovers LTCC-dependent calcium fluxes in cardiac cells

To functionally evaluate the Gint4.T-MP effect on channel density, we next performed a fluo-

rescence-based assay of LTCC-dependent intracellular calcium fluxes in live cells. HL-1 cells

were treated with the LTCC-specific agonist (BAYK8644), which through opening of the chan-

nel leads to an increase in intracellular calcium, which was measured in a fluorometric cell-

based assay. As expected, a dramatic drop in intracellular calcium accumulation was observed

in serum-starved HL-1 cardiac cells compared to the control state (Fig 3 and S1 Table). On the

Fig 2. Gint4.T-MP conjugate reestablishes LTCC protein levels in HL-1 cardiac cells. Western Blot analysis for

Cavα1.2 in total protein lysates from HL-1 cells treated as indicated.

https://doi.org/10.1371/journal.pone.0193392.g002

Fig 3. Gint4.T-MP conjugate reestablishes intracellular calcium levels in HL-1 cardiac cells. Intracellular calcium

analysis in HL-1 cells treated as indicated. (n = 6, Dunnett’s multicomparison test). Individual data points are available

upon request.

https://doi.org/10.1371/journal.pone.0193392.g003
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other hand, treatment with increasing doses of Gint4.T-MP resulted in an incremental recov-

ery of LTCC-dependent intracellular calcium accumulation. This effect was not obtained

when the same doses of either Gint4.T-scr or unconjugated Gint4.T were applied. The results

achieved with Gint4.T-MP, which are causally linked to the effective intracellular targeting of

MP to its cytosolic target Cavβ2, were similar to those obtained with the administration of the

R7W-MP. Altogether, these data support the concept that the therapeutic MP, when conju-

gated to the cell internalizing Gint4.T aptamer, can be efficiently directed to PDGFRβ-express-

ing cells and internalized for functional targeting of LTCC.

Possessing key advantages over large proteins or antibodies, including easy synthesis and

low toxicity, peptides are emerging as highly effective therapeutics for the treatment of impor-

tant fatal diseases, such as neoplastic and cardiovascular diseases [1, 2]. However, although

cell-penetrating therapeutic peptide chimeras with high therapeutic target specificity have

been developed, including the R7W-MP peptide [6], the lack of selective targeting to the dis-

eased organ and tissue is a severe obstacle for their effective translation to the clinic. Our dem-

onstration that conjugation of R7W-free MP to an internalizing aptamer can mediate its

uptake in cardiac cells and functional targeting of cytosolic Cavβ2, may open up for therapeutic

applications that are more selective to the heart. Using Gint4.T, we provide the proof-of-con-

cept that the approach is effective and might be exploited within the context of the growing

number of therapeutic peptides. However, due to the binding of Gint4.T to the PDGFRβ cell-

surface receptor, which in addition to cardiomyocytes is expressed also in other cell types,

such as smooth muscle cells and fibroblasts [28–30], further studies are required to identify

internalizing aptamers with higher selectivity for the heart.

Furthermore, our proposed conjugation is achieved under favorable conditions, which

include i) the absence of co-solvents potentially affecting the structure of the aptamer, and ii)
the use of a water-soluble and cost-effective Cu (I) stabilizing agent, such as PMDETA.

Conclusions

In conclusion, we here report a strategy that provides more selective delivery of MP therapeu-

tic peptide to cardiomyocytes. To the best of our knowledge, this represents the first example

of the use of an internalizing aptamer for delivery of a small therapeutic peptide to cardiac

cells.
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