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Abstract

Harbored as relics of ancient germline infections, human endogenous retroviruses (HERVs) now 

constitute up to 8% of our genome. A proportion of this sequence has been co-opted for molecular 

and cellular processes, beneficial to human physiology, such as the fusogenic activity of the 

envelope protein, a vital component of placentogenesis. However, the discovery of high levels of 

HERV-K mRNA and protein and even virions in a wide array of cancers has revealed that HERV-

K may be playing a more sinister role–a role as an etiological agent in cancer itself. Whether the 

presence of this retroviral material is simply an epiphenomenon, or an actual causative factor, is a 

hotly debated topic. This review will summarize the current state of knowledge regarding HERV-K 

and cancer and attempt to outline the potential mechanisms by which HERV-K could be involved 

in the onset and promotion of carcinogenesis.
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One of the most striking findings that arose from the publication of the human genome 

sequence was the enormous swathe of transposable elements (TEs) it harbored.1 

Constituting ~45% of the entire sequence, they have co-evolved alongside the protein-

coding component to contribute to modern-day phenotypes in ways which are still being 

deciphered. A subset of TEs, known as human endogenous retroviruses (HERVs), are 

ancestral relics of germline infections to which the genome succumbed over the course of 
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evolution. The progenitors of these retroelements were exogenous retroviruses, which 

infected germline cells, subsequently became endogenized and subject to the laws of 

Mendelian inheritance.2 HERVs share the genomic structure universal to all retroviruses: 

5′LTR-gag, pro, pol, env–3′LTR. In retroviruses, these open reading frames (ORFs) encode 

viral polyproteins, which, after post-translational modification, become the critical structural 

and functional proteins, such as the reverse transcriptase or the transmembrane envelope, 

while the long terminal repeats (LTRs) specify promoter, enhancer and polyadenylation 

signals.3 The vast majority of HERVs have acquired inactivating mutations such as stop 

codons or frameshifts, inhibiting the translation of functional proteins and thus making the 

production of a full, infectious retrovirus particle, from a single genetic locus, an 

impossibility.4

The HERV-K group is class II HERVs and exhibits closest homology to betaretroviruses, 

which cluster as class II retroelements. It consists of 11 subgroups (HML-1 to HML-11), 

each as the result of a separate germline infection.5 One of these subgroups, HML-2, has 

been subject to intensive research because it maintains an unrivalled coding competence 

with many of its proviruses maintaining complete, or near-complete, ORFs for all viral 

polyproteins (Fig. 1).3 Finally, it represents the most recently integrated HERV group into 

the human genome. Some HML-2 proviruses are both human specific and/or polymorphic 

indicating integration events subsequent to the human–chimpanzee split and within modern 

humans. This likely contributes to the fact that HML-2 is the least defective and most active 

retroviral family. In this regard, HML-2 is considered the most interesting HERV group to 

study in terms of potential oncogenic activity.

Overall, HML-2 is represented in the genome by 91 proviruses and 944 solitary (solo) LTRs. 

Solo LTRs are the result of unequal crossing over due to highly homologous sequences.5 

Two main types of HERV-K (HML-2) are found in humans: type I is characterized by a 292 

base pair deletion at the boundary of the pol and env (envelope) genes (Fig. 1), whereas type 

II lacks it. The deletion in type I proviruses leads to an alternative splicing event culminating 

in a protein known as Np9, while type II proviruses express a complete accessory protein 

known as Rec.3

HERVs play an important role in normal physiological function. For example, the protein 

syncytin 1 mediates cellular fusion of the placental trophoblast and is encoded by an env 

gene from the HERV-W group.6 Another syncytin— known as syncytin 2—plays a similar 

physiological role and is encoded by an env gene from the HERV-FRD group.7 Finally, the 

presence of HERVs, in particular their LTR elements, has added an additional layer of 

complexity to our genome, in that many of these LTRs have been co-opted by protein-coding 

genes and serve as regulatory elements directing tissue-specific expression.8

The association of HERVs with disease has garnered the most attention from researchers. 

HERVs have been implicated in autoimmune disorders,9,10 but with conflicting reports 

particularly involving multiple sclerosis (MS).11–13 Recent research refutes a role for 

deregulated HERV-W env in MS lesions, including the high-level-transcribed ERVWE1 
locus encoding Syncytin-1.14 In this review, we discuss the most recent developments in the 

field of HERV-K and human tumor biology, in particular emerging evidence of a role for 
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HERV-K in immunomodulation and the presence of HERV-K in tumor-derived exosomes, 

further indicating the potentially important role of HERV-K in human carcinogenesis.

HERV-K and Solid Tumors

To date there is evidence for HML-2 activation in ovarian cancer,15,16 melanoma,17–19 

breast,20–24 prostate,25–28 lymphomas,29 leukemias30 and sarcomas.31 In the 1980s, Ono et 
al. successfully cloned HML-2, thanks to its similarity to mouse mammary tumor virus 

(MMTV).32 They also found that stimulation of human breast cancer cell lines with female 

steroid hormones led to an upregulation of HML-2 mRNA.33 Several groups followed with 

reports of HML-2 mRNA and viral particle expression in breast cancer.29,34–36 Wang-

Johanning et al. refined this work to produce data that accurately quantified HML-2 env 
transcripts and spliced transcripts in breast tumors demonstrating elevated levels compared 

to unaffected controls.20,21 They also demonstrated an association between HML-2 Env 

protein expression in breast tumors and increased risk of lymph node metastasis and poor 

outcome in two separate US cohorts and a Chinese cohort of breast cancer patients,37,38 

corroborating the findings of Golan et al.23 Most recently, Wang-Johanning et al. 
demonstrated that HML-2 serum mRNA and anti-Rec antibody titers are predictive of early-

stage breast cancer. Additionally, HERV-K-gag copy number tended to be higher in breast 

cancer patients with a primary tumor who later on developed the metastatic.39

High levels of expression of HML-2 env, rec and np9 mRNA, and Env protein have been 

reported in ovarian cancer cell lines and tumors,16 whereas in another study Np9 mRNA was 

not detectible in two ovarian tumors tested.40 One possible mechanism of altered HML-2 

expression in ovarian cancer may be due to alterations in its methylation status.15

Retrovirus-like particles and the expression of HML-2 mRNA and proteins are detectable in 

prostate cancer tissues. Ishida et al. isolated a HML-2 Gag protein in the serum of a prostate 

cancer patient using serological recombinant cDNA expression cloning (SEREX) 

technology.25 They subsequently detected HML-2 gag mRNA in the serum of six of nine 

prostate cancer patients, but failed to detect HML-2 gag mRNA in LnCAP, DU145 or PC3 

prostate cancer cells.25 Gene fusions are a frequent occurrence in prostate cancer, the 

majority of which involve the fusion of the transcription factors ETS translocation variant 

(ETV1) or ETS-related gene (ERG1), to the transmembrane protease, serine 2 (TMPRSS2). 

In these fusions, the androgen-responsive TMPRSS2 drives expression of the ETV1 or 

ERG1 oncogenes. Recently, ETV1-HERV-K fusions have been described, corresponding to 

the 5′-untranslated region (UTR) of HERV-K-22q11.2326 and HERV-K17.41 Additionally, 

the ETV1-HERV-K-22q11.23 fusion is also inducible in LNCaP in response to androgen,26 

similar to HML-2 induction by estrogen and progesterone in breast cancer cell lines.33

Goering et al. detected significant expression of HERV-K-22q11.23 and HERV-K17 in the 

androgen-responsive prostate cancer cell lines 22Rv1, LNCaP and MDA-PCa-2b.27 Normal 

prostate cells and androgen-insensitive prostate cancer cells (PC-3, DU-145 and BPH-1) 

exhibited expression near the limit of detection.27 Expression of two other proviruses HERV-

K-11q23.3 and HERV-K-22q.11.21 was not detectable in prostate cancer cell lines. 

Assessing HERV-K-22q11.23 5′UTR-gag, env and Np9 gene expression in prostate tumors 
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(n = 45) versus benign tissue (n = 11), the expression of the 5′UTR-gag and env region was 

significantly elevated in tumors compared to benign tissues. Np9 was detectable only in a 

subset of carcinomas (18/45). In contrast, HERV-K17 was reduced in prostate tumors 

compared to benign. Where HERV-K-22q11.23 and HERV-K17 were expressed, they 

correlated with PSA levels, suggesting that HERV-K-22q11.23 and HERV-K17 

retroelements are under androgen-inducible control, whereas HERV-K-11q23.3 and HERV-

K-22q.11.21 are not.27 Wallace et al. demonstrated that the HERV-K gag mRNA in 

peripheral blood mononuclear cells (PBMCs) is predictive of diagnosis with prostate cancer 

and correlates with elevated plasma interferon-γ and IP10.42

HERV-K and Hematological Malignancies

Brodsky et al. discovered a potential role for HERV-K in leukemia. They showed that 

HML-2 pol mRNA was expressed in the blood of patients suffering from chronic myeloid 

leukemia (CML) and acute myeloid leukemia (AML).43,44 Others also reported that HML-2 

gag mRNA is present at higher levels in PBMCs of leukemia patients compared to healthy 

controls.30 Similar studies have reported HML-2 viral particles in lymphomas29 and HML-2 

env expression in the H9 human T-cell lymphoma cell line.45 Additionally, the human 

lymphotropic herpesvirus Epstein–Barr virus (EBV), which has been implicated in the 

development of lymphoma, was shown to induce HERV-K18 env gene expression. The 

HERV-K18 env has been reported to have superantigen (SAg) activity by several groups,
46,47 whereas others have found no evidence of SAg activity.48,49 Indeed, multiple HERV-K 

env proteins elicit antibody responses.22,50 A direct association between HERV-K18 env 

SAg and carcinogenesis has yet to be shown. HML-2 expression has also been seen to 

decrease after lymphoma therapy, indicating that it may be useful for monitoring therapeutic 

response.29

HERV-K and Melanoma

The prevalence of HML-2 pol, gag and env mRNA, and Gag and Env proteins in melanoma 

is well established.17–19,51–54 In 2002, a sequence homologous to HERV-K (HML-6) was 

identified in melanoma patients (HERV-K-MEL).31 HERV-K-MEL, which produces an 

antigen spliced from a defective noncoding env-like ORF, was reported in cutaneous and 

ocular melanomas, and nevi. Antibodies raised against the HERV-K-MEL antigen were 

detectable in melanoma patients.31 Melanoma cell lines (SKMel-28, SKMel-1, 518A2, 

MelJuso, HS-Mel2 and JH-Mel6 and HV-Mel7), but not cultured melanocytes (NHEM neo 

5935, NHEM neo 4528 and NHEM neo 6083), produce retrovirus-like particles that exhibit 

reverse transcriptase activity,52 which contain mature Gag and Env proteins. HML-2 Pol, 

Gag and Env,52 and accessory proteins Rec and Np9 have also been detected in melanoma.
18,51 Further studies sought to predict the prognostic value of HERV-K in melanoma and 

found that HERV-K was a statistically significant marker of acrolentiginous, mucosal and 

uveal melanoma. Patients with serological response against HERV-K had a significantly 

decreased disease-specific overall survival.55 Additionally, HML-2 rec mRNA is expressed 

in melanoma cells but not in benign nevi or normal skin, indicating aberrant activation in 

melanoma. Furthermore, rec mRNA positivity correlated with the vertical growth phase of 

melanoma, a step that increases the risk of metastatic melanoma.56 A recent study by 
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Schmitt et al. defined the HML-2 transcriptome in melanoma, identifying 23 different 

HML-2 loci as transcribed to varying degrees in different patient specimens and melanoma 

cell lines.57

Polymorphic HML-2 Group Members

Of the 91 known HML-2 proviruses, 11 are polymorphic.5 The most recent insertions (~1 

million years ago) include HERV-K-19p12 (K113) (29% of individuals) and HERV-

K-8p23.1 (K115) (16% of individuals) as measured using a pool of mixed backgrounds.58 

Other polymorphic HML-2 proviruses include: HERV-K-11q22.1 (K118), HERV-K-6q14.1 

(K109), HERV-K-7p22.1a (K108R), HERV-K-8p23.1 (K115) and HERV-K-1p31.1(K116),
59,60 in addition to HERV-K-3q13.2 (K106), HERV-K-7p22.1b (K108L), HERV-K-10p12.1 

(K103), HERV-K-12q13.2 and finally HERV-K-U219 (K105) located in the unassembled 

centromeric region (Un_g1000219).5

It is currently not known whether inheriting specific HML-2 polymorphisms increases the 

risk of cancer. Burmeister et al. investigated the frequency of the polymorphic full-length 

HERV-K115 and HERV-K113 in 102 female breast cancer cases and 102 controls, but did 

not find a significant association with breast cancer (HERV-K-K113, 16.7 vs. 12.7%; HERV-

K-K115, 4.9 vs. 9.8%). (Note the lower prevalence than reported above58 for both. This 

suggests ethnic differences in frequency of inheritance).24

Mechanisms of HERV Activation and Regulation

The abundance of inactive HERVs present in our genome suggests that active, integrating 

proviruses are largely deleterious to the host. Novel intrinsic restriction factors exist which 

impede retroviral infection and some of these have the ability to target both exogenous and 

endogenous infections. APOBEC proteins can inhibit viral RNA, thus blocking their 

translation.61 Additionally, APOBEC3G can hypermutate and inactivate HERV DNA.62 

Activation of these retroelements can therefore be an indication that cellular programs, 

crucial to a healthy phenotype, have gone awry.

A crucial question that needs to be addressed is whether activation of HERVs is simply an 

epiphenomenon or is necessary for disease progression? A large proportion of HERV loci 

have become silenced via DNA hypermethylation, an epigenetic phenomenon.63 Many 

cancers display a globally hypomethylated state64; thus, activation of HERVs during 

tumorigenesis may simply be a bystander effect of this epigenetic state. It has become 

increasingly clear that genomic instability, including deregulated transcription and genome 

plasticity, is enabled as a result of epigenetic changes that take place within tumors. 

Demethylation of specific HERV families, including HERV-W, HERV-K and HERV-H, has 

been reported in various cancers.65 Moreover, demethylation of TEs correlates with their 

transcriptional activation in prostate cancer.27 This indicates that where HERV transcription 

is increased in cancer cells, it is likely due in part to hypomethylation of their LTRs. HML-2 

DNA hypomethylation has been reported in melanoma cell lines,66 prostate tumors27 and 

ovarian tumor.15 Interestingly, age was negatively associated with HML-2 methylation in 

PBMCs from healthy donors aged 20–88 years. The average onset of HML-2 methylation in 
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PBMCs occurred at 40–63 years, implicating HML-2 DNA hypomethylation in aging.67 

Another important epigenetic mechanism that influences transcriptional activity is histone 

modification, but the influence of histone methylation, acetylation or other modifications on 

HERV expression in malignancy is still unknown.

Known inducers of HML-2 in vitro include ultraviolet radiation in melanoma,17,68 

hormones, including progesterone, estrogen and androgen in breast20,33 and prostate26 

cancer cell lines and bone morphogenetic proteins and retinoic acid in testicular germ cell 

tumor cell lines.69 Urine from smokers has also been shown to lead to an increase in HERV 

expression in normal human dermal fibroblasts and urothelium in vitro.70 Other factors that 

may activate or be activated by HERV-K include infectious viruses such as EBV71 and 

human immunodeficiency virus (HIV-1),72 and transcription factors including NF-κB, NF-

AT,73 MITF-M,74 Sp1,Sp375 and YY1.76

Possible Mechanisms of HERV-K-Induced Oncogenesis

Insertional mutagenesis

HERVs may be oncogenic via insertional mutagenesis. However, to date, no fully intact and 

infectious HERV-derived retrovirus has been demonstrated in vivo. Retrovirus-like particles 

observed using electron microscopy in human placental trophoblasts,77 and 

teratocarcinoma78 and melanoma52 were identified as HERV-K derived. Efforts to identify 

an infectious HERV-K are compounded by the fact that the large majority are partially 

defective and also that a somatic integration event would be a relatively rare occurrence.3 

Two independent groups have succeeded in resurrecting full retroviral particles after 

constructing consensus sequences representing ancestors of now defunct proviruses.79,80 

Although these viruses were found to be only weakly infectious, these studies will prove 

invaluable in formulating hypotheses regarding the potential oncogenic mechanisms of an 

infectious HERV-K (Fig. 2).83,85,88,122,123

HERV-K113 and HERV-K115 are some of the most recently integrated HERVs in the human 

genome and represent obvious candidates for infectious proviruses. Boller et al. investigated 

this possibility and observed that HERV-K113 is able to produce fully intact retroviral 

particles in vitro.86 However, the authors concluded that an infectious HERV-K113 virus 

would be unlikely due to a lack of a functional reverse transcriptase.

HERV-K Rec and Np9 as putative oncogenes

Rec exhibits functional homology to the Rev protein of HIV-1, a nucleocytoplasmic shuttle 

protein.3 Np9 is spliced from an alternative splice donor site to Rec, and shares only 14aa 

with Rec and Env, with no homology to Rev.87 Functional studies found that both proteins 

bind the promyelocytic leukemia zinc finger (PLZF) protein, a transcriptional repressor of 

the C-MYC proto-oncogene,83 leading to the derepression of C-MYC. Rec also binds a 

related protein known as testicular zinc-finger protein (TZFP), a transcriptional repressor of 

the AR. Rec inhibits the ability of TZFP to repress AR transcription.88 Hanke et al. 
identified an additional binding partner of Rec known as human small glutamine-rich 

tetratricopeptide repeat protein (hSGT), which also acts as a co-repressor of the AR.85 
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Moreover, they proposed a “vicious cycle” model, whereby increased cellular AR led to 

increased transcription at HERV-K loci and thus increased levels of Rec leading to further 

AR derepression. The involvement of such hormonal regulators will be interesting to study 

in castration-resistant prostate cancer, in which disruption of the AR signaling axis is a key 

factor in development of resistance.

Reinforcing the possible importance of these proteins in tumorigenesis was the finding that 

mice transgenic for the Rec gene are prone to seminomas.89 Np9 has been shown to interact 

with LNX—an E3 ubiquitin ligase that targets members of the NUMB/NOTCH pathway.40 

This pathway has been implicated in the regulation of proliferation of cancers of the breast 

and prostate.90 Finally, a recent study has shown that Np9 acts as a critical molecular switch 

for co-activating β-catenin, ERK, Akt and Notch1 and promoting the growth of human 

leukemia stem/progenitor cells (Fig. 2).84

HERV-K-induced immunomodulation

In a Darwinian sense, cancerous tissue uses the inflammatory-associated milieu of the tumor 

microenvironment to confer a selective advantage.91 The apparent immunogenicity of HERV 

proteins therefore represents a potential contributor to, or initiator of a chronic inflammatory 

state, beneficial to tumor survival (Fig. 2). HML-2 antibodies have been observed in patients 

with melanoma,18 breast39 and ovarian cancers.16 In breast cancer, studies have found that 

both humoral and cell-mediated immune responses to HERVs were enhanced in patients 

when compared to controls.22 HERV-K18 Env protein has been shown to elicit T-cell 

responses and can be upregulated in response to EBV infection,46,92 and may be a 

prerequisite of B-cell lymphomas.93

Similar to discoveries in HIV-1, HERV-K may encode env proteins with immunosuppressive 

transmembrane domains. A recent study by Morozov et al. identified an immunosuppressive 

HERV-K env protein, which altered cytokine expression and suppressed immune cell 

proliferation in vitro.94

Nitric oxide (NO) is an endogenous free radical signaling molecule that has been intimately 

linked with inflammation, wound healing responses and cancer.95,96 A significant 

association between nitric oxide synthase 2 (NOS2) and HML-2 Env expression has been 

demonstrated in breast cancer.37 NOS2 is an independent predictor of poor outcome in 

estrogen receptor-negative breast cancer, associated with macrophage infiltration, 

deregulated p53 signaling, increased proliferation and resistance to apoptosis.95,97,98 Can 

HML-2 Env proteins mediate downstream inflammatory effects via their activation of NO 

signaling? Intriguingly, β-catenin, ERK and Akt, which are activated by Np9,84 are also 

activated by NO signaling.98,99

Exosomes

An evolving hypothesis in cancer research over the last few years has been the involvement 

of tumor exosomes in metastasis.100,101 Exosomes are nanoscale membrane vesicles that are 

secreted from cells and are thought to be important intercellular communicators, or, in a 

cancer setting, drivers of metastatic spread.102 A recent study has now implicated HERVs in 

this process, with the finding that HML-2 mRNA is selectively packaged into tumor 
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exosomes and that this genetic material can be transferred to normal cells.103 The authors 

also demonstrated that these exosomes were enriched for the C-MYC protooncogene, which 

has been shown to be regulated by PLZF, a target of Rec and Np9.83 Therefore, it is possible 

that there is a link between the high levels of HERV-K mRNA and C-MYC in these 

exosomes, but further investigation will have to be done in this regard. Another important 

point is that HML-2-driven metastasis via exosomes would not require an envelope gene, as 

exosomes gain entry to target cells via a plasma membrane fusion event. In essence, 

exosomes could potentially empower the abundance of defective HERVs with a new-found 

infectivity.104

HERV-K viral proteins as potential vaccines

Although the direct oncogenic effects of HERVs in cancer remain to be fully elucidated, 

there is potential for their use as diagnostic or prognostic biomarkers and for 

immunotherapeutic purposes including vaccines. Independent groups have demonstrated a 

strong association between HERV-K antibodies and clinical manifestation of disease and 

therapeutic response.23,29 Antibodies recognizing synthetic HERV-K proteins were detected 

at a very low frequency in the sera of healthy donors.16,22 Humoral anti-HERV-K immune 

response may provide additional prognostic information to that of established melanoma 

markers.31,55 Data from these studies reveal a significant inverse correlation between 

serological anti-HERV-K reactivity and patient survival probability in melanoma patients. 

Among the different classes of tumor antigens recognizable by the immune system, mutated 

self-antigens and viral antigens are unique because they are foreign to the host and not 

subjected to preexisting antigen-specific tolerance.105–107 HML-2 exons coding for mature 

proteins are spread out over the genome and are a repository of immunogenic retroviral gene 

products that can be “reawakened” when genetic damage occurs through chromosome 

breaks, frameshifts and mutations, removing sequences normally silencing protein 

expression.

HERV-K MEL is an antigenic peptide that is encoded by a short ORF from a processed 

HERV-K (HML-6) pseudogene and has been shown to be recognized by cytotoxic T cells in 

human melanoma.31 BCG, vaccinia and yellow fever vaccinations are associated with a 

reduced risk of developing melanoma,108–110 although conflicting data exist for yellow fever 

vaccines.111 It is suggested that this effect is due to antigen sequence homology between 

these vaccines and HERV-K-MEL leading to cross-reaction between vaccine-elicited 

cytotoxic T cells and melanoma cells.112 Reintroduction of these vaccines has been 

suggested as a novel method of melanoma immunoprevention; otherwise, HERV-K MEL 

represents a legitimate target for cellular immunotherapy.112,113

Future Perspectives

Over the course of evolution, our genome has been locked in a molecular “war” with 

exogenous infectious agents. Ultimately, it is this very battleground, together with viral 

endogenization, which has bestowed upon us the diverse genetic repertoire we possess today. 

Constituting 8% of our genome, these HERVs have supplied us with an additional layer of 

plasticity and physiological functionality, yet scientists now believe that hidden detrimental 
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processes fueled by HERVs may be present, which are inducing chronic diseases such as 

cancer and autoimmunity. As of yet, no truly infectious HERVs have been observed. 

However, as outlined in this review, a range of potential molecular mechanisms involving the 

retroviral proteins may be aiding and abetting both tumor formation and metastasis. 

Ultimately, it is likely that many of these mechanisms are working synergistically to produce 

these effects, and the heralding of a single molecular event induced by a HERV protein is 

improbable.

Ascribing a causative role for a particular agent to a disease has long been a challenging 

task. Criteria such as Hills criteria114 and Koch’s postulates115 have been formulated to 

address this problem. These criteria have recently been refined and built upon in light of 

HERVs-postulated role in human disease.113,116,117 However, even if a direct link between 

HERVs and carcinogenesis is never established, their presence may be highly advantageous 

in terms of the implementation of novel biomarkers for cancer. Further work will need to 

effectively correlate their presence with various disease stages and also make the necessary 

comparisons against “gold standard” biomarkers. Equally promising is the potential to take 

advantage of tumor-specific HERV expression for the use of targeted immunotherapies. 

Wang-Johanning et al. have demonstrated the potential of anti-HML-2-Env antibodies in 

inhibiting tumor growth and inducing apoptosis, both in vitro and in in vivo mouse xenograft 

models.37 This work represents a major milestone in research into HERVs and cancer and it 

is likely that targeting Env in a similar fashion in other cancers will be equally effective. 

However, it remains imperative that these studies are evaluated in a clinical setting. 

Additionally, it may also be possible to conjugate these antibodies to cytotoxic drugs for 

increased effect.118 Similarly, Kraus et al. demonstrated that HML-2-Env-targeted vaccine 

reduced renal tumor metastasis in a murine model.119 Novel therapies, such as these, are key 

to making inroads toward a future cure for the increasingly complex and multistep disease 

that is cancer. However, their safety must be assessed given the newly established role of 

HERV-K in embryonic stem cells and iPS cells,120 which may have implications for 

pregnancy. Their role in adult stem cells is not currently known.

Several limitations exist in the field of cancer-related HERV-K research, including a lack of 

adequately powered patient population studies to determine the role of HERV-K in the 

etiology of cancer, and/or its association with metastasis, therapeutic response and overall 

patient survival. A gap exists in our knowledge as to which HERV-K loci are specifically 

activated in cancer. A recent study by Schmitt et al. has defined the HML-2 transcriptome in 

melanoma, identifying 23 loci as transcribed,57 and it is an imperative that similar studies be 

initiated in other cancers. A causal role for HML-2 has yet to be established. Generally, 

retroviruses induce tumours by insertional mutagenesis targeting specific oncogenes, as is 

the case with HBV.121 This is an unlikely mechanism though in the case of HML-2. 

Evidence does suggest that Rec and Np9 may be putative oncogenes, but whether Gag or 

Env are also oncogenic is not known. In exceptional cases such as Jagsiekte sheep retrovirus 

(JSRV) the Env protein has been found to be causal (ovine pulmonary adenocarcinoma).122 

However, it is unlikely that HML-2 Gag or Env have a similar causal effect; potentially they 

may influence carcinogenesis by activating or perturbing inflammation responses against 

cancer.
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It is our belief that within the next decade these genetic “squatters” will have firmly 

established themselves within the modern multistep model of cancer progression and their 

expression will be viewed as an “enabling characteristic” of cancer, giving new meaning to 

the famous words of Nobel laureate J. Michael Bishop when he stated that “the seeds of 

cancer are within us”.123
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AR androgen receptor
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EBV Epstein-Barr virus

eMLV ectropic murine leukemia virus

ERG1 ETS-related gene

ETV1 ETS translocation variant

HERV human endogenous retrovirus

HIV-1 human immunodeficiency virus

HPV human papillomavirus

hSGT human small glutamine-rich tetratricopeptide repeat protein

HTLV-1 human T-lymphotropic virus

LTR long terminal repeats

MHC major histocompatability complex

MMTV mouse mammary tumor virus

NO nitric oxide

NOS2 nitric oxide synthase 2
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ORF open reading frames

PBMC peripheral blood mononuclear cell

PLZF promyelocytic leukemia zinc finger

Sags superantigens

SEREX serological recombinant cDNA expression cloning

TE transposable element

TLR toll-like receptor

TMPRSS2 transmembrane protease, serine 2

TZFP testicular zinc-finger protein
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Figure 1. 
Structure of HERV-K provirus. The full length (gag) HML-2 transcript encodes the gag, pro 

and pol polyproteins. A singly spliced transcript encodes the env polyprotein, while a doubly 

spliced transcript encodes either the Rec or Np9 accessory proteins depending on the 

presence or absence of a 292-bp deletion at the pol/env boundary–a characteristic that 

defines a HML-2 provirus as either Type 1 (deleted) or Type 2 (intact). HML-2 also 

expresses a 1.5-kb transcript of unknown function known as the hel transcript.

Downey et al. Page 18

Int J Cancer. Author manuscript; available in PMC 2018 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Proposed model of HERV-K (HML-2)-driven cancer progression. Global DNA 

hypomethylation during early-stage cancer leads to activation of otherwise silenced TEs, 

including HERVs. A humoral response to HERV-K gag has been observed in some cancers.
81 Such a response to high levels of HERV-K protein expression may culminate in chronic 

inflammation. Conversely, it has been hypothesized that HERV-K LTRs are responsive to 

inflammatory transcription factors–a phenomenon that may explain the high levels of 

HERV-K mRNA and protein seen in some inflammatory diseases.82 HERV-K (HML-2) 

accessory proteins Rec and Np9 have been shown to lead to the derepression of the c-myc 

protooncogene,83 while Np9 has been shown to co-activate Akt, Notch and ERK pathways 

in leukemia.84 Rec has also been observed to lead to the derepression of the androgen 

receptor, which directly or undirectly causes a further increase in HERV-K transcription.85 

Overall, the synergistic effects of chronic inflammation and dysregulated signaling/

protooncogene activation caused by HERV-K protein expression may help to create a 

protumorigenic microenvironment culminating in further proliferation and metastasis. 

Finally, it is important to note that an active, infectious HML-2 provirus has not been 

isolated to date, but the existence of such a particle cannot be ruled out. It would potentially 

be oncogenic via mechanisms such as insertional mutagenesis.
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