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Abstract

Background: Ca2+ as a universal second messenger regulates basic biological functions including cell cycle, cell
proliferation, cell differentiation, and cell death. Lack of the protein mitochondrial calcium uptake1 (MICU1), which
has been regarded as a gatekeeper of Ca ions, leads to the abnormal mitochondrial Ca2+ handling, excessive
production of reactive oxygen species (ROS), and increased cell death. Mutations in MICU1 gene causes a very rare
neuromuscular disease, myopathy with extrapyramidal signs (MPXPS), due to primary alterations in mitochondrial
calcium signaling which demonstrates the key role of mitochondrial Ca2+ uptake. To date, 13 variants have been
reported in MICU1 gene in 44 patients presented with the vast spectrum of symptoms.

Case presentation: Here, we report a 44-year-old Iranian patient presented with learning disability, muscle
weakness, easy fatigability, reduced tendon reflexes, ataxia, gait disturbance, elevated hepatic transaminases,
elevated serum creatine kinase (CK), and elevated lactate dehydrogenase (LDH). We identified a novel nonsense
variant c.385C>T; p.(R129*) in MICU1 gene by whole exome sequencing (WES) and segregation analysis.

Conclusions: Our finding along with previous studies provides more evidence on the clinical presentation of the
disease caused by pathogenic mutations in MICU1. Finding more variants and expanding the spectrum of the
disease increases the diagnostic rate of molecular testing in screening of this kind of diseases and in turn improves
the quality of counseling for at risk couples and helps them to minimize the risks of having affected children.

Keywords: Ca2+, Mitochondrial calcium uptake 1 (MICU1), Myopathy with extrapyramidal signs (MPXPS), Whole
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Background
Abnormal mitochondrial Ca2+ handling due to biallelic
MICU1 variants causes a very rare neuronal and muscular
disorder in humans termed the myopathy with extrapyram-
idal signs (MPXPS; OMIM #615673), characterized by
impaired cognition, early muscle weakness, elevated serum

creatine kinase (CK), and an extrapyramidal movement dis-
order [1, 2].
Mitochondrial Ca2+ uptake which has been long estab-

lished as a key mediator of cell survival, metabolism, and
death needs to be tightly regulated [3, 4]. Ca2+, a versatile
and ubiquitous intracellular messenger [5], plays a central
role in a remarkably wide range of cellular processes espe-
cially in nervous system and muscle. Calcium ions have
been implicated to mediate neuronal gene expression,
neuronal development and plasticity, synaptic transmis-
sion, neurotransmitter release, neuronal excitability, data
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processing, cognition, learning, and memory in the
brain and excitation-contraction coupling, energy me-
tabolism, adaptation to exercise, and sarcolemmal re-
pair in muscles [2, 6–8].
The predominant mechanism among ion transporters

capable of Ca2+ uptake into mitochondria is through a
highly Ca2+-selective ion channel located in the inner
membrane called the mitochondrial calcium uniporter
(MCU), driven by electrochemical gradient across the
inner mitochondrial membrane [9–12]. Mitochondrial
Calcium Uptake 1 (MICU1), a regulatory subunit that
shields mitochondria from Ca2+ overload, is required for
uniporter-mediated Ca2+ uptake [13]. MICU1 has been
suggested as a Ca2+ sensor which sets the threshold of
extramitochondrial Ca2+ load for mitochondrial Ca2+

uptake [14, 15]. As a gatekeeper of MCU at low Ca2+

levels, MCU1 prevents channel opening and at high
Ca2+ levels promotes MCU opening which allows rapid
response of mitochondria to calcium signals generated
in the cytoplasm [3, 16, 17].
MICU1 is a ~ 54-kDa protein which consists of 476

amino acids (NP_001182447). It contains two parts in-
cluding a transmembrane helix (aa ~ 33–52) and a cyto-
solic C-terminus (aa ~ 53–476) which contains two EF-
hand Ca2+-binding domains (EF1 and EF4) which help
activating MCU [18].
Consistent with the clinical features displayed by pa-

tients, MICU1 has been indicated to be highly expressed
in normal mouse muscle and brain [1]. Dysregulation of
MICU1 in skeletal muscle fibers has been shown to re-
sult in sarcolemma, less contractile force, increased fa-
tigue, and diminished capacity to repair damage to their
cell membranes. In accordance with problems identified
in patients, the experimental model studies characterized
more pronounced muscle weakness, and greater loss of
muscle mass in certain muscles [2]. Whole body knock-
out of MICU1 in the mouse also has been shown to
cause a high probability of perinatal lethality and the
survived mice have physical biochemical abnormalities,
ataxia, and muscle weakness, recapitulating the problems
observed in the human patients [19].
Here, we report a novel nonsense mutation c.385C>T;

p.(R129*) in MICU1 gene (NM_001195518), which is
predicted to lead to a complete loss of function of
MICU1 in an Iranian patient with muscle weakness,
learning disability, raised CK, elevated liver transami-
nases, and lactate dehydrogenase (LDH).

Clinical presentation
A 44-year-old man with a neurodegenerative disorder
was referred to the Department of Medical Genetics,
DeNA Laboratory, Tehran, Iran, for genetic testing. His
clinical symptoms were learning disability, muscle weak-
ness, easy fatigability, reduced tendon reflexes, ataxia,

extrapyramidal signs, gait disturbance, strabismus, ele-
vated CK, elevated hepatic transaminases, and raised
LDH. Learning disabilities were noticed during primary
school, so he could not attend school. His height, weight,
and head circumference were in normal range. He had
progressive muscular symptoms first presented in his
10s and in his mid-20s he was completely non-ambulant
and lost the ability to walk. His parents were first cous-
ins and they were from north of Iran. Further genetic
counseling revealed history of 2 other affected brothers
in this family who died at the age of 46 and 48 years, re-
spectively, one of them due to heart failure and the other
due to progressive symptoms of the disease; however, no
detailed medical records were available for them. The
parents claimed that they had similar symptoms with
the proband.
For more detailed evaluations laboratory tests, muscle

tissue biopsy, electromyography, and nerve condition
velocity (EMG/NCV) test were performed.

Materials and methods
Ethical consideration
This research has been conducted ethically in accord-
ance with the World Medical Association Declaration of
Helsinki; informed consent was obtained from all family
members and the study was approved by the local med-
ical ethics committee of DeNA laboratory, Tehran, Iran.

DNA extraction
Genomic DNAs were extracted from the peripheral
blood of the patient and all available family members by
the High Pure PCR template preparation kit (Roche:
product No. 11814770001).

Targeted next-generation sequencing
Whole exome sequencing (WES) was performed on af-
fected individual (IV-3; Fig. 1). Agilent’s SureSelect
Human All Exon V6 kit was used to enrich approxi-
mately 60 Mb of the Human Exome from fragmented
genomic DNA. The generated library was sequenced on
an Illumina Hiseq 4000 platform to obtain an average
coverage depth of 100. Typically, 97% of the targeted
bases were covered > 10. An end to end in-house bio-
informatics pipeline including base calling, alignment of
reads to GRCh37/hg19 genome assembly, primary filter-
ing of low-quality reads and probable artifacts, and sub-
sequent annotation of variants, was applied. Reads were
mapped to the reference human genome using the
Burrows-Wheeler Aligner (http://bio-bwa.sourceforge.
net/). Single-nucleotide variants (SNVs) and micro
insertions-deletions (indels) were called using SAMtools
(http://samtools.sourceforge.net/), based on filtered vari-
ants with a mapping quality score of > 20 and were
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a n n o t a t e d u s i n g ANNOVAR ( h t t p : / / www .
openbioinformatics.org/annovar/).
Evaluation was focused on coding exons along with

flanking ± 20 intronic bases. All disease-causing variants
reported in Human Gene Mutation Database (HGMD)
(http://www.hgmd.cf.ac.uk) and ClinVar (https://www.

ncbi.nlm.nih.gov/clinvar) as well as all variants with
minor allele frequency (MAF) of less than 1% in publicly
available mutation and polymorphism databases such as
1000 genome project (http://www.1000genomes.org/),
Exome Aggregation Consortium (ExAC) (http://exac.
broadinstitute.org/), Exome Sequencing Project (ESP)

Fig. 1 Representative pedigree, sequence chromatograms confirming the mutation, cross-species alignment, and ConSurf result of amino acid
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(http://evs.gs.washington.edu/EVS/), and Genome Aggre-
ga t i on Da t aba s e ( gnomAD) (h t tp s : / / gnomad .
broadinstitute.org/) were considered. We ended up with
only one novel variant, c.385C>T, in MICU1 gene. Predic-
tion of the consequence of the c.385C>T; p.(R129*) was
obtained from online databases namely SIFT (https://sift.
bii.a-star.edu.sg/), and MutationTaster (http://www.
mutationtaster.org/). For further consideration, the fre-
quency of the variants was checked out on the local data-
base, Iranome (http://www.iranome.ir/). Also, ConSurf
(http://www.consurf.tau.ac.il) and UCSC database [20]
was applied to check the evolutionary conservation in the
region of the variant.

Segregation analysis
Segregation analysis was investigated in the family. For
this purpose, primers surrounding the region of the identi-
fied variant were designed using Primer3Plus (https://
primer3plus.com/cgi-bin/dev/primer3plus.cgi) web-based
server (PCR conditions and primer sequences are available
upon request). Consequently, DNA sequencing of the
PCR products was performed on ABI 3130 with the ABI
PRISM BigDye Terminator v. 3.1 sequencing kit (Applied
Biosystems, USA). Sequencing chromatograms were ana-
lyzed usingCodon Code Aligner software version 8.0.2
(CodonCode Corp, USA).

Results
Molecular findings
The WES analysis identified a novel stop gain variant in
homozygous state, c.385C>T; p.(R129*) in exon 4 of
MICU1 gene in an Iranian patient suspected to MPXPS.
The homozygote normal and heterozygote state for this
variant in the unaffected sister and his parents were con-
firmed by Sanger sequencing (Fig. 1).
According to the American College of Medical Genet-

ics (ACMG) guideline [21]: (1) Nonsense variant in
MICU1 gene, which leads to loss of function, is associ-
ated with myopathy and is a known mechanism of dis-
ease. (PVS1). (2) Pattern of inheritance is found to be
autosomal recessive (PM3). (3) Co-segregation with the
disease as heterozygous carriers is not affected while the
homozygous individual shows myopathy phenotype. In
addition, it was not found in ethnically matched healthy
controls, Iranome (PS4). (4) This variant was not found
in HGMD, ClinVar, 1000 genome project, ExAC, ESP,
and gnomAD database (PM2). (5) Pathogenic computa-
tional verdict based on 5 pathogenic predictions from
BayesDel_addAF, DANN, EIGEN, FATHMM-MKL, and
MutationTaster vs no benign predictions (PP3). Accord-
ing to ACMG rules for combining criteria to classify se-
quence variants (PVS1 + PM3 + PS4 + PM2 + PP3), this
variant is classified as pathogenic. The mutation
p.(R129*) was also predicted to be damaging by SIFT.

Cross-species alignments and ConSurf results of the
variant was shown in Fig. 1. A schematic pattern of wild
and truncated protein was drawn using IBS software
(Fig. 2) [22].

Laboratory tests
The patient showed raised CK up to 2081 U/L (normal,
24–195), LDH to 1352 IU/L (normal, 0–408), S.G.P.T
(ALT) to 83 IU/L (normal, 0–41), and S.G.O.T (AST) to
52 IU/L (normal, 0–37).

Muscle biopsy studies
Muscle biopsy from right biceps showed myopathic atro-
phy with dystrophic features. Multiple necrotic/regen-
erative fibers, myophagocytosis, and severe endomysial
fibrosis were noted. Reduced nicotinamide adenine di-
nucleotide tetrazolium reductase (NADH-TR) staining
revealed intermyofibrillar network disruption as moth-
eaten fibers and core-like lesions. Adenosine triphopha-
tase staining showed predominance of type 1 fibers and
atrophy. The above histochemical pathologic findings
were suggestive of muscular dystrophy, so immunohisto-
chemical (IHC) study of dystrophin, sarcoglycans, mero-
sin, beta-Spectrin, and dysferlin proteins was performed
and sarcolemmal labeling with all the above examined
antibodies was observed (Fig. 3). EMG/NCV study re-
vealed short duration of motor unit action potential
(MUAP) in two upper and lower extremities tested mus-
cles which was in favor of myopathic changes.

Discussion and conclusion
In this study, we report a novel biallelic MICU1 variant,
c.385C>T; p.(R129*) in an Iranian patient. Additionally,
we review the literature to collect all disease-causing var-
iants and summarize the phenotypes of all reported af-
fected individuals. In this case, we found 44 recorded
MPXPS patients in the literature including 39 patients
carrying homozygous and 5 patients carrying compound
heterozygous variants. Most of the homozygous patients
were born to consanguineous parents. Most of the pa-
tients were from the Middle East where consanguineous
marriage is ranging from 20 to 70% [23]. Up to now, 13
pathogenic MICU1 variants have been reported in previ-
ous studies presented with the vast spectrum of symp-
toms even among patients carrying same pathogenic
variants (Supplementary Table 1).
First, MICU1 pathogenic variants including a homozy-

gous splice acceptor site mutation, c.1078–1G>C, and a
homozygous splice donor site, c.741+1G>A, were re-
ported in 11 UK-Pakistani and 4 Dutch patients respect-
ively by Logan et al. [1]. All eleven UK-Pakistani patients
who carried c.1078-1G>C variant presented with devel-
opmental delay. From patients who underwent testing,
all presented with elevated CK. In details, 5 patients
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suffered from microcephaly, 4 patients had proximal
weakness, 8 patients showed extrapyramidal signs, 10
patients had learning disability, 6 patients showed speech
delay, 4 patients showed skin involvement, and 3

patients had ambulation difficulties. Other features in-
cluding short stature, ophthalmologic findings, and ab-
normal gait was observed in some cases. Muscle biopsies
were available for 6 of these patients, which all exhibited
myopathic features, with diffuse variation in fiber size,
increased internal and central nuclei, and clustering of
regenerating fibers. Necrotic fibers were rare, except in
one subject. Brain MRI was available for 6 patients, out
of them 1 patient had signal changes in globus pallidus,
and 1 patient showed small cerebellum and 4 were nor-
mal. Four patients had skin abnormalities. All four
Dutch subjects with c.741+1G>A variant presented with
learning disability, ambulation difficulties, and elevated
CK. Among these patients, 1 patient had short stature, 2
patients suffered from muscle weakness, 3 patients
showed ophthalmologic findings, 3 patients showed
extrapyramidal signs, 2 patients had abnormal gait, 2 pa-
tients showed developmental delay, 1 patient had speech
delay and 2 patients exhibited skin abnormalities. Brain
MRI was available for 2 patients; out of them, one pa-
tient showed linear calcification in frontal lobe and the
other was normal [1].
A homozygous deletion of exon 1 of MICU1

within a 2755-base pair deletion has been reported
in 2 cousins by Lewis-Smith et al. [24]. They de-
scribed a 9-year-old girl with 4 years of episodic fa-
tigue and lethargy. She had short stature and poor
growth. No neurologic and ophthalmologic signs
were observed. Her cousin, a 12-year-old boy, pre-
sented with a positive Gower maneuver due to glo-
bal muscle weakness, learning difficulties,
developmental delay, mild hypotonia, facial dys-
morphisms, long thin fingers, bilateral optic atrophy,
cataracts, and pendular nystagmus. Rare atrophic fi-
bers and increased internal nuclei showed in muscle

Fig. 2 Schematic comparison of wild type and mutant predicted MICU1 structures. This nonsense mutation removed the functional chains of
MICU1 protein that contribute in EF-hand structure

Fig. 3 a Prominent fibers size variation with necrosis and
myophagocytosis associated with severe endomysial fibrosis, fiber
splitting, and increased internalization of nuclei (hematoxylin and
eosin x400). b Intermyofibrillar network pattern is disrupted with
presence of core-like lesions (NADH-TR x400)
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biopsy. Echocardiography and MRI were normal.
They both showed a normal blood LDH level [24].
The most common variant c.533C>T; p.(Gln185*)

has been reported in 21 Middle Eastern Arab pa-
tients including 19 patients in homozygous state and
2 compound heterozygous patients concomitant with
partial gene duplications. Seventeen out of 20 and 16
out of 19 cases showed elevated CK levels and liver
transaminases respectively, 16 out of 20 patients pre-
sented with developmental delay, 13 out of 18 pa-
tients suffered from learning disability, 4 out of 10
had poor growth, 7 out of 16 subjects had short
stature, 10 out of 19 patients showed muscle weak-
ness, 7 out of 20 patients presented with Extrapyr-
amidal signs, 4 out of 11 patients suffered from
abnormal gait, 7 out of 11 patients characterized by
ambulation difficulties, 5 out of 19 patients showed
facial dysmorphisms, 10 out of 10 patients had
speech delay, and 4 out of 9 patients had history of
frequent falls. Lactate levels of all 10 patients tested
were normal. None of 13 patients investigated for
skin involvement had skin findings. Other features
including seizures, calf muscle hypertrophy, ventricu-
lar septal defect (VSD), and liver involvement was
observed in some cases [25–27].
A missense variant, c.386G>C; p.(R129P), was re-

ported in two patients in compound heterozygous
state accompanying by c.1A>G and c.161+1G>A vari-
ants in two studies [28, 29]. Wilton et al. [29] re-
ported a 12-year-old female who characterized with
myopathy, ataxia, abnormal gait, extrapyramidal signs,
ambulation difficulties, developmental delay, learning
difficulties, speech delay, generalized seizures, and
multiple congenital brain malformations on MRI. She
exhibited facial dysmorphisms and ophthalmologic
findings. Laboratory tests indicated elevated CK levels,
normal serum lactate, and normal liver transaminases
[29]. O’Grady et al. [28] reported an 8-year-old boy
presented with elevated CK, proximal weakness, extrapyr-
amidal signs, learning difficulties, developmental delay,
and abnormal brain MRI. Type 1 fiber predominance was
diagnosed in his muscle biopsy [28].
Roos et al. [30] described a 3-year-old girl carrying a

homozygous nonsense MICU1 mutation c.553C>T;
p.(Arg185*) presented with developmental delay, gait ataxia,
clinodactyly, absent proprioceptive reflex, and increased CK.
Muscle biopsy showed slow and fast muscle fibers affected
by profound atrophy in addition to other signs of a neuro-
genic muscle atrophy [30]. Chérot et al. identified a com-
pound heterozygous variant in a 4-year-old boy; c.40del;
p.(Ala14Leufs*20) & c.1048C>T; p.(Gln350*), presented with
intellectual disability, extrapyramidal signs, muscle weakness,
dystonia, myoclonus, sensitive-motor axonal neuropathy,
hypotonia, and intestinal malrotation [31].

Until now, one MICU1 pathogenic variant, c.1295delA,
has been reported [32] in Iran, a Middle East country
with consanguinity rates of 38.6% of all marriages [33].
Mojbafan et al. [32] detected two affected sisters who
were born to consanguineous parents. The proband was
a 5-year-old girl presented with raised CK, poor weight
gain, speech delay, and calf hypertrophy. She was ambu-
lant at the age of 5 without positive Gower’s sign.
Muscle biopsy showed mild myopathic atrophy with few
dispersed or small groups of degenerative/regenerative
fibers. Heart echocardiography revealed a mild right side
enlargement and mild pericardial infusion. Electromyog-
raphy and nerve condition velocity (EMG/NCV) study
showed myopathic changes. She showed some extrapyr-
amidal signs at the age of 10. Her affected sister was 2
years old who presented with speech delay and raised
levels of CK, and liver transaminases. She was normal in
her physical examination. EMG/NCV tests showed nor-
mal results [32].
Here, we reported the second variant, c.385C>T;

p.(R129*), in a 44-year-old Iranian man with elevated
hepatic transaminases, elevated CK, raised LDH, learning
disability, developmental delay, easy fatigability, muscle
weakness, reduced tendon reflexes, ataxia, extrapyramidal
signs, gait disturbance, and strabismus. Muscle biopsy
showed predominance of type 1 fibers and myopathic at-
rophy. Multiple necrotic/regenerative fibers, myophagocy-
tosis and severe endomysial fibrosis, and sarcolemma were
observed. EMG/NCV study revealed myopathic changes.
He had 2 other similarly affected brothers who died at the
age of 46 and 48 years, respectively. His extrapyramidal
signs and progressive muscular symptoms first presented
in his 10s and in his mid-20s he was completely non-
ambulant and lost the ability to walk. These manifesta-
tions looked to be slowly progressive in line with previous
studies [1, 27]. Extrapyramidal signs were observed in 5
subjects of Musa et al. study, one patient at the age of 4
years, three brothers at the mid-20s, and one patient at
the age of 10 years [27]. The reported case by Mojbafan
et al. also exhibited some extrapyramidal signs at the age
of 10 [32]. In accordance with Musa et al. study, our
patient had no skin abnormalities [27]. He also had
normal height. He had no microcephaly, poor growth,
and clinically observed seizures. Most of the patients
who underwent testing showed normal LDH, although
our case had high level of lactate in accordance with
Mojbafan et al. [24, 27, 29, 32]
As mutated residue 129 had been previously reported

in two cases and in our case demonstrating that R129 is
a hotspot in the MICU1 gene. The nonsense variant
found in this study creates a premature protein without
EF-hand motifs, which has an important role in transfer-
ring Ca2+ through mitochondrial membrane, and leads
to a complete loss of function of MICU1 protein.
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