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Abstract
Gut microbiota is widely considered to be one of the most important components to maintain balanced homeostasis. Look-
ing forward, probiotic bacteria have been shown to play a significant role in immunomodulation and display antitumour 
properties. Bacterial strains could be responsible for detection and degradation of potential carcinogens and production of 
short-chain fatty acids, which affect cell death and proliferation and are known as signaling molecules in the immune system. 
Lactic acid bacteria present in the gut has been shown to have a role in regression of carcinogenesis due to their influence 
on immunomodulation, which can stand as a proof of interaction between bacterial metabolites and immune and epithelial 
cells. Probiotic bacteria have the ability to both increase and decrease the production of anti-inflammatory cytokines which 
play an important role in prevention of carcinogenesis. They are also capable of activating phagocytes in order to eliminate 
early-stage cancer cells. Application of heat-killed probiotic bacteria coupled with radiation had a positive influence on 
enhancing immunological recognition of cancer cells. In the absence of active microbiota, murine immunity to carcinogens 
has been decreased. There are numerous cohort studies showing the correlation between ingestion of dairy products and the 
risk of colon and colorectal cancer. An idea of using probiotic bacteria as vectors to administer drugs has emerged lately as 
several papers presenting successful results have been revealed. Within the next few years, probiotic bacteria as well as gut 
microbiota are likely to become an important component in cancer prevention and treatment.

Introduction

Cancer is considered as one of the most significant causes of 
death. The treatment of tumors has received much attention 
in the last years; however, the number of people suffering 
neoplastic syndrome is still increasing. Thus, researchers are 
trying to face this process searching for innovative therapies 
and prophylaxis. Despite the fact that cancer risk indisput-
ably depends on genetic factors, immunological condition 
of the organism plays a considerable role in it, that being 
closely associated with probiotic bacteria and commen-
sal bacterial flora presented mainly in the digestive tract. 

Probiotic strains, inter alia Bifidobacterium, or Lactobacil-
lus, widely present in commonly consumed fermented milk 
products, are known to have various beneficial effects on 
health. To date, there is a plethora of studies investigating 
the correlation between intestinal microbiota and carcino-
genesis which have been evaluated in this article. A growing 
body of research has been analyzed and reviewed for the 
potential application of probiotics strains in prevention and 
treatment of cancer.

Probiotics and Cancer

Goldin and Gorbach [1] were among the first to demonstrate 
the association between a diet enriched with Lactobacillus 
and a reduced incidence of colon cancer (40% vs. 77% in 
controls). Probiotics have been gaining much attention due 
to their ability to modulate cancer cell’s proliferation and 
apoptosis, investigated both in vitro (Table 1) and in vivo 
(Table 2). Potential application of these properties in novel 
therapy could potentially be alternative to more invasive 
treatment such as chemotherapy or radiotherapy.
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Mechanisms of Action

A specific mechanism associated with antitumor properties 
of probiotics remains unclear. Gut microbiota is engaged 
in a variety of pathways, which are considered to play a 
central role in that process. Primarily, probiotic bacteria 
play an essential role in the preservation of homeostasis, 
maintaining sustainable physicochemical conditions in the 
colon. Reduced pH caused inter alia by the excessive pres-
ence of bile acids in feces may be a direct cytotoxic factor 
affecting colonic epithelium leading to colon carcinogen-
esis [27, 28]. Regarding their involvement in the modula-
tion of pH and bile acid profile, probiotic bacteria such 
as L. acidophilus and B. bifidum have been demonstrated 
to be a promising tool in cancer prevention [27, 29, 30].

Probiotic strains are also responsible for maintaining the 
balance between the quantity of other participants of natural 
intestinal microflora and their metabolic activity. Putrefactive 
bacteria, such as Escherichia coli and Clostridium perfringens 
naturally present in the gut, has been proven to be involved in 

production of carcinogenic compounds using enzymes like 
b-glucuronidase, azoreductase, and nitroreductase. Some 
preliminary research conducted by Goldin and Gorbach in 
the late 1970s have proven consumption of milk fermenta-
tion products to have a beneficial effect on the increase in 
the number of L. acidophilus in rat’s gut, which subsequently 
resulted in a reduction of putrefactive bacteria and decrease in 
the level of harmful enzymes [31]. Several subsequent stud-
ies confirmed the positive influence of the probiotic strains 
on the activity of bacterial enzymes implicated in the tumor 
genesis both in humans [32, 33] and rodents [1, 31, 34–38]. 
It is worth noting that there is considerable ambiguity among 
the gathered data; nevertheless, results concerning glucuro-
nidase and nitroreductase are in general consistent. However, 
whether these processes affect cancer rates in humans is yet 
to be investigated [39].

Another cancer-preventing strategy involving probiotic 
bacteria, chiefly Lactobacillus and Bifidobacillus strains, 
could be linked to the binding and degradation of poten-
tial carcinogens. Mutagenic compounds associated with 
the increased risk of colon cancer are commonly found in 

Table 1   General effects of probiotics on cancer cells in vitro

↓ Decrease; ↑ increase; N/E no effect. Human colonic cancer cells: Caco-2, HT-29, SW1116, HCT116, SW480, DLD-1, LoVo, Human colonic 
epithelial cells: NMC460. Human gastric adenocarcinoma cells: AGS Mus musculus colon carcinoma cells: CT26

Probiotic strain/details of experiment Cell line Effect References

Bifidobacterium adolescentis SPM0212
/cell free supernatant used/

Caco-2, HT-29, SW480 ↓ Cell proliferation [2]

Enterococcus faecium RM11
Lactobacillus fermentum RM28

Caco-2 Cell proliferation:
↓ 21%
↓ 23%

[3]

Lactobacillus rhamnosus GG
Bifidobacterium lactis Bb12

Caco-2 ↑ Apoptosis [4]

Bacillus polyfermenticus HT-29, DLD-1, Caco-2 ↓ Cell proliferation
N/E on apoptosis

[5]

Bacillus polyfermenticus
/AOM stimulation/

NMC460 ↓ Cell colony formation in cancer cells 
(N/E on normal colonocytes)

[5]

Lactobacillus paracasei IMPC2.1
Lactobacillus rhamnosus GG
/heat killed/

DLD-1 ↓ Cell proliferation
Induction of apoptosis

[6]

Pediococcus pentosaceus FP3,
Lactobacillus salivarius FP25/FP35,
Enterococcus faecium FP51

Caco-2 ↓ Cell proliferation
Activation of apoptosis

[7]

Lactobacillus plantarum A7
Lactobacillus rhamnosus GG
/heat killed, cell free supernatant used/

Caco-2, HT-29 ↓ Cell proliferation [8]

Clostridium butyricum ATCC​
Bacillus subtilis ATCC 9398

HCT116, SW1116, Caco-2 ↓ Cell proliferation [9]

Bacillus polyfermenticus KU3 LoVo, HT-29, AGS >90% ↓ Cell proliferation [10]
Lactococcus lactis NK34 HT-29, LoVo, AGS >80% ↓ Cell proliferation [11]
Lactobacillus casei ATCC 393 HT29 and CT26 Induction of apoptosis [12]
Lactobacillus pentosus B281
Lactobacillus plantarum B282
/cell free supernatant used/

Caco-2 and HT-29 ↓ Cell proliferation
Cell cycle arrest (G1)

[13]
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unhealthy food, especially fried meat. Ingestion of Lacto-
bacillus strain by human volunteers alleviated the muta-
genic effect of diet rich in cooked meat, which resulted 
in a decreased urinary and fecal excretion of heterocyclic 
aromatic amines (HAAs) [40, 41]. Supplementation with 
dietary lactic acid bacteria has shown to downregulate the 
uptake of 3-amino-1-methyl-5H-pyrido (4,3-β) indole (Trp-
P-2) and its metabolites in mice [42]. Furthermore, many 
in vitro studies have been conducted, demonstrating the 
ability of different probiotics strains to either bind [43–51] 
or metabolize [43, 47, 49] mutagenic compounds such as 
HAAs [44–47, 49, 50], nitrosamines [43, 49], aflatoxin B1 
[48], and others: mycotoxins, polycyclic aromatic hydro-
carbons (PAHs), and phthalic acid esters (PAEs) [52]. In 
some cases investigation revealed the correlation of these 
properties with the reduction of mutagenic activities pre-
sented by the aforementioned compounds [43, 45–47, 50, 
53]. It is worth highlighting that the substantial part of a 
current knowledge on the phenomenon discussed above is 
largely based on in vitro studies. All these results should 
be interpreted with caution, according to the variations of 

factors such as pH, occurring at in vivo conditions, which 
can potentially alter the efficiency of binding or degradation 
of the mutagens [52].

Many beneficial compounds produced and metabolized 
by gut microbiota have been demonstrated to play an essen-
tial role in maintaining homeostasis and suppressing car-
cinogenesis. Specific population of gut microbiota are dedi-
cated to production of short-chain fatty acids (SCFAs) such 
as acetate, propionate, and butyrate as a result of the fer-
mentation of fiber-rich prebiotics. Except for their principal 
function as an energy source, SCFA have also been proven 
to act as signaling molecules affecting the immune system, 
cell death, and proliferation [54] as well as the intestinal 
hormone production and lipogenesis, which explains their 
crucial role in epithelial integrity maintenance [55].

Although lactic acid bacteria are not directly involved 
in SCFA production, certain probiotic strains of Bifido-
bacteria and Lactobacilli can modulate the gut micro-
biota composition and consequently affect the pro-
duction of SCFA [56]. Butyrate, produced by species 
belonging to the Firmicutes families (Ruminococcaceae, 

Table 2   General effects of probiotics on tumor-bearing or tumor-induced animal models in vivo

a Before and until the end of experiment
↓ Decrease, TI tumor incidence, TV tumor volume, TM tumor multiplicity, TP tumor progression, AOM azoxymethane, CRC​ colorectal cancer, 
DMH 1,2 dimethylhydrazine dihydrochloride, DSS dextran sulfate sodium, TNBS trinitrobenzene sulfonic acid, SD rat Sprague–Dawley rat

Probiotic strain Model Induction Treatment Result References

Lactobacillus acidophilus,
Lactobacillus casei
Lactobacillus lactis biovar diacetylactis DRC-1

Rat DMH 40 weeks ↓ TI ↓ TV ↓ TM [14]

Bifidobacterium lactis KCTC 5727 SPF C57BL rat – 19 weeks ↓ TI ↓ TV [15]
Bacillus polyfermenticus CD-1 mice DLD-1 cells injection 20 weeks

(injection)
↓ TI ↓ TV [5]

VSL#3 (Probiotics mixture) SD rats TNBS 10 weeks None of the animals 
developed CRC​

[16]

Lactobacillus rhamnosus GG MTCC #1408
Lactobacillus acidophilus NCDC #1

SD rats DMH 19 weeksa ↓ TI ↓ TM [17]

Lactobacillus plantarum BALB/c mice AOM, DSS Nanosized/
Live bacteria
4 weeks

↓ TI
cell cycle arrest
Induction of apoptosis

[18]

Lactobacillus plantarum BALB/c mice CT26 cells injection 14 weeks ↓ TV
Induction of necrosis

[19]

VSL#3 (Probiotics mixture) C57BL/6 mice DSS a ↓ TI ↓ dysplasia [20]
Lactobacillus plantarum (AdF10)
Lactobacillus rhamnosus GG

SD rats DMH
4 weeks

One of strains
12 weeks

↓ TI ↓ TV ↓ TM [21]

Lactobacillus salivarius Ren F344 rats DMH
10 weeks

2 weeksa ↓ TI [22]

Lactobacillus acidophilus
Bifidobacteria bifidum Bifidobacteria infantum

SD rats antibiotics DMH 23 weeks ↓ TI ↓ TV [23]

Lactobacillus rhamnosus GG CGMCC 1.2134 SD rats DMH
10 weeks

25 weeks ↓ TI ↓ TV ↓ TM
Induction of apoptosis

[24]

Pediococcus pentosaceus GS4 Swiss albino mice AOM 4 weeks ↓ TP
Induction of apoptosis

[25]

Lactobacillus casei BL23 C57BL/6 mice DMH 10 weeks ↓ TI [26]
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Lachnospiraceae, and Clostridiaceae) [55] has been 
proven to promote apoptosis and inhibit proliferation in 
cancer cells cultured in vitro [57] and remains the most 
investigated of SCFAs. Colorectal cancer is strongly cor-
related with decreased levels of SCFA and SCFA-pro-
ducing bacteria dysbiosis [58]. Administration of bac-
terial strain Butyrivibrio fibrisolvens MDT-1, (known 
for their high production of butyrate) in mouse model 
of colon cancer, inhibited progression of tumor develop-
ment, affecting also the reduction of β-glucuronidase and 
increasing the immune response [59].

More recent evidence suggests modulation of SCFA-
producing bacteria by dietary intervention with ferment-
able fibers as a possible colorectal cancer treatment. A 
more recent study on mice demonstrated amelioration 
of polyposis in CRC (colorectal cancer) after increasing 
SCFA-producing bacteria after introduction of probiotic 
diet. Previously investigated application of synbiotic com-
bination of B. lactis and resistant starch in rat-azoxymethane 
model has been proven to protect against the development 
of CRC, which was correlated with increased SCFA pro-
duction [60]. Interestingly, neither B. lactis nor prebi-
otic were sufficient to achieve that effect alone. This and 
some previous assays suggest that prebiotic activity of 
fiber-enriched diet, projecting on the level of beneficial 
bacteria, is promising strategy to prevent CRC.

Lactic acid bacteria have been receiving much atten-
tion due to its contribution to immunomodulation corre-
lated with either suppression or regression of carcinogen-
esis. This phenomenon is the result of multidimensional 
activity involving interaction between the bacteria or their 
metabolites with the immune and epithelial cells [9, 19, 
61–63]. Consequentially, probiotic strains have the abil-
ity to both increase and decrease the production of anti-
inflammatory cytokines as well as modulate secretion of 
prostaglandins, which altogether projects on suppression 
of carcinogenesis. Another strategy involves activation of 
phagocytes by certain probiotic strains, leading to direct 
elimination of early-stage cancer cells [58, 62]. For a 
detailed review, see a comprehensive elaboration recently 
published in Nature summarizing the mechanisms engag-
ing microbiota in immune homeostasis and disease [64].

It has been demonstrated that some probiotics strains 
of Lactobacilli have been proven to suppress gastric-can-
cer-related H. pylori infections [65–67]. Another study 
conducted on patients with persistent human papilloma-
virus virus (HPV) showed an enhanced clearance of HPV 
and cervical cancer precursors after daily consumption of 
probiotics for 6 months [68].

Probiotics in Cancer Therapy

In recent years, there has been growing interest in the pos-
sible application of probiotics as a part of combination 
therapy with conventional treatment of cancer. An early 
but controlled and comparative study on 223 patients car-
ried out in 1993 showed that combination therapy includ-
ing radiation and treatment with heat-killed L. casei strains 
(LC9018) and improved the induction of immune response 
mechanisms against cancer cells thereby enhancing tumor 
regression in patients with carcinoma of the uterine cervix 
[69]. Research on azoxymethane-induced CRC mice model 
treated by the probiotic mix composed of seven different 
strains of lactobacilli, bifidobacteria, and streptococcus 
demonstrated suppression of colon carcinogenesis due to 
modulation of mucosal CD4+ T polarization and changes 
in the gene expression [70]. Furthermore, latest experiment 
investigating the effects of B. infantis administration in 
CRC rat model demonstrated a considerable attenuation of 
chemotherapy-induced intestinal mucositis correlated with 
decreased level on proinflammatory cytokines (IL-6, IL-1β, 
TNF-α) and increased CD4+ CD25+ Foxp3+ T regulatory 
cell response [71].

Over and above that, two seminal papers published in Sci-
ence highlighted the significant role played by gut microbi-
ota in the immune response to cancer treatment. Disruption 
of the microbiota in mice was made evident by a decreased 
immune response and thereby tumor resistance for either 
cyclophosphamide [72] or oxaliplatin therapy [73]. As a 
result of these findings, probiotic bacteria have been gaining 
traction as a crucial component in successful cancer immu-
notherapy [63, 74–76].

The most recent experiments on mice have illustrated 
the key role of gut microbiota (Bacteroides and Bifidobac-
terium) in anti-PD-L1 (Programmed death-ligand 1) and 
anti-CTLA-4 (cytotoxic T lymphocyte-associated protein 4) 
therapies [77, 78]. Immunomodulatory effect was exhibited 
in intensified activation of dendritic cells and also promotion 
of antitumor T cell response. Essentially, Sivan et al. [77] 
observed a similar improvement of tumor control as a result 
of Bifidobacterium treatment alone compared to anti–PD-L1 
therapy, whereas combination of both strategies was suf-
ficient to nearly eliminate tumor outgrowth. These ground-
breaking results indicate that administration of probiotics 
appears to be a promising strategy in maximizing the effi-
ciency of cancer immunotherapy.

Cohort Studies

Several cohort studies have revealed the correlation between 
the consumption of dairy products and the risk of colon 
cancer. Some of these findings appear useful in drawing 
conclusions concerning the role of probiotic bacteria in 
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carcinogenesis, taking into account certain groups of previ-
ously investigated dairy products such as fermented milk 
products with a special emphasis on yogurt. There is still 
considerable ambiguity among studies, summarized in 
Table 3.

In contrast to that uncertainty, a recent study conducted 
in 2012 produced a meta-analysis including nineteen cohort 
studies which demonstrated an association between con-
sumption of dairy products (except cheese) and a decreased 
colorectal cancer risk [85]. Another noteworthy approach 
investigating the influence of dairy products on post-diag-
nostic CRC survival clearly indicates positive correlation 
between the high dairy intake and the lower risk of death 
[86].

A key problem with the majority of the cohort studies 
mentioned above is that they covered general dairy intake, 
including high-fat components such as cream and cheese, 
suspected of carcinogenic properties due to their ability to 
increase bile acid levels in the colon [85, 87]. Moreover, 
research tends to focus on anticancer compounds such as 
calcium or vitamin D, without paying special attention to 
probiotics. Therefore, the first innovative cohort study con-
ducted in 2011 by Pala et al. [88] on 45,241 subjects proved 
a significant association between single probiotic-rich prod-
uct intake (yogurt) and decreased colon cancer risk. Similar 
approaches should be conducted on large cohorts, investigat-
ing probiotics’ intake from natural sources (such as yogurt 
and other fermented dairy products) as well as supplements, 
in order to reveal their effect on cancer risk.

Probiotics in Treatment and Prophylaxis

Utilization of the recombinant probiotic strains as a deliv-
ery system for various therapeutic molecules such as drugs, 
as well as cytokines, enzymes, or even DNA [89, 90] is 
quite recent and exceptional idea that could be successfully 
applied for colorectal cancer treatment (Fig. 1). Probiotic 
bacteria are indispensable as vectors due to their wide range 
of tolerance to the environment of gastrointestinal tract 

co-occurring with their natural capability of colonizing the 
mucosal surface followed by prolonged residence maintain-
ing their protective properties [91]. The innovative concept 
of a “bio drug” relies on oral administration of geneti-
cally modified probiotics allowing a direct delivery of the 

Table 3   Cohort studies investigating the correlation between the consumption of dairy products and the cancer risk

a Without specific effects of fermented milk
I/A inversed associations between intake and cancer risk N/S/A no significant associations

Study Country Years No. of participants Products Result

Järvinen (2001) [79] Finland 1966–1972 9959 Milk and dairy products I/Aa

van’t Veer (1994) [80] United states 1986–1989 120,852 Fermented dairy products Slight I/A
Kearney (1996) [81] United states 1986–1992 47,935 Milk and fermented dairy products N/S/A
Pietinen (1999) [82] Finland End 1993 27,111 Milk and dairy products I/A
Lin (2005) [83] United States 1993 39,876 Milk fermented and unfermented dairy 

products
N/S/A

Larsson (2006) [84] Sweden 1997–2004 45,306 Dairy products I/A

Fig. 1   Summary of the possible applications of probiotic bacteria in 
the treatment and prevention of cancer. Figure summaries most sig-
nificant findings from studies in vitro and in vivo mentioned in text 
[89–114]. This figure was prepared using Servier Medical Art, avail-
able from www.servi​er.com/Power​point​-image​-bank. Legend: down-
wards arrow decrease, upwards arrow increase ACF aberrant crypt 
foci, MPL multiple plaque lesions

http://www.servier.com/Powerpoint-image-bank
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therapeutic components to the intestinal mucosa. Regarding 
low costs, simple technology, and procedure of the treat-
ment, this strategy has a great potential to be widely used in 
prevention and treatment of various disorders.

In several independent studies on rodents, intragastric 
application of recombinant strains of Lactobacillus lactis 
expressing anti-inflammatory compounds (cytokines, IL-10, 
human interferon-beta, or antioxidants) has been shown to 
ameliorate the intestinal inflammation and demonstrated 
cytoprotective effect [92–94]. In another approach, appli-
cation of Lactococcus lactis expressing catalase has been 
proven to decrease the production of reactive oxygen spe-
cies (ROS) such as H2O2, reducing colonic damage, and 
inflammation, consequently projecting on tumor invasion 
and proliferation [95].

More recent study investigating multiple strategies of 
inhibition of the inflammatory-related carcinogenesis with 
different combination of probiotic vectors expressing anti-
oxidant enzymes (catalase, superoxide dismutase) or IL-10 
(produced as cDNA or in expression system inducible by 
stress—SICE) has shown these strains as agents causing 
significant changes of the immune response as well as pre-
neoplastic lesions or even causing the entire inhibition of 
tumor development [96] (for details see Table 4).

A plethora of studies reported potential application of 
the probiotic expression systems as vaccines, demonstrat-
ing stimulation of the adaptive immune system response 
against the pathogens [97–99]. A number of experiments 
investigating application of genetically engineered probiot-
ics expressing human papillomavirus E7 oncoprotein or the 
treatment of cervical cancer have shown that in contrast to 
the traditional polyvalent vaccines, which have preventive 
properties only on the development of the disease, “probiotic 
vaccination” has been demonstrated to have both protec-
tive (stimulating immunological response) and therapeutic 
effects (tumor regression) [100–103]. Pre-immunization 
with E7-displaying lactococci significantly enhanced the 
antitumor effect of a following treatment with adenovirus 
[104].

Studies on TC-1 tumor murine model have shown that 
therapeutic effect can be enhanced by co-administration of 
Lactobacillus lactis capable of expressing oncoprotein E7 
and immunostimulatory compounds, such as interleukin-12 
[96, 101, 102]. Prophylactic administration of the vaccine 
in healthy individuals conferred to resistance to subsequent 
administration of lethal levels of tumor cell line TC-1, even 
after the second induction, resulting in 80 [102] to 100% 
[101] survival rate. Treatment of tumor-bearing mice with 
recombined probiotic caused regression of palpable tumors, 

correlated with the increased antitumor cytotoxic T lympho-
cyte (CTL) immunoresponse [101, 102].

Most recent evidence proposes the utilization of probiot-
ics in the delivery of tumor-associated antigens (TAAs) as 
an orally administrated vaccine, based on a recently reported 
prosperous approach with Bifidobacterium expressing 
Wilms’ tumor 1 (WT1) protein [105].

Occurrence of hypoxic and neurotic areas among solid 
cancer tissues gives rise to the opportunity of utilization 
of a specific tendency of certain probiotic strains for selec-
tive localization and proliferation in anaerobic environment 
[106–109]. This phenomenon was further investigated in 
rodents, leading to the evaluation of direct anticancer treat-
ment using Bifidobacteria as a delivery vehicle for specific 
drugs such as cytosine deaminase [110] or angiostatins [111, 
112] or even in gene therapy [113].

The most important limitation of abovementioned strate-
gies lies in the fact that genes for antibiotic resistance, com-
monly used as selective marker in the procedure of cloning, 
could be potentially transferred to resident intestinal micro-
biota by probiotic delivery vectors. Finding an alternative, 
secure selection marker for cloning in therapeutic strains still 
remains a challenging area in this field [114].

Conclusions

This paper has given an account of the role played by gut 
microbiota in cancer prevention and treatment. It is note-
worthy that until now most of these innovative methods 
mentioned above have only been investigated in animal 
models. Clinical tests of this strategy are expected to raise a 
possibility of utilizing probiotic bacteria as comprehensive 
drug-delivery vectors for non-invasive cancer treatment in 
humans. Taken together, a growing body of literature had 
highlighted a role of probiotic balance in maintenance of 
widely understood homeostasis, projecting on success-
ful cancer therapy. The evidence from latest studies points 
towards the idea of possible implementation of probiotics 
in cutting-edge cancer therapies. Future investigations on 
the current topic are therefore necessary in order to vali-
date these findings and establish therapeutic strategies. This 
could conceivably lead to a breakthrough in various fields 
of medicine not only supporting immunotherapy in cancer 
treatment or elaboration and production of an innovative 
vaccines, but also improving drug delivery in other bowel 
diseases while preventing and mitigating inflammation at 
the same time.
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Table 4   Comparison of the strategies using the probiotic strains in cancer prevention and treatment

→ Administration, inj/w injected with, ↓ decrease, ↑ increase, N/E no effect. Cell lines: human: Colo320—colon adenocarcinoma MKN-
45—gastric cancer, MDA-MB-231—breast cancer, SSMC-7721—liver cancer. Mouse: B16-F10—skin melanoma, CT24—colorectal cancer, 
C1498-WT1—leukemia
ACF and MPL pre-neoplastic lesion: aberrant crypt foci and multiple plaque lesions, CRC​ colorectal cancer, DMH-I 2-dimethylhydrazine 
induced, DSS dextran sulfate sodium, HO-1 Heme oxygenase-1, IL-10 interleukin 10, MCP-1 monocyte chemoattractant protein 1 (cytokine), 
MT mammary tumor, S–D Sprague–Dawley (rats), TNFα tumor necrosis factor

Probiotic strains Model Treatment Effect References

Probiotic vaccination
 Lactococcus lactis C57BL/6 mice

→ Intranasal
E7 protein displayed ↑ Antitumor effect of following 

Ad-CRT-E7 treatment
[104]

 Lactococcus lactis C57BL/6 mice
→ Intranasal

E7 protein displayed HPV-16 E7-specific immune 
response

[103]

 Bifidobacterium longum C57BL/6N mice inj/w 
C1498-WT1

→ Oral

WT1 displayed ↓ WT1-expressing Tumor 
growth

↑ Survival rate
↑ Tumor infiltration of CD4+ T 

and CD8+ T
↑ Cytotoxic activity

[96]

Mitigation of inflammation
 Streptococcus thermophilus
 Lactococcus lactis

BALB/c mice
(DMH)-I CRC​
→ Oral

Antioxidant enzymes (catalase, 
superoxide dismutase), IL-10;

Groups: IL-10 (SICE) IL-10 
(cDNA) antioxidants, mix

All groups:
↓ Tumor incidence
↓ ACF and MPL
↓ MCP-1
↑ IL-10/TNFα
Groups: IL 10 (SICE), antioxi-

dants and mix: no tumor
Mix:
↓↓ ACF and MPL
↓↓ MCP-1
↑↑ IL-10/TNFα

[96]

 Lactococcus lactis DSS-induced mice
→ Intragastric

IL-10 No tumor
↓ Colonic damage
↓ Inflammation

[92]

 Lactococcus lactis BALB/c mice
(DMH)-I CRC​
→ Oral

Catalase ↓ Colonic damage ↓ Inflam-
mation

↓ Tumor incidence
↓ Tumor progression

[95]

Drug delivery
 Bifidobacterium longum BALB/c mice inj/w CT24

→ Oral or injection
Tumstatin Antitumor effect [111]

 Lactococcus lactis Rats (DMH)-I CRC​
→ Oral

Endostatin ↑ Survival rate
N/E on complete cure

[115]

 Bifidobacterium longum C57BL/6 mice inj/w Lewis
lung cancer and B16-F10
→ Oral

Endostatin or endostatin + sele-
nium

Endostatin group:
↓ Tumor progression
↑ Survival time
Endostatin ± selenium:
↓↓ Tumor progression
↑ Activity of NK, T cells and
↑ Activity of IL-2 and TNF-a i

[112]

Gene therapy
 Bifidobacterium infantis Melanoma B16-F10 cells

→ Supernatant fluid
Cytosine deaminase/5-fluoro-

cytosine
↑ Morphological damage
↓ Growth

[116]

C57BL/6 Mice, inj/w B16-F10 
cells

→ Injection

Cytosine deaminase/5-fluoro-
cytosine

Antitumor effect

 Bifidobacterium infantis BALB/c Mice and cell lines:
Colo320, MKN-45, SSMC-

7721, MDA-MB-231
→ Injection

Thymidine kinase (BF-rTK)
Ganciclovir (GCV)

↑ Mitochondrial apoptosis
↓ Inflammation
↓ TNFα

[113]
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