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Real‑time, automatic, open‑source 
sleep stage classification system 
using single EEG for mice
Taro Tezuka1*, Deependra Kumar2, Sima Singh2, Iyo Koyanagi2, Toshie Naoi2 & 
Masanori Sakaguchi2*

We developed a real-time sleep stage classification system with a convolutional neural network using 
only a one-channel electro-encephalogram source from mice and universally available features in any 
time-series data: raw signal, spectrum, and zeitgeber time. To accommodate historical information 
from each subject, we included a long short-term memory recurrent neural network in combination 
with the universal features. The resulting system (UTSN-L) achieved 90% overall accuracy and 81% 
multi-class Matthews Correlation Coefficient, with particularly high-quality judgements for rapid 
eye movement sleep (91% sensitivity and 98% specificity). This system can enable automatic real-
time interventions during rapid eye movement sleep, which has been difficult due to its relatively 
low abundance and short duration. Further, it eliminates the need for ordinal pre-calibration, 
electromyogram recording, and manual classification and thus is scalable. The code is open-source 
with a graphical user interface and closed feedback loop capability, making it easily adaptable to a 
wide variety of end-user needs. By allowing large-scale, automatic, and real-time sleep stage-specific 
interventions, this system can aid further investigations of the functions of sleep and the development 
of new therapeutic strategies for sleep-related disorders.

The function of sleep has historically been investigated using sleep deprivation. Although this technique reveals 
the importance of sleep, it is difficult to establish causal relationships between sleep and observed phenotypes 
due to confounding factors accompanying sleep deprivation (e.g., stress). To avoid this issue, genetic methods 
were introduced to manipulate neural circuits that regulate sleep. However, these neural circuits are often hard-
wired to those vital for other physiological processes (e.g., orexin neurons to appetite, melanin-concentrating 
hormone neurons to memory). Recently, optogenetics has revolutionized investigation into the function of sleep. 
Using optogenetics, target neuronal circuits can be specifically manipulated with light to interrogate their causal 
contributions during specific sleep stages while leaving sleep structure unchanged1–3. When using this technique, 
it is essential to classify a subject’s sleep stage in real-time for interrogation. However, a real-time, automatic, and 
scalable system for sleep stage classification for mice is lacking. Mice show a clear distinction between different 
sleep stages (i.e., rapid eye movement sleep (REM) and non-REM sleep (NREM)) and permit advanced genetic 
interventions. However, specifically examining the function of REM is difficult, mainly owing to its short and 
sparse nature (i.e., average ~ 1 min per episode, ~ fivefold less than NREM). Therefore, real-time, sensitive, and 
specific detection of REM in mice remains a challenge.

Real-time classification carries additional difficulties compared with offline classification, as parameters must 
be adjusted automatically for each subject, and artifacts and noise should be processed in real time. For example, 
Izawa et al. used a rule-based, real-time mouse sleep stage classification system2 in which thresholds are manually 
calibrated for each mouse before starting real-time classification, making it ill served for large-scale application. 
Furthermore, waveform patterns characteristic of each sleep stage (e.g., slow-wave activity, theta oscillations) are 
often defined by spectrum features using Fast Fourier Transformation (FFT). Indeed, Patanaik et al. developed a 
real-time human sleep classification system with a convolutional neural network (CNN) using FFT, but not raw, 
data from two-channel electroencephalogram (EEG) and two-channel electrooculogram4. They achieved 81.4% 
overall accuracy (ACC), 71.8% REM sensitivity, and 83.6% REM specificity. However, transformation of EEG 
waveform data to spectrum (i.e., FFT) data may lose transient wave characteristics that are potentially useful for 
stage classification. Most recently, Garcia-Molina et al. developed a system that classifies human sleep in real-
time using one-channel EEG (1EEG)5. This system processes raw signals using a CNN with a long short-term 
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memory network (LSTM) to incorporate historical information, which achieved Cohen’s kappa values very close 
to those of professional judges and 72–94% REM specificity. However, a system that can robustly and automati-
cally classify sleep stages in real time is still lacking.

Here, we report two fully automatic, real-time sleep stage classification systems for mice using 1EEG that use 
features common to any time-series data, which is unprecedented in existing systems. Our method is scalable 
and easily harnessed in any closed feedback loop system for real-time intervention in specific sleep stages, with 
especially high sensitivity and specificity for REM.

Results
Development of a sleep stage classification system using universal time‑series features.  First, 
we developed a real-time sleep stage classification system with a CNN using 1EEG data from mice, named the 
universal time-series network (UTSN). UTSN processes raw EEG, FFT, and zeitgeber time (ZT) together. ZT is 
used because sleep is regulated by circadian rhythm6. The output from the CNN, FFT, and ZT are concatenated 
and transformed into a three-dimensional vector corresponding to the probabilities of each sleep stage (i.e., 
wakefulness, NREM, and REM) by a fully connected neural network (FCN) (Fig. 1). We did not use any de-
noising preprocessor for the raw EEG signals, as the multi-layer architecture of the CNN can act as a set of filters 
and extract only meaningful information for sleep stage classification7.

To make the UTSN applicable to closed feedback loop applications, we set the epoch window to 10 s, which 
was shown to be useful for optogenetic manipulation during REM3. For the activation function to nonlinearly 
transform the signal, we used a rectified linear unit (ReLU). Each convolution layer is followed by a ReLU acti-
vation layer and subsequent batch normalization (BN). BN standardizes the activity of each layer and prevents 
the vanishing gradient problem that occurs in deep learning. Two skip-connections8 are inserted to capture 
both crude and detailed characteristics. The 1–12 Hz range of the FFT spectrum, which covers the critical char-
acteristic oscillatory activity in delta (1–4 Hz) and theta (6–9 Hz) bands, was split into 22 bins (i.e., 22-dimen-
sional feature vector, 0.5 Hz per bin). We also implemented classifiers that use the short-time Fourier transform 
(STFT) instead of FFT, which resulted in marginal improvement (Suppl. Figs. 1–4, Suppl. Tables 5–7). As the 
task is multiclass classification, the softmax function converts the output of the FCN to a vector representing a 
probability distribution over sleep stages. Finally, the argmax function outputs the sleep stage with the highest 
estimated probability.

Addition of LSTM.  We hypothesized that historical information would be useful for classification, as previ-
ously shown5,7. Therefore, we developed another system (UTSN-L) that connects to a LSTM after FCN output 
from the UTSN (Fig. 2), which enables the use of the output layer (i.e., before the softmax function) of the 
UTSN. LSTM is a sequence processing neural network that incorporates past states (i.e., epochs) into the clas-
sification of present states.

Training, validation, and testing.  We prepared 214 recordings (6 h per recording) with ground truth 
(i.e., human-scored) tags annotated by human experts. Of these, 192 recordings were used for training and vali-
dation of the systems, and 22 were used for testing. For each of the three sets of training and validation sessions, 
the 192 recordings were randomly split into a training dataset of 182 recordings and a validation dataset of 10 
recordings. Thus, we obtained three classifiers (i.e., trained system) for the UTSN, UTSN-L, and other methods 
for comparison.

Figure 1.   Network structure of the UTSN. Conv(a,b;c ) indicates a block consisting of a one-dimensional 
convolution layer with kernel size a having b channels and stride set to c . FC(d ) is a block composed of a fully 
connected layer having d output channels. FFT, Fast Fourier Transformation; skip, skip-connection; ReLU, 
rectified linear unit; BN, batch normalization.
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Evaluation of sleep stage classification.  We evaluated the performance of the UTSN and UTSN-L for 
the three trained classifiers by comparison with conventional methods and network models that partially uti-
lize universal features (Table 1). As simple conventional methods, we used logistic regression5,9, which usually 
performs well for small datasets, and random forest10–12 and AdaBoost13,14, which are ensemble-based methods 
that perform well for large datasets. Random forest is an ensemble method that combines the results of train-
ing numerous decision trees, and AdaBoost is an adaptive variant of boosting that aggregates outputs of weak 
learners. To evaluate the contribution of each universal feature, we compared simpler CNN models using each 
feature (i.e., raw EEG, FFT, or ZT) alone or in combination. Each recording consisted of > fivefold fewer REM 
epochs than NREM epochs or wakefulness. In this case, multiclass statistics may not reflect actual performance, 
especially for a class with low frequency (i.e., REM). Therefore, for evaluation criteria, we also used specificity, 

Figure 2.   UTSN-L architecture. The signal from each epoch is processed using the same architecture as the 
UTSN until the FCN (i.e., before the final softmax function). xt , xt−1 , … xt−m+1 are EEG signals for epochs t  
to t −m+ 1 , respectively. The output of the FCN is a sequence of low dimensional feature vectors, vt , vt−1 , … 
vt−m+1 , which is sent to the LSTM. ŷt is the final output that predicts the sleep stage for epoch t  . The diagram 
shows a case in which m = 3 ( m = 10 in the real implementation).

Table 1.   Prediction performance from validation.  Average scores from the three sets of training and 
validation sessions. LR logistic regression, RF random forest (64 estimators), AB AdaBoost (64 estimators), 
Raw raw signal, Spec spectrum, W wakefulness, N NREM, R REM. The best result for each criterion is 
indicated in bold. For details, see Suppl. Fig. 5.

UTSN UTSN-L LR RF AB Raw Spec Raw + Spec Raw + ZT Spec + ZT

Overall accuracy (ACC) 88.1 89.5 73.3 77.6 77.9 87.9 77.4 87.9 88.4 77.7

multiclass MCC (mMCC) 78.6 80.7 49.5 59 59.3 78.2 59.4 78.6 79.1 60.2

W

Sensitivity 83.6 87.1 61.3 72.9 72.9 85.9 76.9 84.6 86.5 77.0

Specificity 92.4 92.9 82.6 82.0 83.3 90.3 79.5 91.8 91.0 80.0

Accuracy 89.0 91.1 74.3 77.9 79.0 88.7 77.9 89.1 89.3 78.2

Precision 87.0 88.6 69.8 71.8 72.3 84.9 72.2 86.0 85.6 72.7

F1 score 84.0 87.3 63.0 70.3 71.2 84.0 72.2 83.8 85.2 72.5

MCC 76.7 80.6 45.0 55.1 55.8 76.2 56.1 76.5 77.3 56.8

N

Sensitivity 91.4 90.6 85.7 86.7 84.9 89.2 82.8 90.2 89.7 82.9

Specificity 87.4 89.7 66.4 76.5 78.4 89.5 80.7 89.9 90.1 80.9

Accuracy 89.4 90.4 76.9 81.5 81.7 89.3 81.2 90.0 89.8 81.4

Precision 90.9 92.5 75.6 82.9 83.9 92.1 83.0 92.0 92.4 83.1

F1 score 90.4 91.2 79.2 83.2 83.2 89.8 81.2 90.6 90.3 81.3

MCC 78.8 80.2 51.2 62.5 61.6 78.4 62.1 78.6 79.4 62.5

R

Sensitivity 87.4 90.8 34.8 30.5 48.3 86.6 39.7 86.2 88.1 42.6

Specificity 98.3 98.1 99.1 99.7 98.0 98.4 99.2 97.2 98.2 99.0

Accuracy 97.7 97.6 95.4 95.7 95.1 97.7 95.8 96.6 97.6 95.8

Precision 79.2 75.2 68.2 87.9 62.8 79.2 75.9 78.6 77.9 77.7

F1 score 82.3 81.9 41.4 42.1 50.5 81.8 47.1 80.3 81.7 49.5

MCC 81.9 81.4 44.2 47.7 50.1 81.3 49.8 80.0 81.6 52.0
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sensitivity, accuracy, precision, F1 score, and Matthews Correlation Coefficient (MCC). Overall, the UTSN-L 
performed better than the UTSN (Table 1). Although our system is capable of making predictions in real time, 
all experiments were conducted using already acquired, human-scored data to allow cross-comparisons among 
methods. To simulate real-time prediction conditions, the classifiers were not allowed to use future data to judge 
the target epoch. Moreover, as UTSN-L cannot make predictions unless 10 successive epochs are stored, we 
omitted the prediction results for the first nine epochs from all methods.

For further evaluation, we chose one trained classifier each for the UTSN and UTSN-L for testing based on 
ACC score. Overall, the test results were consistent with the validation results (Table 2, Suppl. Table 1, n = 22 
recordings), which was also supported by tenfold cross-validation (Suppl. Figs. 1–4, Suppl. Tables 5–7). Sleep 
architectures showed similar results as ground truth (Fig. 3A). Although total sleep amounts were almost identi-
cal (Fig. 3B), the UTSN tended to detect more transitions between sleep stages as evidenced by more (Fig. 3C) 
and shorter (Fig. 3D) episodes. Power spectrum analysis showed almost identical results (Fig. 4), corroborating 
the waveform patterns of the identified epochs (examples in Suppl. Fig. 6 and VIDEO S1). In summary, these 
results indicate that including the LSTM together with the three universal features improves the quality of sleep 
stage classification.

Implementation of a GUI.  For practical use in experimental protocols without requiring programing 
skills, we developed a graphical user interface (GUI) that can run on any personal computer capable of running 
Python and a USB-based data acquisition system (Fig. 5, VIDEO S1). Using this GUI, classifications can also be 
performed offline using text-based signal data. As the GUI can output classification results in real-time for an 
Arduino device, it can be immediately implemented in a closed feedback loop system of choice (delay is 10 s due 
to the epoch window size). The source code is publicly available and thus can easily be customized for specific 
end-user needs.

Discussion
Here, we report two real-time, fully automatic mouse sleep stage classification systems using only 1EEG. These 
systems achieved high sensitivity and specificity for REM and are robust, scalable, and adaptable. They use a 10-s 
time window, which allows them to be implemented in a closed feedback loop system for functional analysis 
during specific sleep stages3. The use of three universal time-series features allow the systems to be adapted 
for more detailed classification of sleep stages (e.g., high-theta and low-theta wakefulness15) from a variety of 
signal sources, even those from other species (e.g., humans) and brain areas (e.g., local field potentials in the 
hippocampus).

We believe that eliminating electromyogram (EMG) from the input markedly expands the system’s applica-
tions, particularly when they are applied to species in which reliable EMG is not easily obtained (e.g., reptiles16). 
Moreover, reducing the number of input channels bestows these systems with simplicity and thus scalability 
against a backdrop of reduced information. Indeed, although there have been attempts to use 1EEG for real-time 
classification5,17, to the best of our knowledge, there is no real-time classification system using 1EEG for mice 
achieving sensitivity and specificity for REM as high as the UTSN-L. Even with 1EEG, the UTSN-L achieved 
high-quality classification with a relatively small set of training data compared with previous networks (for 
example, 7), suggesting the robustness of the architecture.

One general difficulty in training systems for classifying sleep stages is that the amount of each sleep stage 
is imbalanced, with REM being particularly rare. In the future, this problem could be alleviated by using a loss 
function tailored for imbalanced data18,19. Another possibility is the use of an attention mechanism20. Often in 
sleep stage classification, human experts deliberately choose which part of the raw signal to focus on after observ-
ing the overall signal shape in an epoch. For example, if the overall amplitude of a signal is relatively small and 
consistent, human experts assume it could be REM and look for additional indicators (e.g., theta oscillation) to 
support their conclusion. In the future, an attention mechanism may be able to mimic such strategies.

In summary, we developed automatic, real-time sleep stage classification systems for mice using 1EEG input 
that provides high REM sensitivity and accuracy. These systems could potentially be used to analyze other 

Table 2.   Confusion matrix analysis from testing. Values, total epoch count from 22 recordings; Shaded cells, 
true positive; W wakefulness, N NREM, R REM.

W N R

UTSN prediction

Ground truth

W 9828 1801 104

N 1281 25,756 98

R 319 368 2265

UTSN-L prediction

Ground truth

W 10,008 1585 140

N 980 25,718 437

R 184 119 2,649
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Figure 3.   Sleep architecture analysis from testing. (A) Hypnogram, (B–D) sleep architecture. W, wakefulness; 
N, NREM; R, REM; GT, ground truth; UN, UTSN; UL, UTSN-L; WN, wakefulness to NREM; WR, wakefulness 
to REM; SN, NREM to wakefulness; NR, NREM to REM; RW, REM to wakefulness; RN, REM to NREM. Data 
are shown as mean 95% confidence interval (n = 22 recordings).

Figure 4.   Power spectrum analysis from testing. Power was normalized by the total power (0.5–20 Hz) for 
each stage. Note the clear peaks within delta range (1–4 Hz) in NREM and theta range (6–9 Hz) in REM. W, 
wakefulness; N, NREM; R, REM; GT, ground truth; UN, UTSN; UL, UTSN-L; average from n = 22 recordings.
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time-series datasets. As they allow large-scale closed feedback loop applications, they can be employed to further 
investigate the functions of sleep.

Methods
Animals.  All animal experiments were approved by the University of Tsukuba Institutional Animal Care and 
Use Committee. C57Bl6/J mice, which do not exhibit sleep–wake abnormalities, were maintained in a home cage 
(cylindrical Plexiglas cage: 21.9-cm diameter, 31.6-cm height) in an insulated chamber (45.7 × 50.8 × 85.4 cm), 
which was maintained at an ambient temperature of 23.5 ± 2.0 °C under a 12-h light/dark cycle (9 AM to 9 PM) 
with ad libitum access to food and water in accordance with institutional guidelines. The study was carried out 
in compliance with the ARRIVE guidelines.

Implantation of EEG and EMG electrodes.  At nine weeks of age, mice were anesthetized with iso-
flurane and fixed in a stereotaxic frame (Stoelting, USA). The height of bregma and lambda were adjusted to 
be equal. EEG/EMG electrodes were placed as previously described3. Briefly, EEG electrodes were stainless 
steel recording screws (Biotex Inc.) implanted epidurally at AP + 1.5 mm and − 3 mm and ML − 1.5 mm and 
− 1.7 mm, respectively, and EMG electrodes were stainless steel Teflon-coated wires (AS633, Cooner Wire, USA) 
bilaterally placed into the trapezius muscles.

EEG and EMG recording.  One week after electrode placement, mice underwent EEG and EMG record-
ing in their home cage equipped with a data acquisition system capable of simultaneous video recording (Vital 
recorder, KISSEI COMTEC, Japan). Signals were recorded during ZT =  ~ 2 to 8 (~ 11 AM to 6 PM) for each 
mouse. Data were collected at a sampling rate of 128 Hz. Electric slip rings (Biotex Inc.) allowed mice to move 
and sleep naturally.

Sleep stage analysis by human experts.  Sleep stage analysis by human experts was conducted based on 
visual characteristics of EEG and EMG waveforms with the help of FFT and video surveillance of mouse move-
ment. The EEG dataset consisted of 214 recordings in total. In most cases, two recordings on two consecutive 
days were obtained from each mouse. Recordings were divided into 10-s epochs. FFT analysis was performed 
using Sleep Sign software (KISSEI COMTEC).

Wakefulness was defined by continuous mouse movement or de-synchronized low-amplitude EEG with tonic 
EMG activity. NREM was defined by dominant high-amplitude, low-frequency delta waves (1–4 Hz) accompa-
nied by less EMG activity than that observed during wakefulness. REM was defined as dominant theta rhythm 
(6–9 Hz) and the absence of tonic muscle activity. If a 10-s epoch contained more than one sleep stage (i.e., 

Figure 5.   The GUI. Boxes in the upper row show normalized EEG raw signals (blue). Boxes in the bottom 
row show signals from an open channel (Ch2, green), which can be used for electromyogram (EMG), a motion 
sensor, an override signal, etc. Predicted stage for each epoch is presented above the corresponding EEG signal. 
Numbers with bold letters (i.e., 47–50) indicate past epochs (e.g., 10 s each) analyzed by the chosen network. 
In this case, UTSN-L analyzed epochs 1–50 and is currently analyzing epoch 51 (not predicted at the present 
moment). As an additional function, users can override the prediction to wakefulness (“W”) if the Ch2 signal 
crosses a threshold defined by the user, and the threshold for override can be changed manually using a scroll 
bar in the top-right corner (“Override threshold to W”). Users can also choose whether to normalize the Ch2 
signal (“Ch2 mode”). Please see VIDEO S1.
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NREM, REM, or wakefulness), the most represented stage was assigned for the epoch. At least two experts agreed 
on the classification of each recording.

Training, validation, and testing of UTSN and UTSN‑L.  To prepare the data for training, we nor-
malized EEG data using the mean and standard deviation of all sample points in that recording. Let xτ be the 
observed value of EEG at a sample time point τ . In our experiment, the sampling frequency of EEG was 128 Hz, 
so t increments by 1/128  s. For validation and testing, we normalized EEG at each sample point (i.e., every 
1/128 s) using the mean and standard deviation of all preceding values. In other words, for each sample point, 
the value was normalized as

where

This process assimilates the real-time classification condition. On average, each recording consisted of ~ 2161 
epochs.

Hyperparameters.  The network structure and hyperparameters of the CNN and LSTM in the UTSN and 
UTSN-L were selected from various possible models through preliminary evaluation (Suppl. Tables 2–3).

Neural network architecture.  A one-dimensional convolutional neural network processes the raw EEG 
data.

As the sampling rate is 128 Hz and the time window is 10 s, the segment is a 1280-dimensional vector. This 
network consists of stacked convolution layers that aggregate values of spatially neighboring nodes and output 
a lower-dimensional representation. Each convolution layer consists of one or more kernels (or filters) that act 
as local feature detectors. Let z be the input vector to a d-diensional kernel κ . The output of a convolution layer 
is a vector a whose components are obtained by aτ =

∑
d

s=1
κszτ−d+s.

Model evaluation.  Models were evaluated by criteria commonly used for multiclass and binary classifica-
tion tasks (Suppl. Table 4).

Statistical analysis.  Statistical analysis was performed using GraphPad Prism version 7.04 for Windows 
(GraphPad Software, USA). Type I error was set at 0.05. Shapiro–Wilk tests were performed to assess the nor-
mality of data. Brown-Forsythe tests were performed to assess homogeneity of variance.

Software implementation.  We implemented the system using PyTorch. The neural network models were 
trained using NVIDIA Quadro RTX 8000 with 48 GB memory.

Data availability
Data underlying the results described in this manuscript are available at https://​data.​mende​ley.​com/​drafts/​5wtxz​
793my (for reviewing only). https://​doi.​org/​10.​17632/​5wtxz​793my.1 (after acceptance) except for the raw EEG 
and EMG recording data with stage labels, which are available at https://​drive.​google.​com/​drive/​folde​rs/​1d27r​
v1bl9​OT2X2​KZ98L​TXgtZ​O7AX8​PBh?​usp=​shari​ng.

Code availability
Code for UTSN and UTSN-L are available at https://​github.​com/​tarot​ez/​sleep​stages.

Materials availability
No special materials were created in this study.
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