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Abstract: In this work, we study the behavior of a composite rod consisting of a piezoelectric
semiconductor layer and two piezomagnetic layers under an applied axial magnetic field. Based on the
phenomenological theories of piezoelectric semiconductors and piezomagnetics, a one-dimensional
model is developed from which an analytical solution is obtained. The explicit expressions of
the coupled fields and the numerical results show that an axially applied magnetic field produces
extensional deformation through piezomagnetic coupling, the extension then produces polarization
through piezoelectric coupling, and the polarization then causes the redistribution of mobile charges.
Thus, the composite rod exhibits a coupling between the applied magnetic field and carrier distribution
through combined piezomagnetic and piezoelectric effects. The results have potential applications in
piezotronics when magnetic fields are relevant.

Keywords: piezomagnetic; piezoelectric semiconductor; carrier tuning; applied magnetic field

1. Introduction

Piezoelectric materials may be dielectrics or semiconductors. In piezoelectric semiconductors,
mechanical fields interact with mobile charges through the electric fields accompanying the mechanical
fields produced via piezoelectric couplings. Since the 1960s, there have been efforts on developing
piezoelectric semiconductor acoustoelectric wave devices based on these couplings [1]. Relatively
recently, various piezoelectric semiconductor materials and structures have been synthesized, such as
fibers, tubes, belts, spirals, and films using the so-called third-generation semiconductors, such as ZnO
and MoS2, which are piezoelectric [2]. These materials have great potentials for broad applications in
electronics and phototronics in the form of single structures or arrays [3,4], sensors [5], electro- and
photochemical applications [6], optoelectronics [7], and nanogenerators [8,9]. These relatively recent
developments have formed new research areas called piezotronics and piezo-phototronics.

If a piezomagnetic material is attached to a piezoelectric semiconductor, the resulting composite
structure deforms in a magnetic field due to piezomagnetic coupling. The deformation then
produces electric polarization and motion or redistribution of mobile charges in the piezoelectric
semiconductor [10]. This effect has been explored for applications in nanogenerators [11,12], optical
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devices [13,14], transistors [15], magnetic recording devices [16], and sensors [11]. Because of these
applications, there is an emerging and growing need to study the coupling behavior of the composite
structures of piezoelectric semiconductors and piezomagnetics.

In this paper, we study multi-field interactions in piezomagnetic–piezoelectric semiconductor
composite structures through a theoretical analysis of the basic problem of a rod in extensional
deformation under an axial magnetic field. The analysis is simple, which allows us to show the physics
involved and the roles of various physical and geometric parameters explicitly. The macroscopic
theories for piezoelectric semiconductors and piezomagnetics are summarized in Section 2. A
one-dimensional model for the extensional deformation of a composite rod is developed in Section 3,
along with an analytical solution in Section 4. Numerical results and discussions are presented in
Section 5, with a few conclusions in Section 6.

2. Governing Equations

We consider the structure of the composite rod shown in Figure 1. It consists of a piezoelectric
semiconductor layer “(1)” and two identical piezomagnetic layers “(2).” It is under an axial magnetic
field H3, which causes axial extension of the rod through the piezomagnetic constant h33. If the direction
of M is in the x2 direction perpendicular to the piezomagnetic layers, the extension can be produced in
the rod under a transverse magnetic field in a similar way through the piezomagnetic constant h31.
The case of piezoelectric/piezomagnetic dielectric composites have been well studied, e.g., [17–21].
More references can be found in a review [22]. Our composite rod differs from the literature in that the
piezoelectric layer in Figure 1 is a semiconductor.
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Figure 1. A composite rod of a piezoelectric semiconductor and piezomagnetics.

The basic behaviors of the materials of the structure in Figure 1 can be described by the following
equations of piezomagnetic and piezoelectric semiconductors [23,24] in a Cartesian coordinate system
xj (j = 1, 2, 3):

∂T ji

∂x j
= ρ

∂2ui

∂t2 , (1)

∂Di
∂xi

= q(p− n + N+
D −N−A), (2)

∂Bi
∂xi

= 0, (3)
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∂Jp
i

∂xi
= −q

∂p
∂t

, (4)

∂Jn
i

∂xi
= q

∂n
∂t

, (5)

where Ti j is the stress tensor, ρ is the mass density, ui is the mechanical displacement vector, Di is the

electric displacement vector, q = 1.6× 10−19 C is the elementary charge, p and n are the concentrations
of holes and electrons, N+

D and N−A are the concentrations of ionized donors and accepters, which are
assumed to be uniform in this paper, Jp

i and Jn
i are the hole and electron current densities, and Bi is the

magnetic flux or induction vector. In the above equations, repeated subscripts are summed from 1 to 3.
Equation (1) is the stress equation of motion (Newton’s law). Equation (2) is the charge equation of
electrostatics. Equation (3) is the Gauss equation for the magnetic induction. Equations (4) and (5)
are the conservation of charge for holes and electrons (continuity equations). The related constitutive
relations describing material behaviors are

Ti j = ci jklSkl − eki jEk − hki jHk,
Di = eik jSkl + εikEk + αikHk,
Bi = hiklSkl + αikEk + µikHk,

(6)

Jp
i = qpµp

ijE j − qDp
ij
∂p
∂x j

, (7)

Jn
i = qnµn

ijE j + qDn
ij
∂n
∂x j

, (8)

where Si j is the strain tensor, Ei is the electric field vector, and Hi is the magnetic field vector. Equation (6)
are the constitutive relations for piezoelectrics and piezomagnetics. Equations (7) and (8) are the
constitutive relations for the current densities, including both the drift and diffusion currents. ci jkl is
the elastic stiffness. ei jk is the piezoelectric constant that describes the coupling between mechanical
and electric fields. hi jk is the piezomagnetic constant that describes the coupling between mechanical
and magnetic fields. εi j is the dielectric constant. αi j is the magnetoelectric constant. µi j is the magnetic
permeability. µp

ij and µn
ij are the carrier mobilities. Dp

ij and Dn
ij are the carrier diffusion constants. The

strain-displacement and field-potential relations are

Si j =
1
2

(
∂u j

∂xi
+
∂ui
∂x j

)
, (9)

Ei = −
∂ϕ

∂xi
, (10)

Hi = −
∂ψ

∂xi
(11)

where ϕ is the electric potential and ψ is the magnetic potential. For the purpose of this paper, the
following linearized version is sufficient. Let

p = p0 + ∆p, n = n0 + ∆n, (12)

where
p0 = N−A, n0 = N+

D . (13)

Then Equations (2), (4) and (5) become

∂Di
∂xi

= q(∆p− ∆n), (14)
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q ∂∂t (∆p) = −
∂Jp

i
∂xi

,

q ∂∂t (∆n) =
∂Jn

i
∂xi

.
(15)

For small ∆p and ∆n, we linearize Equations (7) and (8) as

Jp
i = qp0µ

p
ijE j − qDp

ij
∂(∆p)
∂x j

,

Jn
i = qn0µn

ijE j + qDn
ij
∂(∆n)
∂x j

.
(16)

In the reference state, p = p0, n = n0, and all other fields vanish. The above equations are applicable
to each component phase of the composite structure in Figure 1 as special cases. They have
been used to study thickness vibration of plates [25,26], wave propagation [27–32], fields near
cracks [33–35], extension of rods [36–39], bending of beams [40–45], and fields near PN junctions [46–49]
in piezoelectric semiconductors.

3. One-Dimensional Model for Extension

The equations in the previous section present considerable mathematical challenges. We consider
thin rods and make a few approximations to simplify the problem. We assume that the following is
approximately true throughout the composite rod during extension:

u3 = u � u(x3, t), ϕ � ϕ(x3, t), ψ � ψ(x3, t), (17)

which are understood to be averages of the corresponding three-dimensional fields over the cross-section
of the rod. Then

S33 =
∂u
∂x3

, E3 = −
∂ϕ

∂x3
, H3 = −

∂ψ

∂x3
. (18)

Consider the piezoelectric semiconductor layer first. We perform the stress relaxation for thin rods
(T11 = T22 = 0) using the following relevant constitutive relations from Equation (6):

T11 = c(1)11 S11 + c(1)12 S22 + c(1)13 S33 − e(1)31 E3 = 0,

T22 = c(1)12 S11 + c(1)11 S22 + c(1)13 S33 − e(1)31 E3 = 0,
(19)

T33 = c(1)13 S11 + c(1)13 S22 + c(1)33 S33 − e(3)33 E3,

D3 = e(1)31 (S11 + S22) + e(1)33 S33 + ε
(1)
33 E3.

(20)

Solving Equation (19) for expressions of S11 and S22, and then substituting them into Equation (20), one
obtains the following constitutive relations for the extension of the piezoelectric semiconductor layer:

T = c(1)S− e(1)E,
D = e(1)S + ε(1)E,

(21)

where the relevant axial fields and the one-dimensional effective material constants are denoted by

S = S33, T = T33,
E = E3, D = D3,

(22)

c(1) = c(1)33 −
2(c(1)13 )

2

c(1)11 +c(1)12

,

e(1) = e(1)33 −
2c(1)13 e(1)31

c(1)11 +c(1)12

,

ε(1) = ε
(1)
33 +

2(e(1)31 )
2

c(1)11 +c(1)12

.

(23)
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We also denote the axial magnetic fields and the relevant magnetic material constant by

B = B3, H = H3, µ(1) = µ
(1)
33 . (24)

Then,
B = µ(1)H. (25)

In the thin piezoelectric semiconductor layer, we also make the following approximations:

∆p � ∆p(x3, t), ∆n � ∆n(x3, t). (26)

With Equations (16) and (26), the constitutive relations for the axial current densities in the piezoelectric
semiconductor layer can be simplified as

Jp � qp0µpE− qDp ∂(∆p)
∂x3

,

Jn � qn0µnE + qDn ∂(∆n)
∂x3

,
(27)

where
µp = µ

p
33, Dp = Dp

33,

µn = µn
33, Dn = Dn

33.
(28)

Similarly, for the piezomagnetic layers, after the lateral stress relaxation, we have

T = c(2)S− h(2)H,
D = ε(2)E,
B = h(2)S + µ(2)H,

(29)

where

c(2) = c(2)33 −
2(c(2)13 )

2

c(2)11 +c(2)12

, h(2) = h(2)33 −
2c(2)13 h(2)31

c(2)11 +c(2)12

,

ε(2) = ε
(2)
33 , µ(2) = µ

(2)
33 +

2(h(2)31 )
2

c(2)11 +c(2)12

.
(30)

For the composite rod, the total axial force is calculated from the integration of T3 over the entire
cross-section of the composite rod, which in this case takes the following form:

T̂ = TA(1) + TA(2)

=
(
c(1)S− e(1)E

)
A(1) +

(
c(2)S− h(2)H

)
A(2)

=
(
c(1)A(1) + c(2)A(2)

)
S− e(1)A(1)E− h(2)A(2)H

= ĉS− êE− ĥH,

(31)

where
ĉ = c(1)A(1) + c(2)A(2),
ê = e(1)A(1), ĥ = h(2)A(2),
A(1) = 2bc, A(2) = 2bh.

(32)

A(1) and A(2) are the cross-sectional areas of the piezoelectric semiconductor and piezomagnetic layers,
respectively. Similarly, the total axial electric displacement and total axial magnetic induction over the
cross-section of the composite rod are
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D̂ = DA(1) + DA(2)

=
(
e(1)S + ε(1)E

)
A(1) +

(
ε(2)E

)
A(2)

= e(1)A(1)S +
(
ε(1)A(1) + ε(2)A(2)

)
E

= êS + ε̂E,

(33)

B̂ = BA(1) + BA(2)

=
(
µ(1)H

)
A(1) +

(
h(2)S + µ(2)H

)
A(2)

= h(2)A(2)S +
(
µ(1)A(1) + µ(2)A(2)

)
H

= ĥS + µ̂H,

(34)

where
ε̂ = ε(1)A(1) + ε(1)A(2),
µ̂ = µ(1)A(1) + µ(1)A(2).

(35)

For extension, the equation of motion of the rod in the axial direction can be obtained by considering a
differential element of the rod with length dx3 as shown in Figure 2, which leads to [39]

∂T̂
∂x3

+ f (x3, t) = 2b
(
ρ(1)c + ρ(2)h

)∂2u
∂t2 . (36)

where f (x3, t) is the axial mechanical load per unit length of the rod. Similarly [39], the one-dimensional
charge equation of electrostatics, the one-dimensional Gauss equation of the magnetic induction, and
the one-dimensional conservation of holes and electrons of the composite rod are

∂D̂
∂x3

= q(∆p− ∆n)A(1), (37)

∂B̂
∂x3

= 0, (38)

q ∂∂t (∆p) = − ∂Jp

∂x3
,

q ∂∂t (∆n) = ∂Jn

∂x3
.

(39)

Substituting Equations (27), (31), (33), and (34) into Equations (36)–(39), along with the use of
Equation (18), one obtains

ĉ∂
2u
∂x2

3
+ ê∂

2ϕ

∂x2
3
+ ĥ∂

2ψ

∂x2
3
+ f (x3, t) = 2b

(
ρ(1)c + ρ(2)h

)
∂2u
∂t2 ,

ê∂
2u
∂x2

3
− ε̂

∂2ϕ

∂x2
3
= q(∆p− ∆n)A(1),

ĥ∂
2u
∂x2

3
− µ̂

∂2ϕ

∂x2
3
= 0,

p0µp ∂
2ϕ

∂x2
3
+ Dp ∂

2∆p
∂x2

3
= ∂

∂t (∆p),

Dn ∂2∆n
∂x2

3
− n0µn ∂

2ϕ

∂x2
3
= ∂

∂t (∆n).

(40)

This is a system of coupled linear partial differential equations for u, ϕ, ψ, ∆p, and ∆n.
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4. Analytical Solution

Specifically, we investigate the static extension of a mechanically free (f = 0) and electrically
isolated rod under a static axial magnetic field produced by a magnetic potential difference at the two
ends of the rod. The rod is within |x3| < L. The boundary conditions are

T̂(±L) = 0, D̂(±L) = 0, ψ(±L) = ±ψ0,
Jn(±L) = 0, Jp(±L) = 0.

(41)

We are not considering carrier recombination and generation. Therefore, ∆p and ∆n must satisfy the
following global charge conservation conditions:∫ L

−L
∆pdx3 = 0,

∫ L

−L
∆ndx3 = 0. (42)

Only one of Equation (42) is independent. The other is implied by integrating Equation (37) between
−L and L and using the boundary conditions on D̂ in Equation (41), which implies that∫ L

−L
q(∆p− ∆n)dx3 = 0. (43)

Since there are no boundary conditions prescribed directly on the mechanical displacement and electric
potential, the mechanical displacement may have an arbitrary constant representing a rigid-body
translation of the rod along x3. At the same time, the electric potential may have an arbitrary constant
that does not make any difference in the electric field it produces. To determine the mechanical
displacement and electric potential uniquely, we set

u3(0) = 0, ϕ(0) = 0. (44)

The relevant component of the polarization vector and distributed effective polarization charge can be
calculated from

P = P3 = D3 − ε0E3,
ρP = −Pi,i = −P3,3,
D3 = D̂/A, A = A(1) + A(2).

(45)

The problem is time-independent. Thus, the terms on the right side of Equation (40) vanishes.
Equation (40) reduces to a system of linear ordinary differential equations with constant coefficients.
The solution can be obtained in a straightforward manner. The results are

ψ =
ê2ĥ2

c̃ĉε̃µ̂
ψ0

∆
sinh(kx3) + k cosh(kL)

ψ0

∆
x3, (46)

u =
ê2ĥ
c̃ĉε̃

ψ0

∆
sinh(kx3) −

ĥk cosh(kL)
ĉ

ψ0

∆
x3, (47)

S =
ê2ĥk
c̃ĉε̃

ψ0

∆
cosh(kx3) −

ĥk cosh(kL)
ĉ

ψ0

∆
, (48)

ϕ = −
êĥ
ĉε̃
ψ0

∆
sinh(kx3), (49)

E =
êĥk
ĉε̃
ψ0

∆
cosh(kx3), (50)

D =
êĥk
ĉA

ψ0

∆
cosh(kx3) −

êĥk cosh(kL)
ĉA

ψ0

∆
, (51)
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P =
(ε̃− ε0A)êĥk

ĉε̃A
ψ0

∆
cosh(kx3) −

êĥk cosh(kL)
ĉA

ψ0

∆
, (52)

ρP =
(ε0A− ε̃)êĥk2

ĉε̃A
ψ0

∆
sinh(kx3), (53)

∆n = −
µnn0

Dn
êĥ
ĉε̃
ψ0

∆
sinh(kx3), (54)

∆p =
µpp0

Dp
êĥ
ĉε̃
ψ0

∆
sinh(kx3), (55)

where
k2 =

qA(1)

ε̃

(
µp

Dp p0 +
µn

Dn n0

)
,

ε̃ = ε̂+ ê2

c̃ , c̃ = ĉ + ĥ2

µ̂ ,

∆ = kL cosh(kL) + ê2ĥ2

c̃ĉε̃µ̂sinh(kL).

(56)

5. Numerical Results and Discussion

Based on the analytical solution in the previous section, the coupled fields are calculated and
examined below. n-type ZnO is chosen as the piezoelectric semiconductor layer, while the two identical
piezomagnetic layers are either CoFe2O4 or Terfenol-D. The relevant material properties are listed in
Table 1.

Table 1. Material properties of ZnO [50], CoFe2O4 [51], and Terfenol-D [52].

ZnO CoFe2O4 Terfenol-D

c11(GPa) 210 286 8.541
c12(GPa) 121 173 0.654
c13(GPa) 105 170.5 3.91
c33(GPa) 211 269.5 28.3
e31(C/m2) −0.57 0 0
e33(C/m2) 1.32 0 0

ε33(10−11F/m) 8.85 9.3 5
h31(m/A) 0 580.3 −5.75
h33(m/A) 0 699.7 270.1

µ33(10−6Ns2/C2) 10 157 2.3

We first examine the influence of the applied ψ0 and the initial carrier density on various fields.
For the CoFe2O4/ZnO/CoFe2O4 composite rod with L = 0.6 µm, h = c = 0.05 µm, and b = 0.2 µm, Figure 3
shows the axial distributions of the magnetic potential and piezomagnetically induced mechanical
fields along the rod for different values of ψ0 when n0 = 1× 1021/m3. ψ is dominated by the applied
ψ0 and is almost linear. To show the effect of couplings between ψ and other fields more clearly, in
Figure 3a we plot ∆ψ = ψ −ψ0x3/L instead of ψ itself. As ψ0 increases, all fields become stronger
as expected. It is well known that in the special case when the piezoelectric layer in the middle is a
dielectric without semiconduction, the magnetic potential and mechanical displacement in Figure 3b
are both linear functions of x3 and, at the same time, the strain in Figure 3c is a constant. Because
of semiconduction, all of these fields have hyperbolic behaviors as indicated by their expressions in
Equations (46)–(48), especially near the ends of the rod where kL is relatively large.
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(a) 

Figure 3. Magnetic potential and piezomagnetically induced mechanical fields under different ψ0

when n0 = 1× 1021/m3. (a) ∆ψ = ψ−ψ0x3/L, (b) mechanical displacement, (c) strain.

Figure 4 shows the electric potential, electric field, and electric displacement produced by the
extensional deformation through piezoelectric coupling. It can be seen from Figure 4 that the applied
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ψ0 has obvious influences on these electric variables. Again, they differ from the linear fields or
constants in composite structures of piezoelectric and piezomagnetic dielectrics.
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Figure 4. Piezoelectrically induced electric fields under differentψ0 when n0 = 1× 1021/m3. (a) Electric
potential, (b) electric field, (c) electric displacement.
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Our main interest is the development of the distributions of mobile charges in Figure 5b, which
shows that the applied magnetic field causes redistribution of charge carriers through combined
piezomagnetic/piezoelectric couplings and semiconduction. Figure 5a,b shows that the electrons
redistribute themselves in such a way that they tend to screen the effective polarization charges. The
applied ψ0 used is relatively small to insure that ∆n is much smaller than n0, so that the assumption
leading to the linearization in Equation (16) is not violated.
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Figure 5. Polarization-induced charge distributions under different ψ0 when n0 = 1× 1021/m3.
(a) Effective polarization charge and (b) electron concentration perturbation.

For the same composite rod, Figures 6–8 show the effect of n0 on various fields when ψ0 = 10−4AT.
Specifically, Figure 6 shows the magnetic potential and piezomagnetically induced mechanical fields.
Figure 6b indicates that n0 has almost no influence on the mechanical displacement. From Figure 6a,c
as well as Figure 7, it can be seen that the absolute values of ∆ψ, strain, and electric potential
decrease monotonically with the increase of n0, but the electric filed and electric displacement increase
monotonically. In addition, the effect of n0 on these fields is relatively small near the two ends and
the middle of the rod. Figure 8 shows the variations of the effective polarization charge and electron
concentration perturbation. They assume maximal values at the ends of the rod.



Materials 2020, 13, 3115 12 of 18

Materials 2020, 13, x FOR PEER REVIEW 12 of 19 

 

(a) 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
-1.0

-0.5

0.0

0.5

1.0
10

19

 

 


n

 (
m

-3
)

x
3
 m

 

=1   

-5
 AT

 

=5   

-5
 AT

 

=10 

-5
 AT

 
(b) 

Figure 5. Polarization-induced charge distributions under different 0
 
 when 21 3

0 =1 10 mn  . (a) 

Effective polarization charge and (b) electron concentration perturbation. 

For the same composite rod, Figures 6–8 show the effect of n0 on various fields when 4

0 =10 AT 

 . 

Specifically, Figure 6 shows the magnetic potential and piezomagnetically induced mechanical fields. 

Figure 6b indicates that n0 has almost no influence on the mechanical displacement. From Figure 6a,c 

as well as Figure 7, it can be seen that the absolute values of ψ, strain, and electric potential decrease 

monotonically with the increase of n0, but the electric filed and electric displacement increase 

monotonically. In addition, the effect of n0 on these fields is relatively small near the two ends and 

the middle of the rod. Figure 8 shows the variations of the effective polarization charge and electron 

concentration perturbation. They assume maximal values at the ends of the rod. 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
-10

-8

-6

-4

-2

0

2

4

6

8

10
10

-10

 

 






T


x
3
 (m)

 n
0
=1  10

21
m

3

 n
0
=5  10

21
m

3

 n
0
=1010

21
m

3

 
(a) 

Materials 2020, 13, x FOR PEER REVIEW 13 of 19 

 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
-1.0

-0.5

0.0

0.5

1.0
10

-13

 

 

u
 

m


x
3
 m

 n
0
=1  10

21
m

3

 n
0
=5  10

21
m

3

 n
0
=1010

21
m

3

 
(b) 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
-1.58

-1.56

-1.54

-1.52

-1.50

-1.48

-1.46
10

-7

 

 

S

x
3
 m

 n
0
=1  10

21
m

3

 n
0
=5  10

21
m

3

 n
0
=1010

21
m

3

 
(c) 

Figure 6. Magnetic potential and piezomagnetically induced mechanical fields for different n0 when 
4

0 =10 AT  . (a) 0 3 /x L    
 
, (b) mechanical displacement, (c) strain. 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
10

-4

 

 




V


x
3
 (m)

 n
0
=1  10

21
m

3

 n
0
=5  10

21
m

3

 n
0
=1010

21
m

3

 
(a) 

Figure 6. Magnetic potential and piezomagnetically induced mechanical fields for different n0 when
ψ0 = 10−4AT. (a) ∆ψ = ψ−ψ0x3/L, (b) mechanical displacement, (c) strain.
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Figure 7. Piezoelectrically induced electric fields for different n0 when ψ0 = 10−4AT. (a) Electric
potential, (b) electric field, (c) electric displacement.
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Figure 8. Polarization-induced charge distributions for different n0 when ψ0 = 10−4AT. (a) Effective
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In order to reveal the dependence of the electron concentration perturbation on the material
combinations and the thickness ratio h/c between the piezomagnetic layers and piezoelectric
semiconductor layer, we rewrite Equation (54) as

∆n
n0

= −
q

kBT
γψ0, (57)

where

γ =
êĥ

ĉε̃∆
sinh(kx3). (58)

In Equation (57), the following Einstein relation has been used:

µn

Dn =
µp

Dp =
q

kBT
, (59)
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where T is the absolute temperature and kB is the Boltzmann constant. γ describes the strength of the
coupling effect of interest, i.e., the development of carrier redistribution under a magnetic field. For a
given cross-section location, γ depends on the relevant material constants and the thickness ratio h/c.
It also varies with x3. Figure 9 shows the variation of γ with h/c for two material combinations, i.e.,
CoFe2O4/ZnO/CoFe2O4 and Terfenol-D/ZnO/Terfenol-D while h + c is held constant. It can be seen
that for the CoFe2O4/ZnO/CoFe2O4 rod, γ is always less than that for Terfenol-D/ZnO/Terfenol-D rod.
At the ends of the rod, γ has a maximum for a certain value of h/c. This is as expected because either
the piezoelectric semiconductor layer or piezomagnetic layers cannot be too thin. Otherwise, there will
be insufficient mobile charges or insufficient piezomagnetically induced deformation. Both the exact
value of h/c for the maximal γ and the value of the maximal γ are sensitive to the component materials.
Compared with Terfenol-D, CoFe2O4 has a larger h33, which increases γ according to Equation (58), but
CoFe2O4 has a much larger c33, which lowers γ. The net result of these two competing effects is that
the Terfenol-D/ZnO/Terfenol-D rod has a significantly larger γ than the CoFe2O4/ZnO/CoFe2O4 rod.

Materials 2020, 13, x FOR PEER REVIEW 16 of 19 

 

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

x3/L=1/3x3/L=2/3

×10-2

 

 

Δn
/n

0

h/c

     CoFe2O4/ZnO/CoFe2O4

 Terfenol-D/ZnO/Terfenol-D

x3/L=1

 
Figure 9. 0n nΔ versus h/c at different locations along the rod. 

6. Conclusions 

We have shown theoretically that in a properly constructed composite rod of piezoelectric 
semiconductors and piezomagnetics, an applied axial magnetic field produces a series of fields, 
including extensional deformation through the piezomagnetic coupling, polarization through the 
piezoelectric coupling, and redistribution of mobile charges because of semiconduction. The rod may 
be potentially used as a magnetic field sensor or magnetic field-to-current transducer. The material 
combination and thickness ratio between the piezomagnetic layer and piezoelectric semiconductor layer 
has strong influences on the strength of the coupling between the applied magnetic field and carrier 
redistribution. For a given material combination, there exists an optimal thickness ratio at which the 
coupling is the strongest. Hence, the redistribution or motion of mobile charges in the composite rod 
can be modulated by the applied magnetic field with proper design of the structure through materials 
and geometry. 
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6. Conclusions

We have shown theoretically that in a properly constructed composite rod of piezoelectric
semiconductors and piezomagnetics, an applied axial magnetic field produces a series of fields,
including extensional deformation through the piezomagnetic coupling, polarization through the
piezoelectric coupling, and redistribution of mobile charges because of semiconduction. The rod may
be potentially used as a magnetic field sensor or magnetic field-to-current transducer. The material
combination and thickness ratio between the piezomagnetic layer and piezoelectric semiconductor
layer has strong influences on the strength of the coupling between the applied magnetic field and
carrier redistribution. For a given material combination, there exists an optimal thickness ratio at
which the coupling is the strongest. Hence, the redistribution or motion of mobile charges in the
composite rod can be modulated by the applied magnetic field with proper design of the structure
through materials and geometry.
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