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.e COVID-19 pandemic has had a significant impact on public life and health worldwide, putting the world’s healthcare systems
at risk. .e first step in stopping this outbreak is to detect the infection in its early stages, which will relieve the risk, control the
outbreak’s spread, and restore full functionality to the world’s healthcare systems. Currently, PCR is the most prevalent diagnosis
tool for COVID-19. However, chest X-ray images may play an essential role in detecting this disease, as they are successful for
many other viral pneumonia diseases. Unfortunately, there are common features between COVID-19 and other viral pneumonia,
and hence manual differentiation between them seems to be a critical problem and needs the aid of artificial intelligence. .is
research employs deep- and transfer-learning techniques to develop accurate, general, and robust models for detecting COVID-
19. .e developed models utilize either convolutional neural networks or transfer-learning models or hybridize them with
powerful machine-learning techniques to exploit their full potential. For experimentation, we applied the proposed models to two
data sets: the COVID-19 Radiography Database from Kaggle and a local data set from Asir Hospital, Abha, Saudi Arabia. .e
proposed models achieved promising results in detecting COVID-19 cases and discriminating them from normal and other viral
pneumonia with excellent accuracy. .e hybrid models extracted features from the flatten layer or the first hidden layer of the
neural network and then fed these features into a classification algorithm. .is approach enhanced the results further to full
accuracy for binary COVID-19 classification and 97.8% for multiclass classification.

1. Introduction

COVID-19 was the most challenging health problem in
2020, following its emergence in December 2019 in Wuhan,
China. Due to its global impact on populations, the World
Health Organization (WHO) called it a pandemic in Feb-
ruary 2020. By November 28, 2020, there were more than 62
million confirmed cases and 1.5 million deaths worldwide.
In fact, this virus is like other coronaviruses that have
appeared in the past two decades, like the middle east re-
spiratory syndrome coronavirus (MERS-CoV) and severe

acute respiratory distress syndrome coronavirus (SARS-
CoV) [1, 2]. .ese infections are dangerous, as they spread
very quickly, and hence early detection and diagnosis will
hasten the response, alongside proper treatment and care. In
fact, there are many other causes of viral pneumonia: lung
infections like flu, the common cold, and some viruses. In its
early stages, viral pneumonia sticks to the upper part of the
respiratory system. .e lungs’ air sacs start to get infected,
inflamed, and filled with fluid if the infection reaches the
lungs, presenting significant health risks, especially for those
with comorbidities [3, 4].
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Hospital staff, doctors, nurses, and clinical facilities have
many strategies and tools for diagnosing and reducing the
impact of this epidemic. .e most currently used technique
to detect COVID-19 infection is reverse-transcription po-
lymerase chain reaction (RT-PCR), but it has a low sensi-
tivity of 60%–70%. Another possible diagnosis option is to
use radiological images of patients using volumetric chest
CT and X-ray imaging, which may help doctors analyze and
predict the effects of COVID-19 on the human body. CTuses
a high radiation dose, which limits its use in children and
pregnant women, while X-rays use a low radiation dose at
low cost. As such, the X-ray is a good candidate for imaging
the lungs and may be an effective method for the early
detection of COVID-19, especially in countries that cannot
purchase expensive laboratory kits for COVID-19 testing
[2, 5, 6]. However, discriminating between COVID-19 and
other viral pneumonia is challenging because the radio-
graphic features are similar. Moreover, the lung has complex
morphological patterns that change in extent and appear-
ance over time [4, 7, 8]..erefore, designing artificial models
to detect these patterns with high accuracy is very important
to rapidly screen and see infections of COVID-19 and help
radiologists by providing practical assistant tools [9]. .ese
models use chest X-ray images of healthy lungs and those
infected with COVID-19 for early detection of this disease.

For this purpose, we collected data of X-ray images of
healthy and COVID-19 infected patients from different
sources to test the effectiveness of the proposed models. In
fact, this work focuses mainly on using convolutional neural
networks (CNNs) and transfer-learning models for classi-
fying chest X-ray images for coronavirus-infected patients. A
lack of availability of many pictures of COVID-19 patients
has made detailed studies about solutions for automatic
detection of COVID-19 from X-ray (or chest CT) images
rare. Moreover, labeling such images for deep-learning (DL)
applications is not an easy job and seems expensive [10, 11].
Small data sets of COVID-19 X-ray images have been an-
nounced for AI researchers to train machine-learning (ML)
models to perform automatic COVID-19 diagnoses from
X-ray images [12]. Recently, Sedik et al. [10] collected a data
set of 6,128 X-ray, CT, and ultrasonic lung images, but they
were mixed and imbalanced between training and testing.
.e data sets available are still small, and hence two en-
hancement strategies were adopted in this paper to address
the scarcity of COVID-19 X-ray images:

(1) We used data augmentation to create transformed
versions of COVID-19 X-ray images (such as flip-
ping, slight rotation, and adding a small amount of
distortion) to increase the number of samples by a
factor of 5.

(2) Instead of training our models from scratch, we fine-
tuned the last layer of the pretrained version of these
models on ImageNet. .is way, it was possible to
train themodel with fewer labeled samples from each
class.

.e paper is organized as follows: the literature review of
previous work on COVID-19 is presented in Section 2. .e

data set used in this paper and its characteristics are de-
scribed in Section 3. .e proposed models’ architectures are
defined and discussed in detail in Section 4. .is section
presents four different models that show promising results
for both binary and multiclass classifications. Simulations
and discussions are summarized in Section 5, and finally, the
paper is concluded in the last section.

2. Literature Review

Research on medical image-processing using DL started in
1995, classifying lung nodules using X-ray images [13].
Apostolopoulos and Mpesiana [14] collected X-ray images
from North America and Italy and fed them into a CNN
model for COVID-19 detection. Ozturk et al. [5] proposed
the DarkNet model for detecting COVID-19 cases via viral
pneumonia images and identifying a location if there is a
shortage of radiologists due to the enormous number of
patients. Rajpurkar et al. [15] presented a CheXNet model to
diagnose lung diseases using DL for processing X-ray im-
ages. Karakanis and Leontidis [16] built a network to aug-
ment X-ray data with synthetic images and proposed DL
models for binary and multiclass classifications of COVID-
19. Another work in such a direction was done by Das et al.
[17] using DL and transfer-learning (TL) for building
models to be tested on Kaggle data sets. Hussain et al. [18]
proposed a TLCoV model to detect COVID-19 using CT
scan and X-ray images automatically and called it CoroDet.
.ey argued that their COVID-19 classification model was
accurate for both binary and multiclass classifications.

EMCNet was proposed by [19] to detect COVID-19
cases by evaluating chest X-ray images..ey used a CNN for
extracting deep features of the photos and then used binary-
classification techniques. .ey combined the outputs of
many classifiers to form an ensemble for better detection
capabilities. Sedik et al. [10] used a CNN and convolutional
long short-term memory for building a DL model to detect
COVID-19 cases. .ey tested their models on two data
sets—X-rays and CT scans—with normal, COVID-19, and
pneumonia classes. .ey added some ultrasound images to
their data set and argued that their models could be used for
quick detection of COVID-19. Maior et al. [11] discussed the
effect of limited X-ray images for COVID-19 detection..ey
tried to resolve this problem by combining different data sets
and used them for testing CNN models. Sedik et al. [20]
proposed two models for augmenting images to increase the
learning ability of some DL methodologies, which enhance
the detection possibility of COVID-19 cases. Many other
researchers have investigated many techniques based on ML
and DL to detect COVID-19 based on X-ray and CT images
for public data sets, as listed in Table 1.

3. Data Sets

As we discussed before, collecting X-ray images for COVID-
19 is still in its early stages. For enhancing the number of
samples for our experiments, we merged two real data sets.
.e first dataset was collected from Kaggle. We downloaded
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the database of chest X-ray images for positive cases of
COVID-19, along with viral pneumonia and normal images.
.ere were 219 COVID-19 positive images, 1,345 viral
pneumonia images, and 1,341 normal images for this data
set. Downloading viral pneumonia images allowed us to test
our model in differentiating COVID-19 from other viral
pneumonia infections, as it is possible to guide the system to
the wrong decision. .e second data set, on COVID-19
patients, was collected from Asir Hospital in Saudi Arabia.

We augmented images annotated positive in the Kaggle
data set to generate more general and robust models due to
the limited positive cases. We applied augmentation
techniques on the assembled data set, such as random
rotation and vertical flip operations, using the Image-
DataGenerator function of the TensorFlow Keras frame-
work. We generated 657 cases and combined all images
together to get a final data set of 4,103 X-ray images. Each
image in the data set was resized to 120 ×120 pixels to
reduce space and computation time and hence derive
consistent data. Additionally, image normalization was
applied to scale pixel intensities to a range of 0–255. Table 2
describes the counts of X-ray images of each class and the
distribution of each data set versus the total number of
images. Some samples of the data set for different classes
are shown in Figure 1.

4. Model Architectures

As an advanced technology, DL tries to simulate the way the
human brain’s neurons work. DL consists of deep con-
volutional and deep neural network layers. In fact, CNNs are
preferred for image-processing applications, as they are
robust context learners and usually extract powerful features
from the data [21, 22]. Apart from its outstanding accuracy,
DL requires considerable computation, memory, and time to
train the model, as it has many layers and thousands, if not

millions, of weights to be learned. .erefore, TL can be used
to shorten such restrictions and enhance accuracy. .e
following sections discuss different models for detecting
COVID-19 infection through X-ray images using CNNs or
TL. We need our models to classify the X-ray images into
normal, pneumonia, or COVID-19. We used three basic
blocks for building variants of our models:

(1) CNN block
(2) TL block using VGG16 or VGG19
(3) ML block

In the following subsections, we discuss each model in
detail and illustrate its main blocks.

4.1.Model 1: ConvolutionalNeuralNetworks. DL has proven
to be a highly accurate technique to guarantee high-level
detection and prediction of many medical cases by
extracting deep features from the data set on hand [28, 29].
We built a CNN model and trained it many times with
different parameters to select the best hyperparameters. .e
final model consisted of four convolutional layers and four
dense layers..e convolutional layers were one layer with 16
filters, one layer with 32 filters, and two layers with 64 filters.
All filters were of size 3× 3, and all convolutional layers
followed maximum pooling of 2× 2. .e four dense layers
were three hidden layers with 128, 64, and 10 neurons and
one output layer. Details of these configurations are given in
Figure 2. .is model has three classification processes: bi-
nary classification between COVID-19 and normal cases,
binary classification between COVID-19 and viral pneu-
monia cases, and multiclass classification among normal,
viral pneumonia, and COVID-19 cases. As such, it will be
possible to investigate the ability of our model to differ-
entiate COVID-19 infection from normal and other viral
pneumonia infections.

Table 1: Literature review summary.

Author Data set
size

Image
type Disease type ML CNN

model TL models Date Max.
accuracy

Minaee et al. [21] 5000 X-ray
and CT COVID-19 No No ResNet50, ResNet18, DenseNet-

121, and SqueezeNet 2020 98%

Jain et al. [22] 6432 X-ray
and CT COVID-19 No No Xception 2020 97.97%

Hussain et al. [23] 558 X-ray COVID-19 and viral
pneumonia Yes No No 2020 97.56%

Sekeroglu et al. [6] 6200 X-ray COVID-19 and viral
pneumonia Yes Yes VGG19, MobileNet, inception,

Xception, and inception ResNet 2020 99.18%

Linda Wang
et al. [24] 13,975 X-ray COVID-19 and viral

pneumonia No Yes VGG-19 and ResNet-50 2020 98.9%

Dingding Wang
et al. [25] 1102 X-ray COVID-19 Yes No VGG-16, Xception, ResNet50, and

DenseNet121 2020 99.38%

Rahimzadeh
et al. [26] 11302 X-ray COVID-19 and viral

pneumonia No No Xception and ResNet50V2 2020 99.50%

Rahul et al. [27] 5840 X-ray COVID-19 and viral
pneumonia Yes No ResNet152 2020 97.7%

Our work 4646 X-ray COVID-19 and viral
pneumonia Yes Yes VGG16, VGG19, ReNet50, and

MobileNet 2021 99.82
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4.2. Model 2: Transfer Learning Using VGG16 or VGG19.
A CNN needs vast computing and time resources to train a
robust model. TL gives a shortcut for many tasks to reduce
these computing and time requirements by relying on a
pretrained model of other similar jobs [30]. In fact, TL
models have already been trained for days or weeks and
hence are perfect candidates as starting points for many
tasks.

In this paper, we used VGG16 or VGG19 as TL models
for building our model. However, our aim here was to
enhance the system’s accuracy, not to reduce training time,
and thus we operated all models on the same data set without
any reductions.

Initially, VGG16 was developed for the recognition of
large-scale images. It used the ImageNet data set to over-
come training time and insufficient data. Hussain et al. [18]
showed that VGG16 outperformed other approaches they
had tested. VGG16 is a CNN architecture that has 16 layers,
13 convolutional layers, and three dense layers. Our model
kept all the convolutional layers with their parameters and
reduced the dense layers to two only. .e weights of the
dense layers were trained using the data set. .e convolu-
tional layers of VGG16 were divided into five convolutional
phases: two layers with 64 filters, two layers with 128 filters,
three layers with 256 filters, three layers with 512 filters. All
filters were of size 3× 3, and each convolutional phase
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Figure 2: CNN model (Model 1) architecture and configuration.

Table 2: Data set of this paper.

Distribution COVID-19 Viral pneumonia Normal Total
COVID-19 Radiography Database (Kaggle) 219 1345 1341 2905
Asir Hospital (Saudi Arabia) 541 -- -- 541
Augmented 657 -- -- 657
Total 1417 1345 1341 4103

COVID-19

Viral
pneumonia

Normal

Figure 1: X-ray samples of COVID-19 data set.
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followed maximum pooling of 2× 2. .e two dense layers
were one hidden layer with 128 neurons and one output
layer. VGG16 has approximately 138 million parameters for
the network. .e details are shown in Figure 3.

Another TL model, VGG19, can be used instead of
VGG16. VGG19 is a 19-layer model that adds one extra layer
to each phase of the last three convolutional phases of
VGG16. We followed the same strategy of using VGG16 for
our models by maintaining the convolutional layers and
reducing the dense layers to only two.

4.3. Model 3: Hybrid CNNwithMachine Learning. Since ML
techniques need extracted features to complete the classi-
fication tasks, we decided to obtain these features from a
robust technique like DL. .is model extracted features
using a CNN and then fed these features to one of the ML
techniques. It hybridized two blocks—CNN and ML—with
one used as a feature-extraction block and the other for the
classification process. We examined four supervised clas-
sification techniques (näıve Bayes, support vector machine,
random forest, and XGBoost). In sum, 4,096 features were
extracted after the flatten layer (Model 3a), as shown in
Figure 4, or 128 features after the first hidden layer of the
neural network (Model 3b), as shown in Figure 5. .ese
extracted features were used as inputs for ML. Basically, this
method was used for obtaining a solid learner with the help
of convolutional layers to extract features and ML to classify
the results.

4.4. Model 4: Hybrid VGG16 with ML. .is model extracted
features using a pretrained model (VGG16) because it had
performed better than VGG19 for model 2. Features were
extracted after the flatten layer (4,608 features, Model 4a) or
after the first hidden layer of the neural network (128 fea-
tures, Model 4b). .en, the features extracted were used as
inputs for ML. Like Model 2, we kept all the convolutional
layers with their pretrained parameters and fine-tuned the
parameters of the dense layer. More details are shown in
Figure 6.

5. Simulation and Computational Experiments

.is section discusses in detail data and experiment prep-
aration, evaluation metrics, and finally, the results and
discussion. Table 3 lists the complete set of the baseline and
proposed models, along with descriptions.

5.1. Data and Experiment Preparation. .e experiments
were applied on one open-source COVID-19 data set, as
described in Section 3, and local COVID-19 patients’ X-ray
images from Asir Hospital, Abha, Saudi Arabia. .e total
number of pictures of COVID-19 was 219 after being in-
creasing by augmentation. .e images generated from
augmentation numbered 643. We split the data into training
data (3,279) images to build the model and validation data
(820 images: 304 COVID-19, 270 normal, and 246 other
viral pneumonia) to tune, monitor, and select the best

parameters of the model. We fine-tuned each model for 20
epochs, and the batch size was set to 32. We used a cate-
gorical/binary cross-entropy loss function and ADAM op-
timizer to optimize the learning function with a learning rate
of 0.001. We used the regularizers l1 and l2 (l1� 1e− 5,
l2�1e− 4) in dense layers and dropout (0.2) after con-
volutional layers to avoid overfitting during the model’s
training. All images were downsampled to 120×120 before
being fed to the models. Overfitting is a general problem in
DL and occurs when the model fits too well to the training
set because of the increasing number of features compared to
the small number of samples. In this study, two approaches
were used to solve this problem:

(1) Dropout regularization is used for reducing over-
fitting and improving the generalization of deep
neural networks. .e network becomes less sensitive
to the specific weights of neurons, becomes more
capable of better generalization, and is less likely to
overfit the training data. In our experiments, dropout
parameters were set to 0.2.

(2) Regularization in dense layers: regularizers allow us
to apply penalties on layer parameters or layer ac-
tivity during optimization. .ese penalties are
summed into the loss function that the network
optimizes. In our implementation, the L1 regulari-
zation penalty was set to 0.0001 and L2 to 0.00001.

5.2.EvaluationMetrics. .eexperiments for ourmodels were
evaluated using accuracy, precision, recall, and F1 score [31]:

accuracy �
TP + TN

TP + TN + FP + FN
, (1)

where TP is true positive (the number of correctly classified
images of a class), TN true negative (the number of images
that did not belong to a class and were not classified as
belonging to that class), FP false positive (the number of
wrongly classified images of a class), and FN false negative
(the number of images of a class detected as another class).
Precision and recall were defined; thus,

precision �
TP

TP + FP
,

recall �
TP

TP + FN
.

(2)

F1 score is defined as

F1 score �
2 × precision × recall
precision + recall

. (3)

5.3. Experiments Conducted. We conducted extensive ex-
periments to verify the suitability of our models, as illus-
trated in Table 4.

As a baseline, we implemented ConvNet#4, as it is the
best model of Sekeroglu and Ozsahin [6]. .is model, Model
1, Model 2a, and Model 2b were implemented three times,
one to differentiate COVID-19 from normal cases, one to
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Figure 5: Hybrid model CNN with ML (Model 3b) architecture and configuration after the first hidden layer.
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Figure 3: Transfer-learning models (Model 2a and Model 2b) architecture and configuration.

Conv2D (16, 3, 3)
Maxpooling2D (2, 2)

Dropout (0.2)

Conv2D (32, 3, 3)
Maxpooling2D (2, 2)

Dropout (0.2)

Conv2D (64, 3, 3)
Maxpooling2D (2, 2)

Dropout (0.2)

Conv2D (64, 3, 3)
Maxpooling2D (2, 2)

Dropout (0.2)

120 × 120 × 3

16 × 120 × 120 32 × 60 × 60 64 × 30 × 30 64 × 15 × 15

4096

Normal

COVID-19

Viral pneumonia

Flatten

Figure 4: Hybrid model CNN with ML (Model 3a) architecture and configuration after the flatten layer.
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differentiate COVID-19 from other viral pneumonia cases,
and one to differentiate COVID-19 from normal and other
viral pneumonia cases. Hybrid models (3a, 3b, 4a, and 4b)
were implemented once for each classifier. .e total number
of experiments was 44, covering all models, different ap-
proaches, and different classifiers.

6. Results and Discussion

Table 5 shows the results of the different evaluation metrics
for the baseline CNN model, Model 1 (CNN), and Model 2
(VGG16 and VGG19). .e baseline model’s accuracy for
binary classifications was high (>98%), while it was lower for
multiclass classification (around 93%). Multiclass classifi-
cation accuracy was 96.1%, 97.6%, and 96.6% for the pro-
posed CNNs, VGG16, and VGG19 models, respectively.
.ese values were higher for the other two binary-classifi-
cation scenarios. Performance in terms of precision, recall,
and F1 score was very good, with the lowest value of 95.8%.
.is indicated that Models 1 and 2 are efficient in detecting
COVID-19 cases compared to either normal or other viral
pneumonia cases. .ese results were better than that of the
baseline model by a good margin. .e confusion-matrix
plots for Models 1, 2a, and 2b are depicted in Figure 7. .e
rows correspond to the predicted class (output class), and
the columns correspond to the proper class (target class).
.e diagonal cells in the confusion matrix correspond to

Table 4: Number of experiments implemented for each model.

Model
Experiments

Binary Multiclass Total
Baseline 2 1 3
Model 1 2 1 3
Model 2a 2 (VGG16) 1 (VGG16) 3
Model 2b 2 (VGG19) 1 (VGG19) 3
Model 3a 4 4 8
Model 3b 4 4 8
Model 4a 4 4 8
Model 4b 4 4 8

Total 44

Convolution (3.3) + ReLU
Max pooling (2.2)

120 × 120 × 64

60 × 60 × 128

30 × 30 × 256

15 × 15 × 512
7 × 7 × 512

120 × 120 × 3

Normal
COVID-19
Viral pneumonia

4608

Figure 6: Hybrid model VGG16 with ML (Model 4a and Model 4b) architecture and configuration.

Table 3: Types and descriptions of the examined models.

Model Description
Baseline ConvNet#4: the best model proposed by Sekeroglu and Ozsahin in [6]
Model 1 .e proposed CNN model
Model 2a .e proposed TL model with VGG16
Model 2b .e proposed TL model with VGG19
Model 3a .e proposed hybrid model of CNN with ML where the features are extracted from the flatten layer
Model 3b .e proposed hybrid model of CNN with ML where the features are extracted from the first hidden layer
Model 4a .e proposed hybrid model of VGG16 with ML where the features are extracted from the flatten layer
Model 4b .e proposed hybrid model of VGG16 with ML where the features are extracted from the first hidden layer

Computational Intelligence and Neuroscience 7



correctly classified observations (TP and TN). .e off-di-
agonal cells correspond to incorrectly classified observations
(FP and FN). .e number of observations is shown inside
each cell. From these results, the misclassification rate was
very low for all models.

To further study the overfitting behavior of our models,
we depict the accuracy and loss results for training and
validation learning for each epoch in Figure 8. .e figures
showed no overfitting in the models’ performance due to the
slight differences between the accuracy and loss of training
and validation sets.

.e results of the hybrid models between CNN and ML
are listed in Table 6 for binary classification and in Table 7 for
multiclass classification. We implemented the model four
times for both scenarios, one for each ML technique, by
taking the features from the flatten layer and four times by
taking the features from the first hidden layer. .e results
showed accurate model performance, with overall binary
accuracy of 100% for Model 3a with SVM. Model 3b showed
100% accuracy with SVM, naive Bayes, and random forest

binary classifiers and 99%with the XGBoost binary classifier.
Similarly, accuracy was very good for multiclass classifiers
compared to baseline and previous models, especially Model
3b, which had only 128 extracted features from the first
hidden layer of the neural network. .e accuracy of Model
3a for many binary classifiers was 100%.

.e results of the hybrid models between VGG16 and
ML are listed in Table 8 for binary classification and Table 9
for multiclass classification. For both scenarios and each
classifier, Model 4a was implemented by taking the features
from the flatten layer, and Model 4b is by taking them from
the first hidden layer. .e results showed accurate model
performance, with an overall accuracy of 100% for Model 4a
with SVM and random forest binary classifiers, while Model
4b shows 100% accuracy with all examined binary classifiers.
However, the performance ofModels 4a and 4b was less than
that of Models 2a, 3a, and 3b with multiclass classifiers.

To test the generality of the proposed models, we
implemented them on another binary-class data set called
“combined COVID-19 data set” [32]..is data set is a mix of

Table 5: Results of baseline, Model 1, Model 2a, and Model 2b.

Classes Accuracy Precision Recall F1 score
Baseline
COVID-19 vs. normal 98.82 98.87 98.77 98.82
COVID-19 vs. pneumonia 97.25 97.20 97.29 97.24
COVID-19 vs. normal vs. pneumonia 93.95 94.09 93.85 93.91

CNN
COVID-19 vs. normal 99.27 98.62 100 99.30
COVID-19 vs. pneumonia 98.73 99.29 98.25 98.77
COVID-19 vs. normal vs. pneumonia 96.10 96.20 95.80 95.90

VGG16
COVID-19 vs. normal 99.82 99.65 100 99.82
COVID-19 vs. pneumonia 99.45 99.65 99.30 99.47
COVID-19 vs. normal vs. pneumonia 97.60 97.40 97.50 97.40

VGG19
COVID-19 vs. normal 100 100 100 100
COVID-19 vs. pneumonia 99.45 99.65 99.30 99.47
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Figure 7: Confusion matrix of different models. (a) Model 1 (CNN). (b) Model 2a (VGG16). (c) Model 2b (VGG19).
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X-ray, CT, and ultrasound images. .is data set was aug-
mented to generate 6,128 images and was divided into
training and validation data sets as per Table 10.

Table 11 lists the accuracy values of the proposed
models on the combined COVID-19 data set. .e proposed
models performed very well on this mixed data set, with
Model 4b showing the best result with 99.6% accuracy. .is

proves the generality of our models and their effectiveness
for the correct classification of COVID-19 cases. .e
previous results show that the proposed models are general,
robust, and accurate for many medical images, revealing
excellent and promising results. .ese models were built
based on current technology and were tested on different
general data sets.
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Figure 8: Accuracy and loss results of training and validation learning against the number of epochs. (a) Accuracy. (b) Loss.

Table 6: Binary-classification results of Model 3a and Model 3b for
different evaluation metrics.

Classifier Accuracy Precision Recall F1 score

Model 3a

Näıve Bayes 94.0 94.0 94.0 94.0
SVM 100 100 100 100

Random
forest 99.0 99.0 99.0 99.0

XGBoost 99.0 99.0 99.0 99.0

Model 3b

Naive Bayes 100 100 100 100
SVM 100 100 100 100

Random
forest 100 100 100 100

XGBoost 99 99 99 99

Table 7: Multiclass classification results of Model 3a and Model 3b
for different evaluation metrics.

Classifier Accuracy Precision Recall F1 score

Model 3a

Näıve Bayes 89.8 89.7 89.3 89.5
SVM 97.9 97.9 97.8 97.8

Random
forest 88.8 88.5 88.5 88.4

XGBoost 94.6 94.5 94.4 94.4

Model 3b

Näıve Bayes 97.3 97.3 97.2 97.2
SVM 97.6 97.5 97.5 97.5

Random
forest 97.8 97.8 97.7 97.7

XGBoost 97.6 97.5 97.5 97.5

Table 9: Multiclass classification results of Model 4a and Model 4b
for different evaluation metrics.

Classifier Accuracy Precision Recall F1 score

Model 3a

Naı̈ve Bayes 80.5 80.7 79.8 79.3
SVM 96.0 95.8 95.8 95.8

Random
forest 92.4 92.3 92.2 92.1

XGBoost 94.3 94.1 94.0 94.0

Model 3b

Naı̈ve Bayes 96.0 95.8 95.8 95.8
SVM 96.8 96.7 96.6 96.7

Random
forest 96.7 96.6 96.6 96.6

XGBoost 96.7 96.5 96.6 96.6

Table 8: Binary-classification results of Model 4a and Model 4b for
different evaluation metrics.

Classifier Accuracy Precision Recall F1 score

Model 3a

Naı̈ve Bayes 95 95 95 95
SVM 100 100 100 100

Random
forest 100 100 100 100

XGBoost 99 99 99 99

Model 3b

Naı̈ve Bayes 100 100 100 100
SVM 100 100 100 100

Random
forest 100 100 100 100

XGBoost 100 100 100 100
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7. Conclusions and Future Work

.is paper presents various models for early diagnosis and
classification of COVID-19 patients based on X-ray images.
.e models were built using CNNs, TL with VGG16 and
VGG19, and ML techniques. We identified the best
hyperparameters for the proposed models and exploited the
power of DL to extract deep features for binary and mul-
ticlass classifiers to improve COVID-19 diagnosis accuracy.
For correct prediction, we tested our models on a data set
with three classes to ensure that the models were accurate in
differentiating COVID-19 from other viral pneumonia in-
fections, which have many common radiographic and
ambiguous features. .e proposed models outperformed the
baseline one and showed promising results, especially hybrid
models, which revealed very good results for both types of
classifiers. For binary classification, they offered full accuracy
for many cases. .is illustrates the ability of DL techniques
to extract relevant features, which makes the job of ML
easier.

In future work, we plan to explore more X-ray data sets
from different countries. Other medical images like CTscans
and ultrasound images can be used for improving the ac-
curacy of the diagnosis process and early detection models,
which in turn can empower the decision-making process
regarding COVID-19 patients. Moreover, other TL models
can be applied with different configurations to get better
results.

Data Availability

.e data set used in this research is available on the
Mendeley Data website under the name Covid-19.zip.

Conflicts of Interest

.e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

.e authors are thankful to the Institute of Research and
Consulting Studies at King Khalid University, Saudi Arabia,
for supporting this research through Grant no. 4-N-20/21.

References

[1] Z. Wang, Y. Xiao, Y. Li et al., “Automatically discriminating
and localizing COVID-19 from community-acquired pneu-
monia on chest X-rays,” Pattern Recognition, vol. 110, Article
ID 107613, 2021.

[2] R. Chakraborty and S. Parvez, “COVID-19: an overview of the
current pharmacological interventions, vaccines, and clinical
trials,” Biochemical Pharmacology, vol. 180, Article ID 114184,
2020.

[3] L. Alzubaidi, J. Zhang, A. J. Humaidi et al., “Review of deep
learning: concepts, CNN architectures, challenges, applica-
tions, future directions,” Journal of Big Data, vol. 8, no. 1,
p. 53, 2021.

[4] H. J. Koo, S. Lim, J. Choe, S.-H. Choi, H. Sung, and K.-H. Do,
“Radiographic and CT features of viral pneumonia,” Radio-
Graphics, vol. 38, no. 3, pp. 719–739, 2018.

[5] T. Ozturk, M. Talo, E. A. Yildirim, U. B. Baloglu, O. Yildirim,
and U. Rajendra Acharya, “Automated detection of COVID-
19 cases using deep neural networks with X-ray images,”
Computers in Biology and Medicine, vol. 121, Article ID
103792, 2020.

[6] B. Sekeroglu and I. Ozsahin, “Detection of COVID-19 from
chest X-ray images using convolutional neural networks,”
SLAS TECHNOLOGY: Translating Life Sciences Innovation,
vol. 25, no. 6, pp. 553–565, 2020.

[7] T.Gao, “Chest X-ray image analysis and classification forCOVID-
19 pneumonia detection using Deep CNN,” 2020, https://
www.medrxiv.org/content/10.1101/2020.08.20.20178913v2.

[8] H. J. Koo, S.-H. Choi, H. Sung, J. Choe, and K.-H. Do,
“RadioGraphics update: radiographic and CT features of viral
pneumonia,” RadioGraphics, vol. 40, no. 4, pp. E8–E15, 2020.

[9] T. Zebin and S. Rezvy, “COVID-19 detection and disease
progression visualization: deep learning on chest X-rays for
classification and coarse localization,” Applied Intelligence,
2020.

[10] A. Sedik, M. Hammad, F. E. Abd El-Samie et al., “Efficient
deep learning approach for augmented detection of Coro-
navirus disease,” Neural Computing & Applications, 2021.

[11] C. B. S. Maior, J. M.M. Santana, I. D. Lins, andM. J. C. Moura,
“Convolutional neural network model based on radiological
images to support COVID-19 diagnosis: evaluating database
biases,” PLoS One, vol. 16, no. 3, Article ID e0247839, 2021.

[12] J. P. Cohen, P. Morrison, and D. Lan, “COVID-19 image data
collection,” 2020, https://arxiv.org/abs/2003.11597.

[13] S.-C. B. Lo, S.-L. A. Lou, J.-S. Jyh-Shyan Lin, M. T. Freedman,
M. V. Chien, and S. K. Mun, “Artificial convolution neural
network techniques and applications for lung nodule detec-
tion,” IEEE Transactions on Medical Imaging, vol. 14, no. 4,
pp. 711–718, 1995.

[14] I. D. Apostolopoulos and T. A. Mpesiana, “COVID-19: au-
tomatic detection from Xray images utilizing transfer learning
with convolutional neural networks,” Physical and Engi-
neering Sciences in Medicine, vol. 43, pp. 635–640, 2020.

[15] P. Rajpurkar, J. Irvin, K. Zhu et al., “Chexnet: radiologist-level
pneumonia detection on chest X-Rays with deep learning,”
2017, https://arxiv.org/abs/1711.05225.

[16] S. Karakanis and G. Leontidis, “Lightweight deep learning
models for detecting COVID-19 from chest X-ray images,”
Computers in Biology and Medicine, vol. 130, Article ID
104181, 2021.

[17] A. K. Das, S. Kalam, C. Kumar, and D. Sinha, “TLCoV- an
automated Covid-19 screening model using transfer learning

Table 10: Mendeley data set: combined COVID-19 data set.

Data set Normal class COVID-19 class Total
Train 2486 1711 4197
Test 1141 790 1931
Total 3627 2501 6128

Table 11: Accuracy results on the combined COVID-19 data set.

Model type Accuracy
Model 1 98.7
Model 2a 98.6
Model 3b 98.5
Model 4b 99.6

10 Computational Intelligence and Neuroscience

https://arxiv.org/abs/2003.11597
https://arxiv.org/abs/1711.05225


from chest X-ray images,” Chaos, Solitons and Fractals,
vol. 144, Article ID 110713, 2021.

[18] E. Hussain, M. Hasan, M. A. Rahman, I. Lee, T. Tamanna, and
M. Z. Parvez, “CoroDet: a deep learning based classification
for COVID-19 detection using chest X-ray images,” Chaos,
Solitons, and Fractals, vol. 142, Article ID 110495, 2021.

[19] P. Saha, M. S. Sadi, and M. M. Islam, “EMCNet: automated
COVID-19 diagnosis from X-ray images using convolutional
neural network and ensemble of machine learning classifiers,”
Informatics in Medicine Unlocked, vol. 22, Article ID 100505,
2021.

[20] A. Sedik, A. M. Iliyasu, B. Abd El-Rahiem et al., “Deploying
machine and deep learning models for efficient data-aug-
mented detection of COVID-19 infections,” Viruses, vol. 12,
no. 7, p. 769, 2020.

[21] S. Minaee, R. Kafieh, M. Sonka, S. Yazdani, and G. J. Soufi,
“Deep-COVID: predicting COVID-19 from chest X-ray
images using deep transfer learning,”Medical Image Analysis,
vol. 65, Article ID 101794, 2020.

[22] R. Jain, M. Gupta, S. Taneja et al., “Deep learning based
detection and analysis of COVID-19 on chest X-ray images,”
Applied Intelligence, 2020.

[23] L. Hussain, T. Nguyen, H. Li et al., “Machine-learning clas-
sification of texture features of portable chest X-ray accurately
classifies COVID-19 lung infection,” BioMedical Engineering
OnLine, 2020.

[24] L. Wang, Z. Q. Lin, and A. Wong, “COVID-Net: a tailored
deep convolutional neural network design for detection of
COVID-19 cases from chest X-ray images,” Scientific Reports,
2020.

[25] D. Wang, J. Mo, G. Zhou, L. Xu, and Y. Liu, “An efficient
mixture of deep and machine learning models for COVID-19
diagnosis in chest X-ray images,” PLoS One, vol. 15, Article ID
e0242535, 2020.

[26] M. Rahimzadeh and A. Attar, “A modifid deep convolutional
neural network for detecting COVID-19 and pneumonia
from chest X-ray images based on the concatenation of
Xception and ResNet50V2,” Informatics in Medicine
Unlocked, vol. 19, Article ID 100360, 2020.

[27] R. Kumar, R. Arora, V. Bansal et al., “Prediction of COVID-19
using chest x-ray images through deep feature learning model
with SMOTE and machine learning classifiers,” 2020, https://
www.medrxiv.org/content/10.1101/2020.04.13.20063461v1.

[28] J. Ker, L. Wang, J. Rao, and T. Lim, “Deep learning appli-
cations in medical image analysis,” IEEE Access, vol. 6,
pp. 9375–9389, 2017.

[29] S. Bhattacharya, P. K. Reddy Maddikunta, Q.-V. Pham et al.,
“Jalil Piran, Deep learning and medical image processing for
coronavirus (COVID-19) pandemic: a survey,” Sustainable
Cities and Society, vol. 65, Article ID 102589, 2021.

[30] F. Zhuang, “A comprehensive survey on transfer learning,”
Proceedings of the IEEE, vol. 109, no. 1, pp. 43–76, 2021.

[31] A. F. Al-Juniad, T. S. Qaid, M. Y. H. Al-Shamri,
M. H. A. Ahmed, and A. A. Raweh, “Vertical and horizontal
DNA differential methylation analysis for predicting breast
cancer,” IEEE Access, vol. 6, pp. 53533–53545, 2018.

[32] S. Ahmed, F. Abd El-Samie, A. El-Latif, and H. Mohamed,
“Combined COVID-19 dataset” Mendeley data,” 2020.

Computational Intelligence and Neuroscience 11


