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Cellular associations in the bone microenvironment are involved in modulating the balance
between bone remodeling and resorption, which is necessary for maintaining a normal
bone morphology. Macrophages and osteoclasts are both vital components of the bone
marrow. Macrophages can interact with osteoclasts and regulate bone metabolism by
secreting a variety of cytokines, which make a significant contribution to the associations.
Although, recent studies have fully explored either macrophages or osteoclasts, indicating
the significance of these two types of cells. However, it is of high importance to report the
latest discoveries on the relationships between these two myeloid-derived cells in the field
of osteoimmunology. Therefore, this paper reviews this topic from three novel aspects of
the origin, polarization, and subgroups based on the previous work, to provide a reference
for future research and treatment of bone-related diseases.
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INTRODUCTION

The skeleton is a complex organ that facilitates locomotion, retains blood calcium concentration,
provides stable support to soft tissues, and is a site for adult hematopoiesis. Continued bone
remodeling is necessary to maintain these crucial functions by preventing the accumulation of bone
injuries, and sustaining both calcium homeostasis and bone strength (1, 2). The remodeling of
bone is a tightly-coupled process that involves osteoclasts and osteoblasts. Among them, osteoclasts
are multinucleated cells that develop from the fusion of osteoclast precursors (OCPs) through the
activation of macrophage colony‐stimulating factor (M‐CSF) and receptor activator of NF‐kB
ligand (RANKL), which can secret H+, Cl-, cathepsin K (CtsK), and matrix metalloproteinases
(MMPs) (3–5). Importantly, osteoclasts are the only bone-resorbing cells in the human body, and
are crucial for remodeling of the skeletal system.

On the other hand, macrophages are phagocytes from the mononuclear myeloid lineage. They are
known for their protective roles in eliminating pathogens and recruitment of other immune cells from
the peripheral circulation to the sites of infection and inflammation. These cells have evolved;
emphasizing their distinct and critical significance in almost all tissues. Moreover, most tissues and
organs host a resident group of macrophages that have adapted to the local conditions and are able to
perform crucial tissue-specific functions in order to maintain homeostasis (6). For instance, osteal
macrophages,whichare the resident tissuemacrophages inbones, performvarious functions in thebone
microenvironment. Besides, macrophages can change their functional and phenotypic properties in
response to signals released from the immediate environment (7). Based on their activation states,
macrophages can be categorized into M1 andM2 subtypes (8). In fact, M1- andM2-like macrophages
share several features with T helper (Th) 1/Th2 cells (9). It has been reported that M1macrophages are
antimicrobial and proinflammatory, whereasM2macrophages are anti-inflammatory (10, 11). Various
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physiological processes, including skeletal homeostasis, depend on
the balance between M1 and M2 macrophages.

In the field of osteoimmunity, immune and skeletal systems
share numerous biological factors, such as chemokines,
cytokines, hormones, etc. In addition, the interactions between
osteoclasts and macrophages exert an indispensable influence in
this area. Despite the well-established wealth of knowledge on
macrophage genesis, activity, and polarization, the relationships
between macrophages and osteoclasts in osteoimmunity still
need further elucidation. In this article, we primarily focused
on the effect of macrophage polarization on osteoclasts. We
found that various cytokines, such as interleukins (ILs),
chemokines, and tumor necrosis factors (TNFs) produced
during the polarization process are intimately associate with he
differentiation, activity, and survival of osteoclasts. Furthermore,
we complementarily described the monocyte/macrophage origin
of osteoclasts and the relationships between macrophage
subpopulations and osteoclasts. In general, we summarized the
current knowledge on macrophage-osteoclast interactions from
diverse perspectives to provide references for future studies.
THE MONOCYTE/MACROPHAGE ORIGIN
OF OSTEOCLASTS

Various theories have been propounded to account for the origin
of osteoclasts since they were discovered in 1873 (12). However,
Walker’s pioneering experiments in the 1970s confirmed their
hematopoietic origin, as transfusions of spleen and myeloid cells
from wild-type mice reversed bone resorption in osteosclerotic
and osteopetrotic mice lacking osteoclasts. This demonstrated
that hematopoietic organs are capable of generating cells that
cause hard tissues to resorb (12, 13). In 1986, Scheven and
coworkers were the first to show that osteoclasts can be
produced from a subgroup of cells that are rich in hemopoietic
progenitors (14). In 1990, the monocyte/macrophage origin of
osteoclast was later certified by Udagawa and partners after they
proved that hemopoietic stem cells differentiate into the
monocyte-macrophages through the activation of M-CSF (15).
Subsequent studies further confirmed that osteoclasts can be
formed from monocyte-macrophage precursor cells as well as
from mature macrophages in tissues (15).

Furthermore, bones and bone marrow contain three unique
macrophage populations, namely: osteoclasts and bone marrow
macrophages (erythroid island macrophages), hematopoietic stem
cell macrophages, and a newly-discovered group of macrophages
called osteal macrophages or “osteomacs” (16). This also suggests
that osteoclasts and macrophages may have a similar origin.
Studies have shown that cells from the mononuclear/
macrophage system, which contain hematopoietic marrow cells,
blood monocytes, and peritoneal macrophages, possess the ability
to develop into bone-resorbing osteoclasts; thus, squarely
classifying osteoclastic groups within these series of cells (17–20).
In fact, osteoclast and macrophage are the two differentiation
products from myeloid precursors that compete with each other
(21). In summary, osteoclasts are generated by a series of processes
that begins with the commitment of hematopoietic stem cells
Frontiers in Immunology | www.frontiersin.org 2
(HSCs) to the mononuclear/phagocyte series (22), followed by the
proliferation of pre-osteoclasts, and final maturation into
osteoclasts, which possess bone-resorbing capacity (23).

In the diverse colony-forming units (CFUs), which generate
variousmyeloid cells, only the CFUmacrophages, when exposed to
M-CSF, evolve intomacrophage and dendritic cell (DC) progenitor
(MDP). MDP is a bipotent progenitor (24) which undergoes
osteoclastic differentiation (25) (Figure 1). In addition to the
differentiation of myeloid progenitors into osteoclasts,
macrophages also serve as an osteoclastic source. Osteoclasts can
be formed from tissue-specific macrophages in inflammatory and
immunological environments (26) (Figure 1). For example,
osteoclasts can be differentiated from osteal macrophages and
synovial macrophages in an inflammatory condition (26, 27).
Further, premature DCs can develop into typical DCs, while they
can also become osteoclasts when exposed to M-CSF and RANKL
(25, 28) (Figure 1).

On the basis of CD14 and CD16 antigens expression,
monocytes are divided into three groups: classical (CD14++

CD16−), intermediate (CD14++CD16+), and nonclassical
(CD14+CD16++) (29, 30). According to this hypothesis, classical
monocytes are the major source of osteoclasts, while intermediate
monocytes can transform into high-absorption-capacity
osteoclasts during inflammation, with non-classical monocytes
evolving into non-resorbable osteoclasts (31–34). The study has
reported that the intermediate monocytes convert into M1-
macrophages to perform crucial functions in inflammation of
the synovium. However, findings have shown that the classical
monocytes account for the vast majority of monocytes in
rheumatoid arthritis (RA) (35). This suggests that in an
inflammatory environment, the main cells that are recruited are
still classical monocytes, while the main role is played by M1-type
macrophages which differentiate from intermediate monocytes.
A recent study has identified an erythromyeloid progenitor
(EMP)-derived osteoclast precursor population (36). Yolk-sac
macrophages of EMP origin produced neonatal osteoclasts that
can create a space for postnatal bone marrow hematopoiesis (36).
Furthermore, EMPs gave rise to long-lasting OCPs that contribute
to postnatal bone remodeling in both physiological and
pathological settings (36). Single-cell RNA-sequencing data
showed that EMP-derived OCPs arose independently of the
HSC lineage, and the data from fate-tracking of EMP and HSC
lineages indicated the possibility of cell-cell fusion between these
two lineages (36). Cx3cr1+ yolk-sac macrophage descendants
reside in the adult spleen, and parabiosis experiments showed
that these cells migrated through the bloodstream to the
remodeled bone after injury (36). Another study also found that
the postnatal maintenance of osteoclasts, bone mass, and bone
marrow cavity involves iterative fusion of circulating blood
monocytic cells with long-lived osteoclast syncytia (37).
POLARIZATION OF MACROPHAGES:
INFLUENCE ON OSTEOCLASTS

Since Elie Metchnikoff first defined these phagocytic cells over a
century ago, the forms and roles of macrophages are becoming
December 2021 | Volume 12 | Article 778078
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increasingly diverse (38). The ability of macrophages to modify
their phenotypic features due to different external stimuli is
known as activation (39, 40) (Figure 2). Alternatively activated
macrophages (AAM; M2) were described in the early 1990s as
possessing a distinct phenotype of macrophages from the
traditionally activated or inflammatory macrophages (M1)
(41). This categorization was developed as a result of the
phenotypic changes observed in vitro after treatment with a
variety of chemicals (42). Following the discovery of the M1/M2
macrophage paradigm, more evidence was found to support the
idea that between these two seemingly opposed resultant
phenotypes, there is a transitional form of intermediate
Frontiers in Immunology | www.frontiersin.org 3
phenotypes (39, 43, 44). Recently, a human macrophage with
an open spectrum of activation, as identified by transcriptional
clusters associated with diverse stimulations, was reported in a
study. Under this condition, scholars have gradually coined the
terminology ‘polarization’ to describe the disruption of
macrophages by some stimuli, which induce various patterns
of gene expression (40). However, the M1/M2 terminology was
eventually accepted due to the discovery of different features of
macrophages in cells generated from Th1 or Th2 dominant
mouse lineages (42).

It is worth noting that the metabolic state of macrophages and
osteoclasts is dependent on “activation” status, which itself is
closely related to external stimuli or the disease environment. In
pathological conditions, macrophages tend to be activated as
M1-type macrophages that secrete proinflammatory cytokines
against pathogens. Specifically, in inflammatory conditions, for
example, following an infection, inflammatory stimuli, such as
IL-12, lipopolysaccharide (LPS), interferon (IFN)-g, and reactive
oxygen species (ROS), that are generated by a damaged or
necrotic tissue, promote polarization of macrophages into M1
phenotype (45–49). This is mediated by signal transducer and
activator of transcription (STAT) 1, and interferon-regulatory
factor (IRF) 5. As an important inflammatory response,
polarized M1 can produce high levels of ROS, nitric oxide
(NO), and proinflammatory cytokines, such as IL-1, IL-2, IL-6,
IL-12, TNF-a, and IFN-g, which are involved in enhancing the
host’s defense response (50, 51). Under non-inflammatory
conditions, macrophages largely exhibit the M2 phenotype
which promotes tissue homeostasis and repair. Specifically, M2
macrophages are mainly present in the subsiding phase of
inflammation, and they are responsible for the production of
anti-inflammatory cytokines and the clearance of apoptotic cells.
Exposure to anti-inflammatory cytokines (IL-4, IL-10, and
IL-13), IL-1 receptor ligands, or immune complexes and Toll-
like receptors (TLRs) can lead to M2 macrophage polarization
via STAT6 and IRF4 (9, 52, 53). M2 macrophages can produce
anti-inflammatory cytokines, such as chemokine (C-C motif)
ligand 18 (CCL-18), CCL-22, IL-10, and a small amount of IL-12
family members (39, 54). In addition, M2 macrophages can
produce a large number of osteogenic growth factors, such as
bone morphogenetic protein-2 (BMP-2), a subclass of the TGF-b
family and a potent promoter to osteogenic differentiation of
MSCs (55, 56), TGF-b (57), osteopontin (58), and 1, 25-
dihydroxyvitamin D3 (59). M1 macrophage-related cytokines,
such as TNF-a, IL-6, and IL-1b, can induce osteoclastogenesis,
while the M2 macrophage-related cytokines, such as IL-4 and
IL-10, can inhibit osteoclastogenesis through the downregulation
of NFATc1 (60, 61). Thus, the polarization of macrophages
(M1/M2) itself is important for the determination of
osteoclastogenesis, which makes the interaction between
macrophages and osteoclasts even more complex.

Similar to macrophages, the metabolic state of osteoclasts is
also closely related to the disease conditions. For instance, the
seminal study of Trouillet-Assant et al. discovered that infection
of bone marrow-derived OCPs with live S. aureus promoted their
differentiation into activated macrophages rather than
osteoclasts (62). However, the cultivation of OCPs with only
FIGURE 1 | The monocyte/macrophage origin of osteoclasts. Hematopoietic
stem cells myeloid colony-forming units (M-CFU) from bone marrow or yolk
sac is the main site of myeloid cell production. Recent researches have
shown that tissue-resident macrophages initially arise from myeloid stem cells
(M-CFU) in the yolk sac of the developing embryo. In M-CFU, early
expression of PU.1 and Mitf induces the emergence of M-CSFR (the receptor
for M-CSF). Subsequently, in combination with macrophage colony‐
stimulating factor (M-CSF) and receptor activator of NF‐kB ligand (RANKL),
M-CFU can differentiate directly into osteoclasts. But in the separate action of
M-CSF, M-CFU can differentiate into M-CSF-dependent macrophage and
dendritic cell progenitor (MDP). MDP can differentiate into both dendritic cells
and monocytes, the latter of which can differentiate into pro-monocytes under
the sustained action of M-CSF. Pro-monocytes can differentiate to form
specifically marked monocytes, namely: LY6C+ or LY6C- blood monocytes,
under appropriate stimulation, such as M-CSF, TNF. Monocytes (Ly-6C−)
induced by M-CSF develop into macrophages, but the addition of RANKL
converts monocytes into osteoblasts commitment. Early-stage Ly-6C+

monocytes exhibit a high potential for osteoclast commitment in response to
M-CSF and RANKL activation while still retaining the capacity to transform
into Ly6C-monocytes. Completely differentiated macrophages induced by M-
CSF and RANKL can fuse to become osteoclasts. Under pathological
situations, macrophages can generate multinucleated giant cells (MGCs)
when stimulated with M-CSF or stimulating factor (GM-CSF) and interleukins
(IL-4, IL-13). MGCs continue to differentiate into osteoblasts in the presence
of common fusion mediators. In addition, immature dendritic cells have the
potential for osteolytic differentiation.
December 2021 | Volume 12 | Article 778078
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the supernatants of the infected macrophages promoted the
differentiation into bone-resorbing cells, due to the secreted
proinflammatory cytokines they contained. Infection of mature
osteoclasts with S. aureus promoted their bone-resorbing
capacity in a hydroxyapatite matrix degradation assay which
proceeded with enhanced cellular fusion events, and a higher
number of nuclei per osteoclast with a significantly increased size
(62). Similarly, when fractures occur, osteoclasts can be activated
via the RANKL pathway (63). Subsequently, immature HSC
precursors are recruited via CXCR4 and MMP-9 pathways to
promote HSC migration (63).

M1 Polarization and Osteoclasts
In inflammatory conditions, for instance, after an infection,
inflammatory stimuli, such as IL-12, IFN-g, and ROS, that are
generated by damaged or necrotic tissue, promote the
Frontiers in Immunology | www.frontiersin.org 4
polarization of macrophages into M1 phenotype (45–49),
resulting in the release of cytokines, such as TNF-a, IL-6,
IL-1, and others to affect osteoclast differentiation and
formation (Table 1).

Osteoclastogenesis is promoted via TNF-a both directly by
increasing OCP population and/or differentiation, and indirectly
by enhancing RANKL secretion in osteoblasts and other cells
(64, 65, 113). Moreover, TNF-a has been reported to be able to
change CD11b+F4/80+ cells (bone marrow cells) from
Ly6C−Gr1−M2 macrophages to Ly6C−Gr1−CD11c+ and
Ly6C+Gr1−CD11c+ M1 macrophages. Pretreatment of M-CSF-
stimulated mouse bone marrow with TNF-a increased osteoclast
progenitor population, resulting in an increased number of
osteoclasts generated by Ly6C-Gr1 and Ly6C+Gr1- monocyte
series (66). This may indicate that the function of TNF-a is to
boost osteoclastic precursors by changing the M-CSF-activated
December 2021 | Volume 12 | Article 778078
)
)

TABLE 1 | Summary of the effects of cytokines produced by M1 macrophage on osteoclasts.

Cytokine Action Reference

TNF-a Promotes OC progenitors differentiation/amount; enhances RANKL secretion; facilitates the transformation from M2 to M1 (64–66)
IL-1a Promotes RANKL and OC maker expression; stimulates MITF induction (67, 68)
IL-1b Promotes OC differentiation, survival; enhances RANKL secretion; employs negative feedback to attenuate osteoclast formation; exhibits time-

dependent impacts on osteoclastogenesis; stimulates MITF induction
(67–72)

IL-6 Stimulates RANKL secretion; mediates the action of TNF-a, IL-1; activates JAK/STAT3 pathway (73–75)
IL-12 Inhibits OC differentiation, activation, and survival; stimulates IFN-g generation (76–88)
IL-18 Synergizes with IL-12; stimulates IFN-g generation; inhibits OC differentiation, formation, survival, activity, but induces osteoclastogenesis

indirectly in RA
(84, 89–
96)

IL-23 Promotes RANK and RANKL expression; induces osteoclastogenesis via regulating IL-17 (97–99)
CXCL2 Promotes OC progenitors proliferation (100)
CXCL8 Up-regulates IL-6 synthesis (101)
CXCL10 Increases RANKL and TNF-a expression (102)
CXCL20 Upregulates IL-6 synthesis (101)
CX3CL1 Increases OC adhesion to bone surface (100)
CCL4 Increases OC migration (103)
NO Low levels of NO enhance osteoclastogenesis, whereas high levels suppress (104–106
ROS Promotes OC differentiation; acts as a crucial second messenger during osteoclastogenesis; participates in the pathological process of

osteoporosis
(107–112
FIGURE 2 | Macrophage polarization and osteoclasts. 1. Circulating macrophages change their phenotype according to the external environment. In the presence
of cytokines, such as interferon (IFN), reactive oxygen species (ROS), interleukin-12 (IL-12), and tumor necrosis factor (TNF), macrophages polarize to M1 type. In
response to interleukin-4 (IL-4), interleukin-10 (IL-10), interleukin-13 (IL-13), and other cytokines, macrophages can be polarized to M2 type. 2. Macrophages can
produce cytokines with opposite effects in different polarization states. M1 macrophages can secrete cytokines, such as tumor necrosis factor-a (TNF-a), interleukin-
6 (IL-6), interleukin-1 (IL-1), etc., which generally show the effect of activating osteoclasts and promoting bone resorption. M2 macrophages can secrete cytokines,
such as IL-10, bone morphogenetic protein-2 (BMP-2), transforming growth factor-b1(TGF-b1), etc., most of which can inhibit osteoclastic bone resorption.
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M2 differentiation to M1 macrophages, with elevated
osteoclastogenesis potentials (66). IL-1 can also promote
osteoclastogenesis by downregulating osteoprotegerin (OPG)
levels and upregulating RANKL levels (113).

Lipocytes, muscle cells, and lymphocytes all generate IL-6,
which is part of the cytokine family that also includes IL-11, IL-
27, oncostatin M (OSM), and others (114). In response to
injuries, IL-6 is generated locally and released into the
bloodstream, where it triggers a rapid immune response (115).
Osteocytes and osteoblasts have been shown to be potently
stimulated by IL-6 to produce RANKL (73, 74). The
interaction of IL-6/IL-6 receptor and glycoprotein 130 (gp130)
receptor can ignite Janus-activated kinase (JAK) and cause the
phosphorylation of STAT3, allowing RANKL to enhance
osteoclastic development (74). Treatment with STAT3 blocker,
CP690,550, decreased expression of the IL-6 family members,
and also the generation of osteoclast both in vivo and in vitro
(116). Importantly, the potential of IL-6 to stimulate
osteoclastogenesis is determined by the presence of IL-6
receptors on osteoblasts, but not on OCPs (117). The
membrane-bound IL-6 receptors (IL-6Rs), and the soluble IL-6
receptor (sIL-6R) are the two major transmitters that transduce
IL-6 signals significantly. Interaction of IL-6 with IL-6R results in
the dimerization with common signaling receptor subunit gp130,
and subsequent downstream signaling transduction through
phosphorylation of the JAK/STAT pathway (118). In cells
without membrane-bound IL-6R, the interaction of IL-6 with
sIL-6R results in the formation of a molecule that can combine
with membrane-bound gp130 and activate downstream
signaling (118). Soluble IL-6R signaling is hypothesized to be
involved in the proinflammatory effects of IL-6 on several tissues.
In addition, the effects of TNF-a and IL-1 on human
osteoclastogenesis can also be mediated by IL-6 (75).

As a result of its significant bone-resorbing property, IL-1 was
first classified as an osteoclast-activating factor (119). The
adaptor molecule, MyD88, is activated by IL-1 to initiate
signaling pathways that result in the initiation of NF-kB and
MAPKs, as well as downstream transcription factors that
promote gene expression and osteoclast formation (120). The
IL-1 gene family contains a number of different members,
including: IL-1a, IL-1b, and the IL-1R antagonist (IL-1Ra)
(69). IL-1a and IL-1b are agonists, while IL-1Ra is a
specialized receptor antagonist. Among these members, IL-1b
is one of the key mediators of bone resorption in inflammatory
conditions. IL-1b promotes TNF-a-stimulated osteoclast
formation by improving the synthesis of RANKL in
mesenchymal cells (70). In the presence of adequate RANKL
concentrations, IL-1b directly promotes the development of
OCPs under the regulation of p38 MAPK (70). Moreover,
since IL-1R is localized on the osteoclast surface (71), IL-1b
and other IL-1s can suppress the apoptosis of osteoclasts by
activating the NF-kB pathway (121). However, IL-1b is a
multifaceted cytokine with mostly pro-osteoclastogenesis
features, but can also employ negative feedback mechanisms
that attenuate osteoclast formation (69). IL-1b is greatly time-
dependent in its impacts on osteoclastogenesis. As shown in
Frontiers in Immunology | www.frontiersin.org 5
earlier projects with mouse cells and as demonstrated in multiple
experiments employing human OCPs (67, 72), exposure to IL-1b
before or simultaneously with RANKL inhibits osteoclast
formation. Conversely, exposure to IL-1b post-RANKL
treatment has the reverse result, i.e., enhancing osteoclast
development and resorptive activity. The reason for this
phenomenon is that IL-1Rs share a cytosolic Toll-IL-1R
domain and common intracellular signaling molecules with
TLR, so IL-1b can directly block the initial phases of human
osteoclast maturation by dropping of the M-CSF receptor, c-
Fms, that is essential for RANK synthesis after binding with
TLRs (72). In addition to IL-b, IL-1a is also known to be a potent
osteoclastogenic cytokine. IL-1a also requires adequate RANKL
concentrations to trigger the expression of OC biomarkers, such
as tartrate-resistant acid phosphatase (TRAP), CtsK, MMP-9,
and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1)
(68). Furthermore, regardless of RANKL, IL-1 may promote OC
differentiation in bone marrow macrophages by activating the
microphthalmia transcription factor (MITF) (67).

The cytokines, IL-12 and IL-23, which are reported to
perform a key part in inflammatory responses, participate in
the inflammation-induced bone abnormalities. IL-12, composed
of p35 and p40, is one of the key factors influencing osteoclasts.
IL-12 is mainly produced by macrophages and DCs, and is
essential for Th cell formation and activity (76–78). IFN-g is
the main product of activated Th cells (79). This factor prevents
osteogenic differentiation of bone marrow mesenchymal stem
cells and causes damage to the cells (80). Notably, IFN-g is also a
powerful blocker of osteoclast differentiation. Briefly, it can
inhibit osteoclast differentiation by decreasing CtsK levels (81)
or increasing the decomposition of tumor necrosis factor
receptor (TNFR)-associated factor 6 (TRAF6) (82, 83). In
addition, IL-12 itself can also inhibit osteoclast activity (84–
86). Mechanistically, IL-12 can downregulate NFATc1
expression, and thus inhibit RANKL-induced osteoclastogenic
potentials (87). Also, IL-12 can promote TNF-a-induced
osteoclast apoptosis via the FAS/FASL pathway (88). IL-23,
composed of p40 and p19 subunits, is also a member of the
IL-12 family. The overexpression of IL-23 has been reported to
increase Th1 production and induce significant bone loss in mice
(122). Further studies demonstrated that bone marrow
macrophages isolated from IL-23 knockout mice possessed
diminished osteoclast capacity and resorption efficiency (122).
The two main mechanisms through which IL-23 positively
regulates osteoclasts involve either directly increasing RANK
expression in OCPs (97) or indirectly promoting RANKL
production in CD4+ T cells (98). Furthermore, IL-23 can affect
osteoclasts through its regulation of IL-17 secretion. In the
presence of IL-17, the transformation of OCPs into osteoclasts
is inhibited and the secretion of MMP-9 and CtsK by mature
osteoclasts is reduced (99). Follow-up studies have shown that
activation of NF-kB, p38, and ERK signaling pathways is the
main mechanism by which IL-17 acts.

IL-18, like IL-12, also inhibits the formation of osteoclasts,
and both have a synergistic effect (84). In combination with
IL-12, IL-18 prevents the formation of osteoclasts more
December 2021 | Volume 12 | Article 778078
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effectively (84). In addition, IL-18, similar to IL-12, was originally
recognized as an IFN-inducing agent, and studies have
demonstrated that the two cytokines work in tandem, with
combination therapy leading to considerably more IFN-g
production than either IL alone (89–92). IFN-g can induce cell
apoptosis and suppress osteoclast differentiation. Of note, IL-18
can also inhibit osteoclast bone resorption partially mediated by
IL-6 (93). Mechanistically, by modulating the synthesis of M-
CSF and granulocyte-macrophage colony‐stimulating factor
(GM-CSF) through T-cells, IL-18 inhibits the differentiation of
osteoclasts, and induces apoptosis of osteoclasts by the
generation of NO (94, 95). However, some studies have
reported that in RA synovitis, IL-18 can indirectly induce
osteoclastogenesis by upregulating RANKL synthesis through T
cells (96). Therefore, the effects of macrophages on osteoclasts
still need to be discussed.

Most commonly referenced ROS are hydroxyl radicals (HO·),
hydrogen peroxide (H2O2), and hyperoxide (superoxide) anions
(O2-) (123). It is important to note that cell reproduction,
viability, apoptosis, maturation, motility, and metabolic activity
are all regulated by ROS. ROS are critical secondary intracellular
messengers involved in numerous physiological activities, such
as apoptosis, epigenetics, and the initiation of cell signal
transductions (124). ROS are primarily generated by
mitochondrial metabolism, particularly by ETC complexes I
and II, where oxygen utilization results in ROS generation due
to the reverse electron transfer between the complexes and
molecular oxygen. Also, ROS could be produced in the cytosol
by the oxidative process of NADPH oxidases (NOX). It has been
known for many years that the activities and development of
osteoclasts are regulated by ROS (107, 108, 125–127). Exposure
of macrophages to exogenous ROS, such as H2O2, causes the
RANK signaling cascade to become activated, resulting in the
development of osteoclasts (107), whereas RANKL initiation
causes the synthesis of endogenous ROS, which subsequently
functions as a second messenger to induce the conversion of
macrophages into osteoclasts (109). RANKL can enhance the
levels of intracellular ROS throughout osteoclastogenesis by
initiating signaling pathways that include: TRAF6 and NOX1
(108). There is growing evidence that the activities of important
osteoclast transcription factors, such as NF-kB and NFATc1,
may also be influenced by ROS (110). Furthermore, the
production of ROS by RANKL-stimulated osteoclasts has been
shown to suppress the synthesis of antioxidant proteins like
catalase (CAT) and superoxide dismutase (SOD) (111). As a
result, ROS can be regarded as a crucial signaling messenger
during osteoclastogenesis. In osteoclast-mediated diabetic
osteoporosis, the over-activation of ROS/MAPKs/NF-kB/
NLRP3 pathway is also the main cause of osteoclast
resorption (112).

NO is a free radical that regulates many physiological activities,
including vascular relaxation (128), neurotransmission, platelet
aggregation, and immunological control (129). In vivo, NO is
generated by the enzyme NO synthase (NOS) (130, 131). It is
known as NOS for its ability to catalyze the oxidation of guanidine
nitrogen from L-arginine in the presence of calcium ions, NADH,
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and tetrahydrobiopterin as co-factors (130, 131). NO and NOS
have been shown to have a significant influence on bone cell
activity in recent years. The effects of NO on skeletal structures
have been shown to be extremely concentration-dependent,
according to recent research reports (130, 131). The impacts of
NO on osteoclast development and survival are similar to those
seen in osteoblasts: a low level of NO enhances, whereas an excess
of NO suppresses (104–106). In vivo, NOS1 performs necessary
functions for the development and survival of osteoclasts because
NOS1-lacking mice exhibited significantly reduced osteoclast
production, and in vitro, NOS1-lacking bone marrow
monocytes formed dysfunctional osteoclasts (106, 132). Also,
the synthesis of NOS2 in OCPs is induced by RANKL, and
NOS2 produces high NO concentrations that suppress
osteoclastogenesis in a cGMP-independent manner (133). A
subsequent study in vitro has shown that OCPs from NOS2-
lacking mice were prone to differentiate more easily and form
bone pits more quickly (133). Additionally, the production of
NOS2 by IL-1 and IFN-g has also been shown to inhibit the
activities of osteoclasts (134–136).

Chemokines are dynamic molecules that are released in
response to inflammatory conditions (137). They serve as a key
regulator in osteoclast formation (138). Inflammatory osteo-
disorders cause C-X-C motif chemokine ligand (CXCL)8,
CXCL9, CXCL10, and chemoattractant chemokine ligand
(CCL)20 concentrations to rise (101, 139). According to recent
research reports, CXCL8 and CCL20 seem to have a contribution
to osteoclast generation via regulating IL-6 synthesis in
primordial osteoblasts (101). Likewise, CXCL10 enhances the
secretion of RANKL and TNF-a in stimulated CD4+ T cells,
which subsequently stimulates osteoclast formation (102).
Mutually, CXCL10 synthesis in OC precursors is also induced
by RANKL (102). CXCL2, which is produced by RANKL
activation, promotes the procreation of OC progenitors by
activating ERK (100). Osteoblast-derived CX3C chemokine
ligand (CX3CL)1 enhances osteoclastogenesis by causing OC
precursors to adhere to the site of bone resorption (100). CCL4 is
a key regulator of OC motility through the promotion of PI3K
activity, according to recent findings (103). In addition, CCL2
(MIP-1), CCL5 (RANTES), CCL7 (MCP-3), and CXCL12 (SDF-
1) can also promote motility, adherence, absorption, and
survivability of OC (140, 141).

M2 Polarization and Osteoclasts
M2 macrophages are mostly found during the descending stages
of infection and they secrete anti-inflammatory factors, e.g., IL-
10 (39, 54). In addition, M2 macrophages can generate several
osteogenic growth factors, such as BMP-2, TGF-b1 (57), OPN
(58), and 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) (59).
Through these factors, M2 macrophages further exert their
influence on osteoblasts (Table 2).

As a founding member of the IL-10 cytokine family, IL-10
demonstrates immune suppressive properties in a wide spectrum.
In addition to the IL-10 molecule, this cytokine community
includes the IL-20 subfamily system (IL-19, IL-20, IL-22, IL-24)
as well as the more genetically distinct IFN family (IL-28A,
December 2021 | Volume 12 | Article 778078
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IL-28B, IL-29) (147, 148, 166). IL-10 is produced by a
subpopulation of Th2 cells and possesses the ability to inhibit
secretions by Th1 cells (149). Therefore, IL-10 was originally
labeled as a secretory cytokine synthesis inhibitory factor (CSIF)
(149). As research progresses, various immune cells, such as
macrophages, DCs, mast cells, eosinophils, neutrophils, natural
killer cells, CD4+ and CD8+ T cells, have been found to secrete IL-
10. All of these cells are derived from the innate and acquired
immune systems (150, 166). IL-10 has been demonstrated in some
trials to prevent osteoclast formation (142, 143). Actually, through
interference with NFATc1 activation and nuclear translocation,
IL-10 is a robust osteoclastogenesis inhibitor (144). OPG synthesis
is upregulated by IL-10, while RANKL andM-CSF expressions are
downregulated (145). IL-10 suppresses osteoclastic activity by
blocking the generation of pro-osteoclast factors, like IL-1, IL-6
and TNF-a (146). Therefore, IL-10 can be classified as an anti-
osteoclastogenic cytokine.

BMP-2 is a member of the BMP family of proteins, and also
belongs to the TGF cytokine superfamily (151). M2 macrophages
are the main secretors of BMP-2 compared to M0- and
M1-type macrophages. Previous studies have shown that
BMP-2 becomes a potent inducer of bone remodeling by
directly regulating osteoclast differentiation and osteoblast
activity. Specifically, by regulating the synthesis of RANKL and
M-CSF, BMP-2 organizes osteoclast differentiation and manages
osteoclast survival, maturation, and activation (167–171). The
significance of BMP-2-induced phosphatidylinositol 3-kinase
and its downstream target AKT kinase has been identified in
BMP-2-involved osteoblast maturation, and M-CSF secretion
from osteoblasts to promote osteoclastogenesis (170, 172).
In addition, through a self-regulatory circuit including Smad/
Akt/Ca2+ signaling pathway, BMP-2 can also activate the
NFATc1 transcription factor (173). NFATc1 promotes
osteoclast differentiation through transcriptional activation of
RANKL, which in turn stimulates the production of NFATc1
(174–176). It can be seen that BMP-2 performs a key function in
the formation, development, and activation of osteoclasts.

TGF-b1, which is required for skeletal metabolism,
can be synthesized by macrophages. The osteoclastogenic
transcription factor, NF-kB, which is made up of proteins
like p65, is part of the RANKL-RANK signaling pathway (177)
and the main downstream controller of this pathway is
NFATc1 (178). TGF-b1 has been demonstrated to limit the
production and matrix degradation of osteoclast by directly
inhibiting the expression of NFATc1 via obstruction p65 in the
receptor activator (152).
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OPN is a highly phosphorylated glycophosphoprotein with
acidic properties and a high aspartic acid content (153). As a
versatile factor, OPN is involved in the processes of
inflammation, biomineralization, cell viability, and wound
healing, as well as cardiovascular disease, cancer, diabetes, and
renal calculus formation (153). OPN is secreted from osteoblasts
and osteoclasts in osteoid (153). Research activities on mice with
OPN genes knocked out show that the volume and length of the
ruffled margins on the osteoclasts were several folds lower
implying poorer resorptive potentials (154). In RA, OPN
expressions can be aided by many factors in synovial tissues,
and OPN is an active factor in the recruitment of osteoclasts
(155) by acting as a coupling agent of osteoclasts to bones (156).
Moreover, OPN affects organisms by modulating osteoclast
activity and altering CD44 receptors, as well as through the
secretion levels of cytokines, like IL-10, IL-12, IL–3, IFN-g,
integrin vB3, NF-kB (153). Furthermore, OPN, which is one of
the most firmly coupled non-collagen proteins, is thought to aid
in the adhesion of osteoclasts to the surface bones (156, 157). In
summary, during the biomineralization stage, OPN has three key
functions, namely: regulation of osseous cell attachment,
regulation of osteoclastic activity, and regulation of
matrix calcification.

The active form of vitamin D, i.e., 1,25-dihydroxyvitamin D3

(also called calcitriol), is a steroid molecule that balances calcium
and bone metabolism, regulates cell proliferation and
differentiation, and exerts immunoregulatory functions (179).
Some research reports have shown that calcitriol possesses
the ability to suppress osteoclastogenesis, while also
promoting osteogenic differentiation (158, 159). In fact, 1,25-
dihydroxyvitamin D3 can inhibit osteoclast differentiation by
downregulating PAR2 mRNA expression which contributes to
the determination of cells of osteoclast lineages (160).
Furthermore, findings have uncovered the interactions between
the BMP-Smad1 and IkB-NF-kB pathways in the process of
osteoclast formation (161). Through the BMP-Smad1 and IkB-
NF-kB pathways, 1,25-dihydroxyvitamin D3 can also influence
osteoclast lineage commitment (161). Calcitriol suppresses
osteoclastogenesis by altering the quantity and function of Th
cell subgroups (Th2/Th17) under an inflammatory condition
(162). However, there are also reports indicating the promoting
role of 1,25-dihydroxyvitamin D3 in osteoclastogenesis. For
example, applying high doses of calcitriol to congenital
osteoporosis promotes the production of osteoclasts and
generates certain effects (163). In addition, genetic effects of
1,25-dihydroxyvitamin D3 are exerted by its coupling of vitamin
December 2021 | Volume 12 | Article 778078
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TABLE 2 | Summary of the effects of cytokines produced by M2 macrophage on osteoclasts.

Cytokine Action Reference

IL-10 Inhibits OC formation; reduces OC activity; upregulates OPG and downregulates RANKL, M-CSF; blocks the production of pro-
osteoclast factors, like IL-1, IL-6, and TNF-a

(142–146

BMP-2 Promotes OC formation, differentiation, activity, and survival; regulates RANKL and M-CSF production (142–151
TGF-b1 Inhibits NFATc1 expression and suppresses OC generation, and activity (152)
OPN Increases OC attachment; improves OC activity; regulates matrix calcification and cytokines, like IL-10, IL-12, IFN-g (153–157
1,25-dihydroxy
vitamin D3

Inconsistent effect on osteoclasts; inhibits OC formation and differentiation mostly, but promotes osteogenesis sometimes (158–165
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D receptor (VDR) to VDR response elements (VDREs) in the
promoter sequences of target genes for vitamin D (164). More so,
VDREs include genes of commonly-expressed proteins, such as
RANKL, associated with adjustment of osteoclastogenesis (165).
It can be seen that the role of 1,25-dihydroxyvitamin D3 in
osteoclastogenesis needs to be further assessed.
THE RELATIONSHIP BETWEEN
SUBGROUPS OF MACROPHAGES
AND OSTEOCLASTS

Macrophages are a type of innate immune cells that may be
present in almost every tissue and exert effects on immunological
responses, wound-healing, and homeostasis (180). Macrophages
that are distributed in various tissues are called tissue-resident
macrophages. Tissue-resident macrophages were formerly
thought of as differentiated monocytes that seeded the tissues
and performed immunological sentinel and homeostatic
activities as well as other tasks (181). However, these
macrophages are not all the same, but rather a collection of
cells that share a common set of functions and characteristics
(181). In the next section, we will discuss the relationship
between osteoclasts and subgroups of macrophages, mainly
tissue macrophages.

Osteal Macrophages and Osteoclasts
Osteal macrophages, a subgroup of bone-resident macrophages,
are found right next to osteoblasts, where they govern bone
production and play a variety of roles in the homeostasis of the
skeleton (182). It is known that osteal macrophages can support
the function of osteoblasts and promote bone anabolism, but the
relationship between osteal macrophages and osteoclasts is still
unclear. Myeloid progenitor cells give rise to osteoclasts and
osteal macrophages (183), yet research findings have revealed
that osteoclast formation is the more robust or preferable access
for myeloid lineage differentiation (184). Although osteal
macrophages can become osteoclast under the stimulation of
RANKL and M-CSF, monocytes and other myeloid progenitors
have been discovered to be more effective OCPs (185). In
addition, osteoclasts and osteal macrophages possess unique
membrane characteristics that distinguish them from one
another. Osteal macrophages are independent of osteoclasts,
having F4/80 positivity but TRAP negativity (185). As reported
in recent studies, osteal macrophages were shown to exhibit both
typical membrane antigens of macrophage-like CD68 and more
specialized antigens, like Mac-3 and CD169 (182, 186, 187).
These findings showed that osteal macrophages are a
malleable, yet distinctive cell type with specialized roles in the
microenvironment of the bone marrow. However, osteal
macrophages can indeed influence osteoclasts. A recent study
found that osteal macrophages perform a unique part in
promoting osteoclast activity, as well as the first proof of their
participation in the pathogenesis of osteoporosis (188).
Additionally, osteal macrophages are involved in the effect of
PTH on osteoclasts (184). When stimulated by local stimuli,
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osteal macrophages tend to release pro- and anti-
osteoclastogenic factors, such as TNF-a (65, 189), IL-6 (190),
IL-1 (189, 191), or IFN-b (192, 193), regulating osteoclast
production and activity. In general, the relationship between
osteal macrophages and osteoclasts needs further exploration.

Tumor-Associated Macrophages and
Osteoclasts
The term “tumor-associated macrophages” (TAMs) refers to
macrophages that have been attracted from circulating
monocytes to tumors and have been impacted by the presence
of cancer to facilitate tumor aggressiveness and development
(194). TAMs are made up of M2 cells and a few M1 cells (195).
Research has proven that the recruited monocytes in tumor sites
are capable of being differentiated into TAMs and osteoclasts
(196). Although TAMs and osteoclasts have a similar precursor,
however, bisphosphonates have been demonstrated to precisely
target TAMs (197, 198). Notably, TAMs are also a source of
osteoclasts. According to previous studies, when exposed to cancer
cells, 1,25-(OH)2D3, and M-CSF or toM-CSF and RANKL, TAMs
have been reported to transform into functional bone-resorbing
osteoclasts (18, 199). Moreover, under different polarization states,
TAMs can release numerous cytokines, like IL-10 (200), IL-12
(201), which regulate osteoclast generation and function. In some
tumor metastasis, TAMs and osteoclasts have similar roles (202,
203). Overall, the mechanisms regarding the interaction between
TAMs and osteoclasts remain unclear and this area needs to be
further explored. CD4- macrophages have a positive effect on
osteoclast differentiation.

Synovial Macrophages and Osteoclasts
Specialized lining cells of the synovial intima, as well as
macrophages found in the synovial subintima and synovial
fluid, represent synovial macrophages (204). Similar to
monocyte macrophages in other organs, they are produced
from a common bone marrow progenitor and show some
functional and biological properties (205). The most
distinguishing characteristic of these cells is their proclivity for
phagocytosis. However, they also perform a variety of other
functions, including the initiation and modulation of hormones
and cellular immunity, as well as the generation and discharge of
a great number of secretory substances (205). A study has proven
that synovial macrophages can develop into mature osteoclasts
with lacunar resorption capabilities, but this process requires
TNF-a/IL-1 or M-CSF along with RANKL (27). Because
inflammatory synovial fluids have an increased number of
macrophages and higher concentrations of RANKL, TNF-a,
and IL-1, synovial macrophages in rheumatoid or crystal
arthritis have a stronger potential to generate osteoclasts.
Furthermore, a study has shown that OCPs in the synovium
are monocytes/macrophages that express the CD14 antigen
(206). In RA and inflammatory OA, CD14- macrophages have
a positive effect on osteoclast differentiation of CD14+

macrophages (206). Overall, the exploration of the relationship
between synovial macrophages and osteoclasts will help
researchers better understand the therapy and pathogenesis of
diseases, such as OA and RA.
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Other Macrophage Subgroups and
Osteoclasts
In addition to traditionally activatedM1macrophages, researchers
recently found that human atherosclerotic plaques contain
macrophages that express the mannose receptor (MR), an
alternative macrophage identifier, implying that plaque
macrophage populations are heterogeneous (207). This specific
type of M2 macrophage, being positive for both CD68 and MRs,
can develop into osteoclast-like cells (OLCs) and have a poor
display of RANKL-stimulated osteoclastic bone resorption (208,
209). Osteoclasts and microglia are separate tissue-resident
macrophages found in the bone and brain where they cause
pathological alterations of osteoporosis and Alzheimer’s disease
(AD), respectively (210). Both of them share critical signaling
pathways, including three receptor signaling pathways, namely:
TREM2/DAP12, M-CSF, and CCR5, which converge to control
actin-microtubule dynamics and cytoskeleton architecture via the
Pyk2 signaling pathway (210). Research has shown that AD
patients are more prone to develop osteoporosis than the
general population (210). Alveolar macrophages and osteoclasts
have certain similarities, and therefore bisphosphonates can
inhibit both cell types. A study has further shown that
alendronate suppresses macrophage migratory and phagocytotic
functions, as well as the inflammatory sensitivity of alveolar
macrophages by blocking NF-kB signaling pathway (211).
Albeit, alendronate inhalation ameliorates elastase-induced
pulmonary emphysema by inducing apoptosis of alveolar
macrophages (211). In addition, a case has been reported in
which alveolar macrophages can be transformed into osteoclasts
(212). In addition to the above cells, epithelioid and foam cells also
exhibit certain associations with osteoclasts (213, 214).
CONCLUSION AND FUTURE
PERSPECTIVES

Macrophages and osteoclasts have always been a hot and difficult
area of research in osteoimmunity. Previous studies tended to
focus on a certain type of cell and seldom summarize the latest
updates on the interconnection between these two myeloid
origin cells for the field of osteoimmunology. However, in this
paper, we have outlined present knowledge on the relationships
between macrophages and osteoclasts, including their common
origin, regulation during polarization, and subgroups’
interactions. Be that as it may, the study of these two cellular
associations still has many aspects that need to be further
explored, and perplexing difficulties still remain. Notably,
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current studies tend to focus on the unidirectional effect of
macrophages on osteoclasts during polarization at the expense
of the effect of osteoclasts on macrophages. Actually, osteoclasts
can be involved in the production of various cytokines, which
act on macrophages. Here, we hypothesize that there are
interactions among macrophages, osteoclasts, and osteoblasts
to maintain bone homeostasis. Therefore, we believe that the
imbalance between these cells in disease states and its specific
mechanisms will be a new field for further exploration.
Additionally, as a member of the mononuclear macrophage
system (215), osteoclasts are considered as the resident
macrophages in bone (182) and play a phagocytic role similar
to that of macrophages. The similarities and differences between
the two types of cells in performing phagocytosis are also an
aspect worth investigating. A recent study reveals that besides
apoptosis, RANKL-stimulated osteoclasts have an alternative cell
fate in which they undergo fission into daughter cells called
osteomorphs, once resorption is complete (216). Osteoclasts
recycle via osteomorphs during RANKL-stimulated bone
resorption (216). As an unexplored therapeutic target, the
interaction of osteomorphs with macrophages will also be a
new area of research.

The ultimate objective of practically all biomedical
exploration is to improve patient outcomes and develop novel
medicines, and renewed efforts in osteoimmunity will be
important in accomplishing this translational goal. Currently,
most therapies for bone-related diseases primarily focus on one
specific cell type, but lack definite approaches aiming at the
connections among cells in the bone microenvironment. Thus,
the pharmaceutical targets in terminating the pathological
association of macrophages with osteoclasts in disease states
could become a noteworthy concern in the nearest future.
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