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Abstract: The oxygen and nutrient-deprived tumor microenvironment is considered a key mechanism
responsible for cancer resistance to chemotherapy. Methotrexate (MTX) is a widely incorporated
chemotherapeutic agent employed in the treatment of several malignancies. However, drug resistance
and systemic toxicity limit the curative effect in most cases. The present work aimed to design,
synthesize, and biologically evaluate a novel glucose-methotrexate conjugate (Glu-MTX). Our study
showed that Glu-MTX exerts an increased cytotoxic effect on cancer cells in comparison to MTX in
hypoxia (1% O2) and glucose starvation conditions. Furthermore, Glu-MTX was found to inhibit the
proliferation and migration of cancer cells more effectively than MTX does. Our results demonstrate
that the conjugation of MTX to glucose led to an increase in potency against malignant cells under
oxygen and nutrient stress. The observations shed light on a potential therapeutic approach to
overcome chemoresistance in cancer.
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1. Introduction

Chemotherapy is the leading treatment modality in oncological care and is commonly
applied in combination with surgery or radiotherapy, depending on tumor advancement.
During cancer progression, the tumor increases in size and triggers a series of events,
including hypoxia and a nutrient-deficient environment [1]. These responses arise from
the increase in oxygen and nutrient consumption due to significant growth of malignant
proliferation, as well as an inadequate supply of substrates to the cells due to the formation
of an irregular tumor microvasculature with leaky vessels [2]. An oxygen- and nutrient-
deprived tumor microenvironment is considered a key mechanism responsible for cancer
resistance to current treatment modalities, including chemotherapy, radiotherapy, and
photodynamic therapy [3]. The critical role of hypoxia in chemotherapy resistance is well-
documented and involves several pathways, predominantly the upregulation of hypoxia-
inducible factor-1α (HIF-1α). The HIF-1α mediates the angiogenesis, invasion, metastasis
of malignant cells; induces glucose transporters (GLUT) to increase glucose import; and
contributes to chemotherapy resistance by enhancing the expression of membrane efflux
pump P-glycoprotein (P-gp), which identifies chemotherapeutic drugs and removes them
from cells [4]. These events are among the primary contributors to multidrug resistance,
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which often results in cancer relapse and higher mortality [5]. Thus, breaking hypoxia-
induced drug resistance is necessary to elevate the efficacy of cancer chemotherapy and
increase the patient’s lifespan.

To survive in an oxygen- and nutrient-deprived environment and address the energy
demands resulting from rapid proliferation, tumor cells significantly increase glucose
uptake and the flux of metabolites through glycolysis [6]. This metabolic shift, termed “the
Warburg effect”, is one of cancer’s most common traits and provides clinically corroborated
strategies for cancer diagnostics and treatment.

Chemotherapy is the leading treatment modality in oncological care and is commonly
applied in combination with surgery or radiotherapy, depending on tumor advancement.
The modification of biologically active compounds with polymers is one way to alter and
control their pharmacokinetics, biodistribution, and often toxicity [7]. The primary under-
lying mechanism proposed for nanomedicine-based cancer therapy is passive targeting
associated with enhanced permeability and retention [8]. To be most effective, anticancer
drugs must penetrate tissue efficiently, reaching all the cancer cells that comprise the target
population in a concentration sufficient to exert a therapeutic effect. The therapeutic effect
of conjugates of biologically active compounds with polymers is reduced because of limited
penetration [9].

Based on the overexpression of specific receptors on tumor cells, ligand-targeted drug
delivery has been developed with the ability to efficiently deliver imaging agents in the
tumor area or drugs into tumor cells via receptor-mediated endocytosis [10]. As mentioned
above, elevated glucose intake and GLUT overexpression frequently occur in neoplasms
and provide clinically corroborated strategies for cancer treatment [11–13]. Therefore,
glycoconjugation, in which known cytotoxins or targeted anticancer therapeutics have
been linked to glucose to improve cancer targeting and cellular selectivity, has become an
appealing strategy for the targeted delivery of anticancer drugs [14,15]. These strategies
employ the use of conjugates of D-glucose and bioactive molecule methotrexate (MTX) to
improve efficacy and lower toxicity. MTX has been successfully used for many years in the
treatment of patients with cancer and as an anti-inflammatory drug for the treatment of
inflammatory diseases, such as rheumatoid arthritis.

There are many novel delivery systems that have been developed to improve the
pitfalls of MTX therapy, ranging from polymeric conjugates, such as human serum albumin,
liposomes, microspheres, solid lipid nanoparticles, polymeric nanoparticles, dendrimers,
polymeric micelles, in situ forming hydrogels, and carrier erythrocyte, to nanotechnology-
based vehicles such as carbon nanotubes, magnetic nanoparticles, and gold nanoparticles.
Some of them are further modified with targeting ligands for active targeting purposes [16].
The pharmacokinetic properties of MTX polymeric conjugates are unsatisfactory because
of their low penetration into cancer cells.

In the present work, we designed, synthesized, and biologically evaluated a novel
glucose-methotrexate conjugate (Glu-MTX). Here, we investigated whether Glu-MTX
could overcome MTX chemoresistance in oxygen and glucose-deprived cancer cells and the
relative molecular mechanisms. This research aimed to assess the possibility of overcoming
tumor microenvironment-induced drug resistance by conjugating a chemotherapeutic
agent to glucose.

2. Results
2.1. Chemistry

When designing the synthesis of glycoconjugate derivatives of MTX, the following
assumptions were made: glycoconjugate is selectively transferred to the cancer cell by
GLUT proteins responsible for the transfer of D-glucose to tumor cells. To increase the
water solubility of the prodrug and increase the affinity for GLUT transmembrane proteins,
the conjugate contains two sugar units. The designed construct contains D-glucose linked
via a linker to MTX. The key bonds connecting both molecules are susceptible to the action
of hydrolytic enzymes, which allows the release of MTX, D-glucose, and the linker in the
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cell. D-glucose is connected to the linker via a β-glycosidic bond that is susceptible to
hydrolysis catalyzed by glycoside hydrolases. On the other hand, MTX is connected to the
linker by a carbamate bond formed with the participation of amino groups. The cleavable
linkage allows the release of the cytotoxic payload inside the malignant cells, possibly
through enzymatic hydrolysis. The critical step of connecting the D-glucose derivative to
MTX is accomplished in the 1,3-dipolar cycloaddition of the azide to a terminal alkyne
bond in a variant developed by Sharpless [17], which is a method widely used in the
synthesis of biologically active compounds [18].

The ability of substituted glucose analogs to be substrates for GLUT-1 has been
investigated [19,20]. Kinetic and computational modeling studies using glucose analogs
suggest that the hydroxyl groups at positions 1 and 3 and the pyran oxygen in the D-glucose
most thermodynamically stable conformation are involved in stabilizing hydrogen bonding
interactions with amino acid residues within the transporter. The loss of hydrogen bond
acceptors at these positions makes glucose analogs poor substrates for GLUT-1. Thus, these
data suggest that for glucose conjugates to remain substrates for GLUT-1, compounds with
hydrogen bond acceptors such as nitrogen or oxygen must be retained proximal to carbons
1 and 3, and substitutions at the C1 position may retain a higher affinity for GLUT-1 if they
are present in an equatorial conformation. A large number of known glucose conjugates
are conjugated to the anticancer agent at position 1, with the C1 oxygen intact and locked
into the equatorial β-D-position [21,22].

Based on literature data, a synthesis of glycoconjugate was designed in which D-
glucose via a linker is associated with the cytotoxic compound methotrexate (Figure 1).

Figure 1. Structure of the MTX glycoconjugate (methotrexate glycoconjugate).

The sugar unit occurring in the most thermodynamically stable 4C1 conformation
is connected by the β-O-glycosyl bond with the spacer because, as is evident from the
literature studies, such an orientation is preferred by the GLUT-1 transporting protein.
The next fragment of the spacer contains the 1,2,3-triazine system because, as can be
expected from the literature studies, the introduction of a functional group capable of
hydrogen bonding increases the affinity of the compound to the transporting protein. The
methotrexate is connected to the linker by forming a carbamate bond. After the introduction
into the cell, the designed conjugate is susceptible to hydrolysis catalyzed by hydrolytic
enzymes (glucosidases, peptidases) overexpressed in cancer cells following the release of a
cytotoxic substance in the cancer target.

The coupling of two molecular components with different properties promises to
generate a new conjugate with unprecedented biological activity, as different molecular
segments can act together [23]. This perspective is a new, practically simple, and very
reliable fast-growing approach for the development of pharmaceutically important drug-
like molecules that can accelerate drug discovery research for human use. Sharpless
et al. [17] discussed the Cu(I)-catalyzed azide−alkyne 1,3-dipolar cycloaddition (“click
chemistry”), a set of powerful, selective, and reliable reactions for coupling molecular
fragments under mild reaction conditions. The option to combine bioconjugation with click
chemistry has emerged as a versatile tool with a wide range of applications. Effectively, the
1,2,3-triazole ring results in an ideal linker in bioconjugation, as (a) it presents a good water
solubility, thus allowing in vivo administration; (b) it is analogous to an amide function
for its electronic properties but is resistant to hydrolysis; (c) it is sufficiently stable in
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biological systems; and, finally, (d) it is a rigid linker, which allows internal interaction
between the two linked moieties to be avoided. The unique features of click chemistry
provide a toolbox for efficient coupling methodologies for the synthesis of a variety of
conjugates [18,24]. Of the click reactions that have been developed, the most widely applied
is the copper-catalyzed azide−alkyne cycloaddition reaction (CuAAC). Considering the
advantages of this solution in our glycoconjugate synthesis project, a sugar unit containing
a terminal azide group was combined with a propargyl carbamate-derived methotrexate.
This convenient approach enables the rapid synthesis of carbohydrate conjugates in which
the heterocyclic triazole ring serves as a shackle for joining the carbohydrate moiety to
the biomolecule. When we move toward carbohydrate chemistry, the sugar moiety can be
easily furnished with an azide functionality with routine synthetic protocols [25,26]. One of
the substrates in the synthesis of glycoconjugate was the 2-azidoethyl β-D-glucopyranoside
1. It was obtained as β-glucoside in a coupling reaction between 2-bromoethanol and
1,2,3,4,6-penta-O-acetyl-β-D-glucose in the presence of boron trifluoride diethyl etherate
(BF3·Et2O) as a catalyst [26]. An azido function was introduced via the SN2 displacement
of the bromine, using sodium azide in N,N-dimethylformamide (DMF) [25]. The last step
was deprotection of the O-acetyl-protected glucoside under Zemplén conditions by the use
of sodium methoxide in MeOH [25,27].

The second intermediate substrate is a derivative of methotrexate bearing a terminal
acetylenic group. This synthesis was much more challenging. Such a group can be attached
to methotrexate via an amide or a carbamate bond. Methotrexate is an unstable compound
that is practically insoluble in organic solvents applied in the amidation reaction. A more
convenient way to prepare amides could be the direct condensation of carboxylic acids and
amines. Nevertheless, it is known that such an “ideal” amidation process needs very harsh
conditions (temperature above 100 ◦C) to circumvent unreactive carboxylate-ammonium
salts formation toward the desired amide bond formation [28]. This is adverse because
other sensitive functionalities are present within coupled compounds. Therefore, the
activation of carboxylic acid seems to be necessary [28]. The results of the conducted
experiments associated with the selection of activation conditions are presented in Table 1.

Table 1. Adjusting the condensation reaction conditions.

Procedure Substrate 1 Substrate 2 Reagents Solvent Reaction
Time [h] Yield [%]

A MTX Propiolic acid
DCC DMF

48
traces

DCC/DMAP DMF 12
DCC/DMAP DMF/CH2Cl2 18

B MTX Propargyl
chloroformate

Pyridine

DMF/CH2Cl2 24

22
Triethylamine

inseparable
reaction mixture

DMAP
Imidazole

C MTX Propargyl
chloroformate

N-
Methylimidazole

CHCl3

24

-
THF 8

CH3CN 4
DMF/CH2Cl2 21

CH2Cl2 32

NMI/Hünigs base CH2Cl2 42

There are numerous commercially available coupling reagents for constructing an
amide bond, including carbodiimides alone or plus additives such as HOBt or DMAP [29].
The carbodiimide reacts with the carboxylic acid to form O-acylisourea mixed anhy-
dride, which can react directly with an amine to yield the desired amide. We applied
the DCC/DMAP condensing system for coupling propiolic acid with methotrexate. The
reaction was carried out at room temperature for 48 h in different solvents. Unfortunately,
the complex reaction mixture was formed, and the desired product was isolated in a poor
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yield. The low yield of the desired product induced us to search for another method of
MTX functionalization. The reaction of acyl halides with an amino group is, in principle,
the simplest approach to amide bond synthesis. Propargyl acid chlorides are unstable, and
we choose the commercially available propargyl chloroformate. Such a reaction requires
the presence of a tertiary amine in the reaction medium. A range of tertiary amines was
tested; however, the reaction of MTX with propargyl chloroformate in the presence of a
variety of organic bases such as pyridine, Et3N, DMAP, and imidazole in several different
solvents gave MTX derivatives in very low yields. The treatment of methotrexate with
two equivalents of propargyl chloroformate and tertiary amine in DMF/CH2Cl2 at room
temperature gave the mixed anhydrides [29], which were condensed with amine groups of
MTX, and an inseparable reaction mixture was obtained. An extremely effective acylating
agent, 1-carboxybenzyl 3-ethylimidazol triethyloxonium tetrafluoroborate, was applied in
the synthesis of nucleoside carbamates [30]. Assuming that an analogous acylating agent
can be formed in a reaction of propargyl chloroformate 2 and N-methylimidazole, this
compound was selected in subsequent reactions. When N-methylimidazole (NMI) was
used, the yield of the desired carbamate derivative of MTX 4 was significantly improved
depending on the solvent (DMF, CH2Cl2, CH3CN, THF, CHCl3). The optimal yield of 4
was obtained in the reaction with four molar equivalents of compound 2 in the presence
of eight molar equivalents of NMI and tertiary amine (N,N-diisopropylethylamine) in
methylene chloride, which was carried out for 24 h at room temperature (Scheme 1).

Scheme 1. Functionalization of methotrexate.

The structure of the obtained product 4 was elucidated by 1H and 13C NMR data.
This product was assigned as the propargyl carbamate. According to 13C NMR spectra,
the acetylene carbon (77.73, 78.47 ppm) and carbamate carbon signals (165.61 ppm) were
still present, indicating that the acylation of amines took place. This compound has been
used as a scaffold for the synthesis of multivalent carbohydrate conjugates (Scheme 2).

Methotrexate intermediate derivative 4 is an unstable compound that is practically
insoluble in water and typical solvents applied in the copper-catalyzed azide−alkyne cy-
cloaddition reaction (CuAAC) [17,18,24]. For this reason, a series of experiments adjusting
the CuAAC reaction conditions were performed (Table 2).
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Scheme 2. Synthesis of glycoconjugate Glu-MTX.

Table 2. Adjusting the CuAAC reaction conditions (copper catalyzed azido-alkyne cycloaddition).

Procedure Substrate 1 Substrate 2 Catalyst Solvent Reaction Time [h] Yield [%]

A 1 4 NaAsc/CuSO4·5H2O THF/i-PrOH/H2O 24 11

B 1 4 NaAsc/CuSO4·5H2O THF/i-PrOH/H2O
NaOH 24 43

C 1 4 NaAsc/CuSO4·5H2O THF/i-PrOH/H2O
Hünig’s base 24 77

The conventional Cu(I)-catalyzed coupling of 4 with glucosyl azide 1 afforded the
desired product in low yields (11%). The low yield of glycoconjugate induced us to search
for a better procedure of conjugation. As it turned out, copper(I)-catalyzed cycloaddition
exclusively transformed substrates into the 1,2,3-triazole conjugate with the best yield
(77%) by the treatment of sugar azide 1 with a solution of MTX carbamate 4 in the mixture
of THF/i-PrOH/H2O with the addition of N,N-diisopropylethylamine under sonification
(Scheme 2).

Glycoconjugate 5 was purified by column chromatography, and its structure was
elucidated by 1H and 13C NMR data and mass spectrometry analysis. The NMR analyses
were in full agreement with the expected structure (see the Supporting Information). 1H
NMR and coupling constants unambiguously confirmed β-configurations at the anomeric
centers of the pyranose units. The remarkably well-resolved NMR peaks indicated that the
glycoconjugate exhibited only marginal aggregation behavior in the DMSO solution.

Additionally, we have performed a mass spectrometry analysis, which indicated that
within 4 h after the administration of the conjugate to the culture medium, the compound
did not undergo degradation and entered the cells and released the cytotoxic payload
(MTX) (Figure S1). However, we did not find other high molecular weight products (such
as triazole or the linker) in the intracellular compartment, which suggests that the sugar
moiety of the conjugate is quickly degraded after the internalization of the compound.
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2.2. Biology Experiments
2.2.1. Glu-MTX Compared to MTX Exerted More Potent Cytotoxic Activity on MCF-7 and
SW480 Cancer Cell Lines in Hypoxia and Glucose-Deprived Microenvironment

To investigate the effect of hypoxia on the MTX chemotherapy sensitivity, MCF-7
and SW480 cells in a controlled normoxia environment and a controlled hypoxia environ-
ment were relatively exposed to the various concentrations of MTX (5~20 µM) for 48 h.
Compared with MCF-7/normoxia, the cell viability (%) in MCF-7/hypoxia decreases by
30% at the MTX dosage of 20 µM (Figure 2A). The same was observed for SW480 cells,
where the viability (%) in normoxic cells was 29% lower than in hypoxic cells (Figure 2B).
These findings indicate that hypoxia induces MTX chemoresistance. To investigate whether
glucose and methotrexate conjugation could overcome hypoxia-induced drug resistance,
we treated MCF-7 and SW480 cells in a controlled hypoxia environment with Glu-MTX
for 48 h. Glu-MTX exerted a significantly stronger cytotoxic effect compared to MTX in
hypoxic conditions. The IC50 of Glu-MTX was ~10 µM in both cell lines (Figure 2A,B).
Compared to MTX, Glu-MTX at a dose of 20 µM exerted a 2.3 times greater cytotoxic effect
on cancer cells in a hypoxic microenvironment.

To assess the effect of Glu-MTX in glucose-deprived cells, which were slightly more
resistant to MTX than regular cells, we treated MCF-7 and SW480 cells in a controlled
glucose-deprived environment with MTX and Glu-MTX for 48 h. The effect of glucose
starvation on the MTX chemotherapy sensitivity was assessed in MCF-7 and SW480 cells
in a controlled glucose-rich environment and controlled glucose-deprived environment.
The cells were exposed to various concentrations of MTX (5~20 µM) for 48 h. Compared
with MCF-7 cultured with glucose medium, the cell viability (%) of MCF-7 without glucose
decreases by 17% at the Glu-MTX dosage of 20 µM (Figure 2C), whereas in SW480 cells,
the viability (%) in glucose-rich cells was nearly 24% higher than in glucose-deprived cells
at the Glu-MTX dosage of 20 µM (Figure 2D). These findings prove that glucose starvation
affects the susceptibility of cancer cells to Glu-MTX and indicate the greater efficacy of
Glu-MTX compared to MTX in glucose-deprived conditions.

To examine the effect of Glu-MTX in the tumor microenvironment, which comprises
hypoxia and glucose-deprived medium, we treated MCF-7 and SW480 cells in the con-
trolled hypoxia and glucose-deprived environment with MTX and Glu-MTX for 48 h. Both
cancer cell lines were resistant to MTX (cell viability 74% for MCF-7 and 80% for SW480)
even at a high dose of 20 µM, whereas, at the same dose, the cytotoxic effect of Glu-MTX
was significantly higher (cell viability 33% for MCF-7 and 23% for SW480). The IC50 of
Glu-MTX in the tumor microenvironment was in the range of 4~4.5 µM for both cell lines
(Figure 2E).

2.2.2. Glu-MTX Inhibits the Wound Healing Process

Since the hypoxic breast and colon cancer cells could have altered migration behavior
in response to different cytotoxic agents, we furthermore examined the effect of MTX and
Glu-MTX on these parameters using in vitro wound-healing assay. The assay examines the
migration of cells by evaluating the closure of a standard scratch in time. In both cancer
cell lines, we found that Glu-MTX-treated cells had significantly slower migration than
MTX-treated cells. At 48 h, the wound was unclosed in Glu-MTX-treated cells, whereas in
MTX-treated cells, the gap was considerably smaller (Figure 3A,B).

2.2.3. Glu-MTX Induces Apoptosis by Increasing the Expression of Caspase-3 and Bax

The expression of proapoptotic proteins—caspase 3 and Bax in SW480/hypoxia cells—
was analyzed by immunocytochemistry (Figure 4). We detected high levels of proapoptotic
proteins (bax and caspase-3) in cells treated with Glu-MTX and MTX compared to the
control. The intensity and percentage positivity of staining were similar or slightly elevated
in Glu-MTX-treated cells compared to in MTX-treated cells.
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Figure 2. Results of cell viability after 48 h of incubation with 0, 5, 10, 20 µM of MTX and Glu-MTX evaluated by MTT
assay. (A) Dose-dependency curves for MCF-7 cells in normoxic (21% of oxygen, 5% CO2) and hypoxic (1% of oxygen,
5% CO2) conditions. (B) Dose-dependency curves for SW480 cells in normoxic (21% of oxygen, 5% CO2) and hypoxic
(1% of oxygen, 5% CO2) conditions. (C) Dose-dependency curves for MCF-7 cells cultured in medium with glucose (G+)
and glucose-free medium (G−). (D) Dose-dependency curves for SW480 cells cultured in medium with glucose (G+)
and glucose-free medium (G−). (E) Dose-dependency curves for MCF-7 and SW480 cells in normal culture conditions
(21% of oxygen, 5% CO2, G+) and in hypoxic (1% of oxygen, 5% CO2) with glucose starvation conditions (G−). Data are
expressed as mean± SD from triplicates. * p < 0.05, ** p < 0.01, comparing Glu-MTX with MTX in hypoxia and/or glucose
starvation conditions.

The flow cytometry analysis results are shown in Figure 5. The flow cytometry analysis
results are shown in Figure 5. In comparison to the SW80 cells treated with MTX, Glu-MTX
in hypoxic conditions presents increased late apoptosis after the proposed treatment. We
have observed increased effectiveness of early and late apoptosis induction in almost 25%
of cells after treatment with Glu-MTX (44%) in comparison to free MTX (19%). Control
cells and MTX-treated cells demonstrate a similar rate of apoptosis induction and reveal
decreased MTX potency in hypoxia.
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Figure 3. Wound-healing assay at time point 0 and after 48 h of incubation with 10 µM of MTX and
Glu-MTX. Results show that after 48 h, the scrap in control cells is fully coated by cells, whereas in
MTX-treated samples, the scrap is smaller compared to samples incubated with Glu-MTX, where no
migration of cells is observed. (A) Representative images of SW480 cells. (B) Representative images
of MCF-7 cells. 10× objectives were used to capture the photographs.

Figure 4. Representative images of the immunocytochemical analysis of bax, bcl-2, and caspase 3 apoptosis-related proteins
in the SW480 cell line in control, treated with 10 µM of MTX and Glu-MTX samples after 48 h. 20× and 40× objectives were
used to capture the photographs.
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Figure 5. Results demonstrate representative images of flow cytometry analysis of viable (LL-lower left), early (LR-lower
right), late (UR-upper right) apoptotic, and dead (UL-upper left) MCF-7 cells after incubation with 10 µM of MTX and
Glu-MTX for 48 h in the tumor microenvironment in comparison to the control group without any treatment. All the
samples were prepared using an Annexin V-FITC and PI Apoptosis Detection Kit (Abcam) and analyzed using a FACS
Calibur flow cytometer (Beckton Dickinson, NJ, USA).

3. Discussion

Cancer cells’ ability to evade or to handle the presence of chemotherapeutic agents is
a fundamental challenge that oncology research aims to elucidate and overcome. Chemore-
sistance and malignant progression are closely linked with the tumor microenvironment,
contributing to tumors’ response to different therapeutic modalities [31,32]. The cancer
microenvironment comprises many components, including extracellular matrix proteins,
cancer-associated cells, and an aberrant vasculature. These physical elements give rise
to the distinctive environmental properties of hypoxia and nutrient stress that inhibit the
effect of cancer treatments [32]. The undesirable impact of hypoxia on malignancies relative
to radio- and chemotherapy effectiveness has been established for several decades, and
the survival rate of cancer patients with severely hypoxic tumors is shorter than that of
patients with normoxic tumors [33].

Our study used a controlled hypoxia condition to assess the effectiveness of methotrex-
ate on breast and colon cancer cells. We found that hypoxic cells were significantly more
resistant to methotrexate than normoxic cells. These findings are consistent with previously
published studies that found that hypoxia increased the resistance to methotrexate in
various cancer types, including breast cancer, melanoma, and leukemia [34–36]. A study
by Li et al. indicated that the HIF-1α-mediated pathway played a critical role in the
susceptibility of MCF-7 breast cancer cells to methotrexate [34]. Due to the increasing
evidence suggesting the role of nutrient stress, particularly glucose deprivation, in tumor
cell survival, angiogenesis, and drug resistance, we assessed the effectiveness of methotrex-
ate on glucose-deprived cancer cells [37–39]. We found that glucose-deficient cells were
marginally less susceptible to methotrexate than regular cells.

We hypothesized that the linking of methotrexate to glucose could overcome the
hypoxia- and/or nutrient stress-induced chemoresistance. The novel glycoconjugate of
glucose and methotrexate exerted a strong and dose-dependent cytotoxic effect on hypoxic
breast and colon cancer cells, which was nearly nine-fold more potent than MTX. Similarly,
in a controlled glucose-deficient state, Glu-MTX displayed up to a three-fold enhanced
cytotoxic effect in both cancer cell lines compared to MTX. As cancer cells consume glucose
rampantly and given that glycolysis generates energy inefficiently, we hypothesize that Glu-
MTX treatment under glucose starvation resulted in the potentiated cellular accumulation
of the drug and thus resulted in an enhancement of cytotoxicity in tumor cells.

We cannot unequivocally state that the conjugate enters the cell specifically via the
GLUT 1 transporter; however, given that the glycoconjugates are highly hydrophilic, they
are unlikely to be internalized via passive diffusion through the lipid cell membrane.
The accumulating evidence suggests that the cellular uptake of glycoconjugates must
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be mediated by transmembrane transporters. GLUTs are the most frequent transporters
facilitating the recognition and internalization of glycoconjugates. However, we must
emphasize that the transport capability of GLUTs can be slightly influenced by complex
factors, such as the structure and the substitution position of the carbohydrate, the length
and steric hindrance of linkers, and the property of the payload. The past evidence suggests
that the cellular uptake of some glycoconjugates is not mediated solely by GLUT but also by
other receptors such as OCT2 [40]. Moreover, the potential role of other transporters such
as SGLT, SWEET, and ASGPR (asialoglycoprotein receptor) should also be considered [41].

In the present study, we found an intriguing fact that in the tumor microenvironment,
comprising hypoxia and glucose deprivation, MTX did not exert a cytotoxic effect on cancer
cells. However, the conjugation of glucose to methotrexate allowed us to overcome the
resistance and to achieve a potent, dose-dependent anticancer effect. Moreover, our studies
revealed that the Glu-MTX inhibited hypoxic cells’ cell migration process more effectively
than MTX did. The results confirmed that Glu-MTX-treated cells expressed high levels of
antiapoptotic proteins and underwent apoptosis.

Mounting evidence suggests that the expression of GLUTs is upregulated in many
cancers under hypoxia and nutrient stress by key pro-survival pathways, including the
HIF and AMP-activated protein kinase (AMPK) pathways [42,43]. This may explain our
findings that Glu-MTX was significantly more potent in a hypoxic and/or glucose-deprived
environment than MTX.

4. Materials and Methods
4.1. Chemistry

NMR spectra were recorded on an Agilent spectrometer 400 MHz (Agilent Technolo-
gies, Santa Clara, CA, USA) using TMS as an internal standard and CDCl3 or DMSO as a
solvent. NMR solvents were purchased from ACROS Organics (Geel, Belgium). Chemical
shifts (δ) are expressed in ppm and coupling constants (J) in Hz. Optical rotations were
measured with a JASCO 2000 polarimeter (JASCO Corporation, Tokyo, Japan) using a
sodium lamp (589.3 nm) at room temperature. Melting point measurements were per-
formed on a Stanford Research Systems OptiMelt (MPA 100) (Stanford Research System,
Sunnyvale, CA, USA). Electrospray-ionization mass spectrometry was performed on a
Xevo G2 Q-TOF mass spectrometer (Waters Chromatography, Etten-Leur, The Nether-
lands). Reactions were monitored by TLC on precoated plates of silica gel 60 F254 (Merck,
Darmstadt, Deutschland). TLC plates were inspected under UV light (λ = 254 nm) or
charring after spraying with 10% sulfuric acid in ethanol. Crude products were purified
using column chromatography performed on silica gel 60 (Fluka, Honeywell, NJ, USA)
developed with toluene/EtOAc and CHCl3/MeOH as solvent systems. Organic solvents
were evaporated on a rotary evaporator under diminished pressure at 40 ◦C.

All of the chemicals used in the experiments were purchased from Sigma-Aldrich
(Saint Louis, MO, USA), ACROS Organics (Geel, Belgium), and Avantor Performance
Materials Poland S.A (Gliwice, Poland) and were used without purification. Methotrexate
3, propargyl chloroformate 2, 2-bromoethanol, and D-glucose are commercially available.
1,2,3,4,6-Penta-O-acetyl-β-D-glucopyranose [44], 2-bromoethyl 2,3,4,6-tetra-O-acetyl-β-D-
glucopyranoside [26], 2-azidoethyl 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside [25], and
2-azidoethyl β-D-glucopyranoside 1 [25,27] were prepared according to the respective
published procedures.

4.1.1. Synthesis of Carbamate 4

Methotrexate 3 (227 mg, 0.5 mmol), N-methylimidazole (320 µL, 4 mmol), and N,N-
diisopropylethylamine (165 µL, 1 mmol) were sonicated for 30 min. The mixture was
cooled in ice water, and the solution of propargyl chloroformate 2 (195 µL, 2 mmol) in
methylene chloride (1 mL) was added. The reaction mixture was stirred for 24 h at ambient
temperature and then poured into ice water. The crude product was precipitated with
acetic acid, filtered, washed with water, and drying under reduced pressure left a residue
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that was column chromatographed to yield bis-propargyl carbamate 4 (130 mg, 42% yield):
m.p. 174–176 ◦C; [α]D

23 = −2 (c = 1.0, DMSO).
1H NMR (400 MHz, DMSO-d6): δ 1.85–2.16 (m, 2H, 2xCHMTX), 2.32 (m, 1H, CHMTX),

2.45 (m, 1H, CHMTX), 3.21 (s, 3H, CH3MTX), 3.52 (m, 2H, 2xCH), 3.71 (s, 2H, CH2), 4.35 (m,
1H, CHMTX), 4.62–4.72 (m, 2H, CH2), 4.80 (s, 2H, CH2MTX), 6.80–6.85 (m, 2H, H-PhMTX),
7.12 (s, 1H, NH), 7.28 (s, 1H, NH), 7.68–7.76 (m, 2H, H-PhMTX), 8.60 (m, 1H, NHMTX),
8.61 (s, 1H, H-7MTX).

13C NMR (100 MHz, DMSO-d6): δ 25.31, 29.39, 32.88, 50.89, 50.97, 51.03, 54.14, 76.93,
77.73, 78.47, 110.36, 120.41, 120.46, 128.23, 146.26, 148.39, 150.20, 152.65, 160.80, 161.99,
165.61, 165.64, 170.95, 173.01, 173.18.

4.1.2. Synthesis of Glycoconjugate 5

Carbamate 4 (62 mg, 0.1 mmol) and azidoethyl glucoside 1 (50 mg, 0.2 mmol) were
dissolved in dry i-PrOH (2 mL), THF (2 mL) and N,N-diisopropylethylamine (60 µL,
0.36 mmol). The solutions of sodium ascorbate (8 mg, 0.04 mmol) in water (1 mL) and
CuSO4·5H2O (5 mg, 0.02 mmol) in water (2 mL) were mixed and added to the reaction
mixture and next stirred for 24 h at room temperature. The reaction mixture was filtered,
the precipitate was washed with methyl alcohol, the combined filtrate was treated with
acetic acid, and the crude product was separated by filtration, then washed, dried, and
purified by column chromatography to yield glycoconjugate 5 (86 mg, 77% yield): m.p.
175–177 ◦C; [α]D

22 = −20 (c = 1.0, DMSO).
1H NMR (400 MHz, DMSO-d6): δ 1.71–2.10 (m, 2H, 2xCHMTX), 2.19–2.39 (m, 2H,

2xCHMTX), 2.96 (dd, 2H, J = 7.8 Hz, J = 8.6 Hz, H-2Glu), 3.03 (dd, 2H, J = 9.0 Hz, J = 9.4 Hz,
H4Glu), 3.09–3.55 (m, 9H, CH3MTX, H-3Glu, H-5Glu, H-6aGlu), 3.63–3.79 (m, 4H, 4xCCH),
3.68 (dd, 2H, J = 1.6 Hz, J = 11.4 Hz, H-6bGlu), 3.86–3.95 (m, 2H, 2xCH), 4.01–4.12 (m, 2H,
2xCH),4.22 (d, 2H, J = 7.8 Hz, H-1Glu), 4.29 (m, 1H, CHMTX), 4.55–4.61 (m, 4H, 2xCH2),
4.79 (bs, 2H, OH), 5.21 (s, 2H, CH2MTX), 6.80–6.87 (m, 2H, H-PhMTX), 7.66–7.72 (m, 2H,
H-PhMTX), 7.95 (d, 1H, J = 7.0 Hz, NHMTX), 8.25 (s, 2H, H-5triaz), 8.61 (s, 1H, H-7MTX).

13C NMR (100 MHz, DMSO-d6): δ 24.62, 30.33, 31.64, 48.55, 49.72, 54.87, 60.62, 61.05,
67.19, 69.99, 73.26, 76.54, 76.95, 102.87, 111.09, 121.49, 125.84, 128.62, 140.91, 146.75, 149.15,
150.83, 154.04, 163.78, 165.39, 165.56, 173.56, 174.26.

HRMS (ESI-TOF): calcd for C44H55N14O21Na2 ([M+H]+): m/z 1161.3462; found m/z
1161.3710.

4.1.3. LC/MS Analysis

UPLC analysis was performed on a Waters HSS T3 column (1.7 µm, 1 × 50 mm) using
an Acquity UPLC system (Waters, Milford, MA, USA). The mobile phase consisted of 0.1%
formic acid in water (mobile phase A) and 0.1% formic acid in methanol (mobile phase B).
A gradient elution at a flow of 200 µL/min was performed according to the following: 0.5
min—5% B, 2.5 min—35% B, 3.5 min—90% B, 4.5 min—90% B, 4.55 min—5% B. The total
run time was 6 min. The column temperature and the autosampler temperature were kept
at 45 ◦C and 5 ◦C, respectively.

Mass spectral ionization and acquisition parameters were optimized on the Xevo
G2 Q-TOF MS using electrospray ionization (ESI) in the positive ionization mode. The
spray voltage, source temperature, and desolvation temperature were set at 0.5 kV, 120
◦C, and 450 ◦C, respectively. Nitrogen was used as a desolvation and nebulizer gas. The
desolvation gas flow was set at 800 L/h, and the cone gas flow was 70 L/h. Data were
acquired using the Masslynx software (version 4.0, Waters, Milford, MA, USA).

4.2. Biology
4.2.1. Cell Culture

The cell line, human colon adenocarcinoma SW40 and human breast carcinoma MCF-
7 obtained from the Leibniz Institute DSMZ-German Collection of Microorganisms and
Cell Cultures (DSMZ, Germany), were grown in RPMI 1640 medium and supplemented
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with 10% fetal bovine serum (FBS), 100 U/mL penicillin, 100 lg/mL streptomycin in a
humidified incubator with 5% CO2 at 37 ◦C. The culture medium was renewed every 2–3
days. Cell culture media, trypsin, FBS, and antibiotics were purchased from Gibco (Thermo
Fisher Scientific Inc., Waltham, MA, USA).

4.2.2. Experiment Conditions and Cell Viability MTT Assay

Following MTT experiments, control cells were maintained in normoxia (21% O2, 5%
CO2) and cultured in a complete medium with glucose. Hypoxic conditions were achieved
by incubating cells in 1% O2, 5% CO2 incubator (New Brunswick Galaxy 48R, Eppendorf,
Hamburg, Germany) and cultured in medium without glucose (RPMI 1640, no glucose, cat.
no. 11879020).

For experiments with methotrexate and glucose conjugated MTX, cells were seeded
in 96-well plates (8 × 103 cells/well). The next day, the cells were treated with culture
medium (control) and different doses of the compounds (5, 10, 20 µM) for 48 h.

Following incubation, an MTT assay was performed. Cell viability was determined
by the ability of the mitochondrial enzyme succinate dehydrogenase to convert the yellow
tetrazolium salt (MTT) into violet formazan crystals in active cells. After 4 h of incuba-
tion, the medium was removed, and the water-insoluble dye was dissolved by dimethyl
sulfoxide (Sigma Aldrich, Munich, Germany), generating the color, whose intensity is
directly proportional to the number of viable cells. The absorbance was measured at 570
nm using the Bio-TekBioTek ELX800 multi-well reader (BioTek, Winooski, VT, USA). The
percentage of viable cells (VC) was calculated as VC (100%) = (A of experimental group/A
of the control group) × 100%. MTT experiments were repeated three times, and the fig-
ures represent the mean. For further experiments, the concentration of 10 µM MTX and
Glu-MTX was used to evaluate the motility ability and apoptosis by flow cytometry and
immunocytochemistry.

4.2.3. Wound-Healing Assay

To analyze the migration properties of MCF-7 and SW480 cells, a wound-healing
assay was performed. Cells were seeded on 6-well plates in 1 × 106/well density to form a
confluent monolayer. With a 200 µL pipette tip, a linear scratch was made in each sample.
The first photograph in time point 0 was taken. Then, the cells were incubated with a
dose of 10 µM MTX and Glu-MTX for 48 h. After incubation, the second photograph was
taken when the scratch was closed in the control cell samples without any treatment. The
experiment was repeated three times.

4.2.4. Flow Cytometry-Apoptosis Assay

To evaluate the apoptosis rate of cells in the tumor microenvironment, SW480 cells
were seeded at a density of 3.5 × 105/well in a 6-well culture plate. The next day, cells
were treated with MTX or Glu-MTX at a dose of 10 µM for 48 h. After treatment, cells were
washed with PBS solution, detached by using 0.25% trypsin in EDTA, centrifuged, and
prepared according to the manufacturer’s instructions from Annexin V-FITC PI Apoptosis
Detection Kit (Abcam, Cambridge, UK). First, cells were suspended in 500 µL of 1× Binding
Buffer. Afterward, 5 µL of Annexin V (Annexin V-FITC) and 1 µL of propidium iodide
(PI, 50 µg/mL) were added to each sample. The samples were incubated for 20 min in
darkness at room temperature. For the evaluation of apoptosis, a BD Accuri C6 flow
cytometer (Becton Dickinson, Franklin Lakes, NJ, USA) was used. Control cells, MTX, and
Glu-MTX-treated samples were measured in triplicate. The obtained results were analyzed
using the BD Accuri 6 Plus Software (Becton, Dickinson, NJ, USA).

4.2.5. ICC Staining for Apoptosis Detection

For the immunocytochemical analysis, the apoptotic proteins (Caspase-3, Bax, Bcl-2)
were evaluated. MCF-7 cells were seeded on 8 Chamber Eppendorf Cell Imaging Slides
(Eppendorf, Germany) at a density of 8 × 104/well. The following day, 10 µM Glu-MTX
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and MTX were added to the wells for 48 h of incubation. Next, the cells were washed
twice in PBS and fixed in 4% formaldehyde (Polysciences, Warrington, PA, USA) for 10 min
at RT. After PBS washing, cells were permeabilized and incubated in a blocking solution
containing 5% Normal Donkey Serum (Abcam, Bristol, UK), 3% Bovine Serum Albumin
(Sigma Aldrich, Germany), 0.05% Tween 20 (Sigma Aldrich, Germany), 0.2% Triton X-100
(Sigma Aldrich, Germany), in PBS for 1 h at 4 ◦C. Then the primary antibodies: anti-Bax,
anti-Bcl-2, and anti-Caspase 3 (Abcam, UK), in dilution 1:100, were applied, and the cells
were incubated overnight at 4 ◦C. The next day, after PBS washing, the cells were incubated
with a secondary anti-rabbit antibody (Sigma Aldrich, Germany) at RT for 1 h. After
PBS washing, sections were stained with 3,3′-diaminobenzidine in chromogen solution
(Dako EnVision+ Dual Link System-HRP, Agilent, USA) and counterstained with Mayer’s
hematoxylin for nucleus counterstaining.

The control sample was performed following the above instructions but without
incubation with the compounds.

The light microscopy fitted with a digital camera (Nikon, Poland) with dry objectives
20× and 40× was used to take the photos.

5. Conclusions

The exploration of glycoconjugates for GLUT1-targeted cancer therapy began 25 years
ago with the discovery of glufosfamide. Since then, numerous preclinical and clinical trials
have been conducted on glucose conjugates in the treatment of various malignancies.

To our knowledge, this is the first time that an evaluation of the biological activity
of glucose-conjugate in the tumor microenvironment has been performed. As hypoxia
and nutrient stress are known to upregulate GLUT expression on the cancer cell surface
and given that GLUTs confer the tumor selectivity of Glu-MTX, the results of our study
confirm the viability of the strategy to combat tumor microenvironment-induced drug
resistance in solid malignancies through linking of anticancer compounds with glucose. It
is of paramount importance to validate anticancer agents’ activity in models closer to their
“native” microenvironment to improve the dismal success rates in transitioning anticancer
agents from the laboratory to the clinic [45].

In summary, this work showed that the conjugation of methotrexate to glucose led to
an increase in potency against malignant cells under hypoxia and nutrient stress. Although
the finding has been confined to in vitro studies, our observations shed light on a potential
therapeutic approach to overcome chemoresistance in cancer.

Supplementary Materials: The following are available online at https://www.mdpi.com/1424-824
7/14/1/13/s1: Figure S1: Mass spectrum of MTX. The molecular ion peak at m/z 455.1807 (a) and
455.1798 (b) reflects the mass of free MTX in the intracellular compartment of SW480 cells treated
with Glu-MTX and MTX, respectively.
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